A method for improved utilization of data from experiments with fishing gear

AFS San Francisco

Sep. 4 2007

Rene Holst

DIFRES & Uni. of Southern Denmark, Denmark
Outline

- Fishing gear selectivity - notions and concepts
- Motivation - Data
- Methods - Non-technical
- Results
- Discussion
Selectivity - Single Haul

Selectivity: Probability of retention for a length l fish given it has entered the codend $r(l)$

$$r(l; \beta) = \frac{\exp(\beta_0 + \beta_1 l)}{1 + \exp(\beta_0 + \beta_1 l)}$$
Selectivity: Probability of retention for a length \(l \) fish given it has entered the codend \(r(l) \)

\[
r(l; \beta) = \frac{\exp(\beta_0 + \beta_1 l)}{1 + \exp(\beta_0 + \beta_1 l)}
\]
Selectivity: Probability of retention for a length l fish given it has entered the codend $r(l)$

$$r(l; \beta) = \frac{\exp(\beta_0 + \beta_1 l)}{1 + \exp(\beta_0 + \beta_1 l)}$$

Selectivity Curve

L50% = 40 cm.
Selectivity: Probability of retention for a length \(l \) fish given it has entered the codend \(r(l) \)

\[
r(l; \beta) = \frac{\exp(\beta_0 + \beta_1 l)}{1 + \exp(\beta_0 + \beta_1 l)}
\]

Selectivity Curve

- SR = 10 cm.
Selectivity: Probability of retention for a length \(l \) fish given it has entered the codend \(r(l) \)

\[
r(l; \beta) = \frac{\exp(\beta_0 + \beta_1 l)}{1 + \exp(\beta_0 + \beta_1 l)}
\]

\((\beta_0, \beta_1)^T \leftrightarrow (L_{50}, SR)^T\)
Cruise - Multiple Hauls

Mean Curves

Length

Retention Probability
Mean Curves and Interpretations

Mean Curves
Mean Curves and Interpretations

Mean Curves

Retention Probability

Length

Mean Curves - varying mesh sizes

Discussion

In the end
Mean Curves and Interpretations

Mean Curves

Retention Probability

Length

Mean Curves - varying mesh sizes
Mean Curves and Interpretations

- Conditional Mean - **Subject Specific** - GLMM
- Marginal Mean - **Population Average** - GEE
Meta Analysis - Combine information from several sources
Multiple Cruises

▲ Meta Analysis - Combine information from several sources
▲ Account for cluster structure in data
Multiple Cruises

- Meta Analysis - Combine information from several sources
- Account for cluster structure in data
 - Heterogeneity between Hauls within Cruise
Multiple Cruises

- Meta Analysis - Combine information from several sources
- Account for cluster structure in data
 - Heterogeneity between Hauls within Cruise
 - Heterogeneity between Cruises
Multiple Cruises

- Meta Analysis - Combine information from several sources
- Account for cluster structure in data
 - Heterogeneity between Hauls within Cruise
 - Heterogeneity between Cruises
- Purpose of the analysis? Conditional or Marginal
Multiple Cruises

- Meta Analysis - Combine information from several sources
- Account for cluster structure in data
 - Heterogeneity between Hauls within Cruise
 - Heterogeneity between Cruises
- Purpose of the analysis? Conditional or Marginal
- Non-compatible data
Multiple Cruises

▲ Meta Analysis - Combine information from several sources
▲ Account for cluster structure in data
 ● Heterogeneity between Hauls within Cruise
 ● Heterogeneity between Cruises
▲ Purpose of the analysis? Conditional or Marginal
▲ Non-compatible data
▲ Different covariates
Multiple Cruises

▲ Meta Analysis - Combine information from several sources
▲ Account for cluster structure in data
 ● Heterogeneity between Hauls within Cruise
 ● Heterogeneity between Cruises
▲ Purpose of the analysis? Conditional or Marginal
▲ Non-compatible data
▲ Different covariates
▲ PRAGMATIC APPROACH TO DATA!
Baltic Sea - Cod stock at critical level
Application

▲ Baltic Sea - Cod stock at critical level
● BACOMA Codend
Application

Baltic Sea - Cod stock at critical level
• BACOMA Codend
• T90 Codend
Application

▲ Baltic Sea - Cod stock at critical level
 ● BACOMA Codend
 ● T90 Codend

▲ Request for advice from IBSC to ICES ACFM
Application

▲ Baltic Sea - Cod stock at critical level
 ● BACOMA Codend
 ● T90 Codend

▲ Request for advice from IBSC to ICES ACFM

▲ Meta Analysis based on all available and relevant data
Data

25 Cruises
Data

- 25 Cruises
- 483 Hauls
Data

- 25 Cruises
- 483 Hauls
- Two experimental type
 - Covered Codend
 - Twin Trawls
Data

▲ 25 Cruises
▲ 483 Hauls
▲ Two experimental type
 ● Covered Codend
 ● Twin Trawls
▲ Key Variables
Data

- 25 Cruises
- 483 Hauls
- Two experimental type
 - Covered Codend
 - Twin Trawls
- Key Variables
 - GEAR TYPE: BACOMA and T90
Data

- 25 Cruises
- 483 Hauls
- Two experimental type
 - Covered Codend
 - Twin Trawls
- Key Variables
 - GEAR TYPE: BACOMA and T90
 - MESH SIZE
Data

▲ 25 Cruises
▲ 483 Hauls
▲ Two experimental type
 ● Covered Codend
 ● Twin Trawls
▲ Key Variables
 ● GEAR TYPE: BACOMA and T90
 ● MESH SIZE
 ● OPEN MESHES CIRCUMF.
Data

25 Cruises
483 Hauls
Two experimental type
- Covered Codend
- Twin Trawls
Key Variables
- GEAR TYPE: BACOMA and T90
- MESH SIZE
- OPEN MESHES CIRCUMF.
- EXPERIMENTAL TYPE: Cov. Codend and Twin Trawl
Data

▲ 25 Cruises
▲ 483 Hauls
▲ Two experimental type
 ● Covered Codend
 ● Twin Trawls
▲ Key Variables
 ● GEAR TYPE: BACOMA and T90
 ● MESH SIZE
 ● OPEN MESHES CIRCUMF.
 ● EXPERIMENTAL TYPE: Cov. Codend and Twin Trawl
 ● VESSEL TYPE: Research and Commercial
Data

▲ 25 Cruises
▲ 483 Hauls
▲ Two experimental type
 ● Covered Codend
 ● Twin Trawls
▲ Key Variables
 ● GEAR TYPE: BACOMA and T90
 ● MESH SIZE
 ● OPEN MESHES CIRCUMF.
 ● EXPERIMENTAL TYPE: Cov. Codend and Twin Trawl
 ● VESSEL TYPE: Research and Commercial
 ● Other variables
Method - Conditional Model

A proxy pragmatic approach:

▲ **SELECT Model:** Estimates of \((L_{50}, SR)\) for each haul in each cruise
Method - Conditional Model

A proxy pragmatic approach:

▲ **SELECT Model**: Estimates of \((L_{50}, SR)\) for each haul in each cruise

▲ **Apply Fryers method** to each cruise to obtain cruise level estimates of \((L_{50}, SR)\)
Method - Conditional Model

A proxy pragmatic approach:

▲ **SELECT Model:** Estimates of \((L_{50}, SR)\) for each haul in each cruise

▲ **Apply Fryers method** to each cruise to obtain cruise level estimates of \((L_{50}, SR)\)

▲ **Apply Fryers method** to cruise level estimates
Method - Marginal Model

▲ GEE: Generalized Estimating Equations
Method - Marginal Model

- **GEE:** Generalized Estimating Equations
- **CONSs:**
 - **NOT** a likelihood approach
 - No explicit model for random cluster variation
Method - Marginal Model

▲ **GEE:** Generalized Estimating Equations

▲ **CONSs:**
 ● **NOT** a likelihood approach
 ● No explicit model for random cluster variation

▲ **PROs**
 ● Implemented in many standard packages (e.g. SAS, R)
 ● "Good" asymptotic behaviour of estimators
 ● Robust
Method - Marginal Model

▲ **GEE:** Generalized Estimating Equations

▲ **CONSs:**
 - **NOT** a likelihood approach
 - No explicit model for random cluster variation

▲ **PROs**
 - Implemented in many standard packages (e.g. SAS, R)
 - "Good" asymptotic behaviour of estimators
 - Robust
Method - Marginal Model

▲ **GEE:** Generalized Estimating Equations

▲ **CONSs:**
 - **NOT** a likelihood approach
 - No explicit model for random cluster variation

▲ **PROs**
 - Implemented in many standard packages (e.g. SAS, R)
 - "Good" asymptotic behaviour of estimators
 - Robust
Results

▲ Conditional Model:

▲ Marginal Model:
Results

▲ Conditional Model:
- \(L_{50} \sim 0.3534 \times MeshSize \)
- \(SR \sim 0.05242 \times MeshSize + 3.107 \times I_{\text{CommercialVessel}} \)

▲ Marginal Model:
Results

▲ Conditional Model:
- \(L_{50} \sim 0.3534 \times MeshSize \)
- \(SR \sim 0.05242 \times MeshSize + 3.107 \times I_{CommercialVessel} \)

▲ Marginal Model:
- \(L_{50} \sim 7.2815 + 0.2944 \times MeshSize \)
- \(SR \sim -50.6758 + 0.503 \times MeshSize \)
Mean Curves - varying mesh sizes

Mean Selectivity Curves

Mesh Size=105 mm.

Mesh Size=120 mm.

Mesh Size=140 mm.

Conditional, Com. Vessel

Conditional, Res. Vessel

Marginal
Discussion

▲ Room and need for further development
▲ Integrate over catch weight
▲ How can we improve the quality of data?
▲ Bayesian Approach
In the end

"I was so much older then,
I’m younger than that now . . ."

Bob Dylan