National Marine Fisheries Service
Endangered Species Act Section 7 Consultation Biological Opinion

Agencies: National Marine Fisheries Service, with the U.S. Navy as Action Agency and Applicant for a Federal Authorization

Activities Considered: The U.S. Navy’s proposed research, development, test, and evaluation activities at the Naval Undersea Warfare Center Keyport Range Complex from May 2011 to May 2012

NMFS’ 2011 Letter of Authorization for the U.S. Navy to “take” marine mammals incidental to research, development, test, and evaluation activities at the Naval Undersea Warfare Center Keyport Range Complex from May 2011 to May 2012

Consultation Conducted by: Endangered Species Division of the Office of Protected Resources, National Marine Fisheries Service

Approved by: [Signature] Date: MAY 13 2011

Section 7(a)(2) of the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1536(a)(2)) requires each federal agency to ensure that any action they authorize, fund, or carry out is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of critical habitat of such species. When a federal agency’s action “may affect” a protected species, that agency is required to consult formally with the National Marine Fisheries Service (NMFS) or the U.S. Fish and Wildlife Service, depending upon the endangered species, threatened species, or designated critical habitat that may be affected by the action (50 CFR 402.14(a)). Federal agencies are exempt from this general requirement if they have concluded that an action “may affect, but is not likely to adversely affect” endangered species, threatened species, or designated critical habitat and NMFS or the U.S. Fish and Wildlife Service concur with that conclusion (50 CFR 402.14(b)).

For the actions described in this document, the action agencies are the United States Navy (U.S. Navy), which proposes to (1) undertake research, development, test, and evaluation (RDT&E) activities and conduct fleet activities at the Naval Undersea Warfare Center (NUWC), Keyport Range Complex and (2) NMFS’ Office of Protected Resources – Permits, Conservation, and Education Division (Permits Division), which proposes to issue a Letter of Authorization (LOA) pursuant to Federal regulations under the Marine Mammal Protection Act (MMPA) that would authorize the U.S. Navy to “take” marine mammals incidental to those RDT&E activities.
This page intentionally left blank
Table of Contents

1 INTRODUCTION..1
 1.1 Background..1
 1.2 Consultation History ..1

2 DESCRIPTION OF THE PROPOSED ACTION ...2
 2.1 Proposed RDT&E Activities ...2
 2.1.1 Test Vehicle Propulsion ...3
 2.1.2 Fleet Activities (Not Including RDT&E Activities) ..7
 2.1.3 Deployment Systems ..8
 2.1.4 Autonomous and Non-Autonomous Vehicles ...9
 2.1.5 Retrieval and Recovery Capabilities ..9
 2.1.6 Acoustic Systems Routinely Used ..9
 2.2 MMPA Requirements ..11
 2.2.1 Mitigation ...11
 2.2.2 Monitoring And Reporting Requirements ..12
 2.3 Action Area ...15

3 APPROACH TO THE ASSESSMENT ..19
 3.1 Risk Analysis for Endangered and Threatened Species ...19
 3.2 Application of this Approach in this Consultation ..21
 3.3.1 Exposure Analyses ..23
 3.3.2 Response Analyses ...23
 3.3.3 Risk Analysis ...24
 3.4 Evidence Available for the Consultation ..25
 3.5 Treatment of “Cumulative Impacts” (in the sense of NEPA) ..26

4 STATUS OF LISTED RESOURCES ...27
 4.1 Species and Critical Habitat Not Considered Further in this Opinion29
 4.1.1 North Pacific Right Whale ..29
 4.1.2 Green Sea Turtle ..29
 4.1.3 Loggerhead Sea Turtle ..29
 4.1.4 Olive Ridley Sea Turtle ...30
 4.1.5 Georgia Basin Bocaccio ..30
 4.1.6 Georgia Basin Canary Rockfish ...30
 4.1.7 Georgia Basin Yelloweye Rockfish ..31
 4.1.8 Critical Habitat For Southern Resident Killer Whales ...31
 4.1.9 Critical Habitat For the Eastern Population Of Steller Sea Lions32
 4.1.10 Critical Habitat for Leatherback Sea Turtle ...32
 4.1.11 Critical Habitat for the Southern Population of Green Sturgeon33
 4.1.12 Critical Habitat for Pacific Eulachon ...34
 4.1.13 Critical Habitat for Puget Sound Chinook Salmon ...34
 4.1.14 Critical Habitat for Lower Columbia River Chinook Salmon35
 4.1.15 Critical Habitat for Columbia River Chum Salmon ...35
 4.1.16 Critical Habitat for Hood Canal Summer Run Chum Salmon36
 4.1.17 Critical Habitat for Ozette Lake Sockeye Salmon ..37
 4.1.18 Critical Habitat for Lower Columbia River Steelhead37
 4.2 Climate Change ...38
 4.3 Species Considered Further in this Biological Opinion ..41
 4.3.1 Blue Whale ...42
4.3.2 Fin Whale ...48
4.3.3 Humpback Whale ..53
4.3.4 Sei Whale ...58
4.3.5 Sperm Whale ..63
4.3.6 Southern Resident Killer Whale68
4.3.7 Eastern Population of Steller Sea Lion74
4.3.8 Leatherback Sea Turtle ..77
4.3.9 Chinook Salmon ..83
4.3.10 Puget Sound Chinook Salmon86
4.3.11 Lower Columbia River Chinook Salmon86
4.3.12 Chum Salmon ...87
4.3.13 Columbia River Chum Salmon89
4.3.14 Hood Canal Summer-run Chum Salmon89
4.3.15 Coho Salmon ..89
4.3.16 Lower Columbia River Coho Salmon90
4.3.17 Sockeye Salmon ..91
4.3.18 Ozette Lake Sockeye Salmon92
4.3.19 Steelhead ...93
4.3.20 Lower Columbia River Steelhead94
4.3.21 Green Sturgeon ...95
4.3.22 Southern Population of Pacific Eulachon98

5 EFFECTS OF THE PROPOSED ACTION ..112
5.1 Stressors Associated with the Proposed Action113
5.1.1 Risk of Disturbance or Collisions114
5.1.2 Sound Fields from Active Sonar115
5.1.3 Expendable Materials ..117
5.2 Exposure Estimates ..118
5.2.1 Collision with/Exposure to Vessel Traffic118
5.2.2 Exposure to Active Sonar119
5.2.3 Exposure to Expendable Materials128
5.3 Response Analysis ...128
5.3.1 Responses to Collision with/Disturbance from Vessel Traffic 128
5.3.2 Responses to Active Sonar129
5.4 Cumulative Effects ..133

6 INTEGRATION AND SYNTHESIS OF EFFECTS134
6.1 Blue Whale ...134
6.2 Fin Whale ..135
6.3 Humpback Whale ..135
6.4 Sei Whale ..135
6.5 Southern Resident Killer Whale136
6.6 Sperm Whale ..136
6.7 Eastern Population of Steller Sea Lion136
6.8 Leatherback Sea Turtles ..137
6.9 Southern Green Sturgeon ...138
6.10 Pacific Salmon, Steelhead, and Southern Eulachon139
List of Tables

Table 1. Activities the U.S. Navy proposes to conduct in the Keyport Range Complex from April 2011 through April 2012 ... 3
Table 2. Primary Acoustic Sources Routinely Used within the NUWC Keyport Range Complex ...10
Table 3. Species listed under the Federal Endangered Species Act (ESA) under NMFS jurisdiction that may occur in the Action Area for the NUWC Keyport Range Complex .. 28
Table 4. Phenomena associated with projections of global climate change including levels of confidence associated with projections (adapted from IPCC 2001 and Campbell-Lendrum Woodruff 2007) ... 39
Table 5. Acoustic sources that are representative of sources the U.S. Navy proposes to use at the Keyport Range Complex .. 116

List of Figures

Figure 1. The proposed extension of the Keyport Range Complex site (adapted from Figure 2-4a of the U.S. Navy’s Draft Environmental Impact Statement/Overseas Environmental Impact Statement on the Keyport Range Complex Extension (Navy 2008c)) 16
Figure 2. The proposed extension of the Dabob Bay Range Complex sites (adapted from Figure 2-5a of the U.S. Navy’s Draft Environmental Impact Statement/Overseas Environmental Impact Statement on the Keyport Range Complex Extension (Navy 2008c)) 17
Figure 3. The proposed extension of the Quinault Underwater Tracking Range site (adapted from Figure 2-6a of the U.S. Navy’s Draft Environmental Impact Statement/Overseas Environmental Impact Statement on the Keyport Range Complex Extension (Navy 2008c)) 18
1 INTRODUCTION

Section 7(a)(2) of the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1539(a)(2)) requires each Federal agency to ensure that any action they authorize, fund, or carry out is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of critical habitat of such species. When a Federal agency’s action “may affect” a protected species, that agency is required to consult formally with the National Marine Fisheries Service (NMFS) or the U.S. Fish and Wildlife Service, depending upon the endangered species, threatened species, or designated critical habitat that may be affected by the action (50 CFR § 402.14(a)). Federal agencies are exempt from this general requirement if they have concluded that an action “may affect, but is not likely to adversely affect” endangered species, threatened species, or designated critical habitat and NMFS or the U.S. Fish and Wildlife Service concurs with that conclusion (50 CFR § 402.14(b)).

For the actions described in this document, the action agencies are the United States Navy (U.S. Navy), which proposes to (1) undertake research, development, test, and evaluation (RDT&E) activities and conduct fleet activities at the Naval Undersea Warfare Center (NUWC) Keyport Range Complex and (2) NMFS’ Office of Protected Resources – Permits, Conservation, and Education Division (Permits Division), which proposes to issue a Letter of Authorization (LOA) pursuant to Federal regulations under the Marine Mammal Protection Act (MMPA) that would authorize the U.S. Navy to “take” marine mammals incidental to those RDT&E activities. The consulting agency for these proposals is NMFS’ Office of Protected Resources - Endangered Species Division.

The Opinion and incidental take statement portions of this consultation were prepared by NMFS Endangered Species Division in accordance with section 7(b) of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 1531, et seq.), and implementing regulations at 50 CFR § 402. This document represents NMFS’ final biological opinion (Opinion) on the effects of these actions on endangered and threatened species and critical habitat that has been designated for those species.

1.1 Background

This Opinion has been prepared in accordance with section 7 of the ESA and considers and is based on information provided in the NMFS Permits Division’s request for Section 7 consultation under the ESA (NMFS 2011), the proposed Letter of Authorization, the Federal regulations under the MMPA specific to the proposed activities (50 CFR § 218.170; 76 FR 20257), the programmatic ESA consultation that considered the Navy’s proposed activities over a five year period (NMFS 2010b) and, final and draft recovery plans for the endangered or threatened species that are considered in this document, and publications that we identified, gathered, and examined from the public scientific literature.

1.2 Consultation History

On April 7, 2011, NMFS’ Permits Division submitted a request to initiate Section 7 consultation to NMFS Protected Resources Division along with the MMPA Federal regulations (76 FR 20257) related to the issuance of an annual LOA to the Navy for takes of marine mammals and a draft LOA covering activities that would occur from April 2011 through April 2012 (NMFS 2011) at the NUWC Keyport Range Complex.
Previously, on June 15, 2010, NMFS Endangered Species Division issued a programmatic ESA Section 7 consultation that addressed four activities: (1) the U.S. Navy’s proposal to continue in-water RDT&E activities at NUWC Keyport Range Complex over a five-year period beginning in June 2010 and ending in June 2015; (2) the U.S. Navy’s proposal to continue training in the Northwest Training Range Complex over a five-year period beginning in June 2010 and ending in June 2015; (3) NMFS Permits Division’s proposal to promulgate regulations governing the “take” of marine mammals (50 CFR Part 218) to allow the U.S. Navy to “take” marine mammals incidental to in-water RDT&E activities at the NUWC Keyport Range Complex; and (4) the Permits Division proposal to promulgate regulations governing the “take” of marine mammals (50 CFR Part 218) to allow the U.S. Navy to “take” marine mammals incidental to military readiness activities on the Northwest Training Range Complex (NMFS 2010b).

2 DESCRIPTION OF THE PROPOSED ACTION

This Opinion addresses: (1) the U.S. Navy’s proposal to conduct in-water RDT&E activities at NUWC Keyport Range Complex during a one-year period from April 2011 through April 2012 and (2) NMFS’ Permits Division proposal to issue a LOA to allow the U.S. Navy to “take” marine mammals incidental to in-water RDT&E activities at the NUWC Keyport Range Complex.

The purpose of the activities the U.S. Navy proposes to conduct on the NUWC Keyport Range Complex is to meet the requirements of the U.S. Navy’s Fleet Response Training Plan, and allow NUWC Keyport Range Complex to continue fulfilling its mission of providing test and evaluation services and expertise to support the Navy’s evolving manned and unmanned undersea vehicle program. The purpose of the Permits Division’s LOA is to allow the U.S. Navy to “take” marine mammals incidental to in-water RDT&E activities at the NUWC Keyport Range Complex.

The following narratives summarize the information the U.S. Navy provided on the various activities it plans to conduct during the twelve-month duration of the proposed LOA.

The NUWC Keyport Range Complex is composed of the Keyport Range site, the Dabob Bay Range Complex (DBRC) site, and the Quinault Underwater Tracking Range (QUTR) site. The Keyport Range site is located in Kitsap County and includes portions of Liberty Bay and Port Orchard Reach (also known as the Port Orchard Narrows). The Dabob Bay Range Complex is located in Hood Canal and Dabob Bay, in Jefferson and Kitsap counties. The Quinault Underwater Tracking Range is located in the Pacific Ocean off the coast of Jefferson County.

Activities conducted at the various range sites may be related operationally in that certain tests are run interdependently and are used in tandem (e.g., one test may be at the Dabob Bay Range Complex site and another run simultaneously at the Keyport Range site). However, each test is conducted solely at a single range site location, and each site is independently monitored for safety and operational purposes. While one suite of tests may be conducted over various portions of the range complex, each specific activity is planned and executed independently.

2.1 Proposed RDT&E Activities

The activities the U.S. Navy typically conducts at the NUWC Keyport Range Complex support the undersea warfare RDT&E program, but they also support general equipment test and military personnel
training needs, including fleet activities. Fleet activities do not include the use of surface ship and submarine hull-mounted sonars.

The Navy proposes to use the Keyport Range site for an annual average of 55 days, Dabob Bay site for an annual average of 200 days, and the Quinault Underwater Tracking Range site for an annual average of 14 days. At the Quinault Underwater Tracking Range, the Navy proposes an annual use from 14 days to 16 days.

Table 1. Activities the U.S. Navy proposes to conduct in the Keyport Range Complex from April 2011 through April 2012.

<table>
<thead>
<tr>
<th>Range Activity</th>
<th>Platform or System Used</th>
<th>Number of Activities Proposed Per Year by Area *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Keyport Range site</td>
</tr>
<tr>
<td>Test Vehicle Propulsion</td>
<td>Thermal propulsion systems</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Electric/Chemical propulsion systems</td>
<td>55</td>
</tr>
<tr>
<td>Other Testing Systems and Activities</td>
<td>Submarine testing</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inert mine detection, classification and localization</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Non-Navy testing</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Acoustic & non-acoustic sensors (magnetic array, oxygen)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Countermeasure test</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Impact testing</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Static in-water testing</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Unmanned undersea vehicle test</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Unmanned Aerial System (UAS) test</td>
<td>0</td>
</tr>
<tr>
<td>Fleet Activities** (excluding RDT&E)</td>
<td>Surface Ship activities</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aircraft activities</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Submarine activities</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Diver activities</td>
<td>45</td>
</tr>
<tr>
<td>Deployment Systems (RDT&E)</td>
<td>Range support vessels:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface launch craft</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Special purpose barges</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Fleet vessels</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Aircraft (rotary and fixed wing)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shore and pier</td>
<td>45</td>
</tr>
</tbody>
</table>

* There may be several activities during each training day. These numbers provide an estimate of types of range activities over the year.

** Fleet activities in the NUWC Keyport Range Complex do not include the use of surface ship and submarine hull-mounted active sonars.

2.1.1 Test Vehicle Propulsion

Test vehicles propulsion refers to the type of fuel or energy used to power test vehicles operating at a range site. Test vehicles used at the NUWC Keyport Range Complex sites feature two types of propulsion systems: thermal and electric/chemical.
Thermal Propulsion Systems
Thermal propulsion systems, powered by Otto Fuel II, rocket fuel, diesel fuel, and/or jet fuels, are open-cycle systems whereby combustion byproducts are exhausted to the water column. There are also closed-cycle thermal systems that have no emissions into the environment other than heat. Several torpedoes and Unmanned Undersea Vehicles use thermal engines for high speed and short duration.

The U.S. Navy currently conducts activities involving thermal propulsion of test vehicles for an average of 130 days per year within the Dabob Bay site and 30 days per year within the Quinault Underwater Tracking Range site (currently, no activities involving thermal propulsion occur at the Keyport Range site). Activities using thermal propulsion systems may be scheduled for anywhere from 10 minutes to 24 hours.

Electric Propulsion Systems
Electric propulsion systems are powered by motors using different types of batteries. Battery types include lithium thionyl, lithium ion, lead acid, silver zinc, and nickel hydride. For these closed cycle systems only heat energy is transferred into the environment. Electric propulsion is generally used for mobile targets, unmanned undersea vehicles, and other systems that run for relatively long periods. Chemical propulsion systems are usually based on a lithium boiler that is a closed cycle system. Chemical propulsion systems are generally used for high speed and short duration torpedoes and unmanned undersea vehicles.

The U.S. Navy currently conducts activities involving electric or chemical propulsion of test vehicles for an average of 55 days per year at the Keyport Range site, 140 days per year within the Dabob Bay site, and 30 days per year within the Quinault Underwater Tracking Range site. Test vehicles utilizing electric/chemical propulsion systems are typically scheduled for 4 hours of use during each activity.

Submarine Testing
Submarine RDT&E testing includes any fleet or civilian submarine used in support of testing. The vessel may be small enough to be launched from another submarine or surface craft or it may be as large as an Ohio class submarine. Currently, the U.S. Navy schedules activities of this type for an average of 45 days per year within the Dabob Bay site and 15 days per year within the Quinault Underwater Tracking Range site (no activities involving submarine testing occur at the Keyport Range site). The typical duration of submarine testing activity is up to 8 hours.

Inert Mine Detection, Classification, and Localization
This type of activity supports TRD&E of inert mine systems and provides training to Navy personnel on how to deploy, detect, and defend against mine systems. For example, unmanned undersea vehicle mine sensors may be tested to ensure they can detect, classify, and localize inert mines amongst rocky outcrops or inert shapes. These sensors may also be associated with a vessel, or placed before a single inert mine or inert mine field is put in place. The inert mines themselves may be tested to ensure they deploy as required and Fleet operators may be trained in mine field placement.

The U.S. Navy currently conducts activities involving inert mine detection, classification, or localization for an average of 5 days per year at the Keyport Range site, 20 days per year within the Dabob Bay site, and 10 days per year within the Quinault Underwater Tracking Range site. Activities of this type may be anywhere from 4 hours to multiple days in duration.
Non-Navy Testing
These activities may involve a wide variety of non-Navy applications including from private enterprise and universities. Usually the non-Navy customer is doing RDT&E in support of Office of Naval Research or to prepare an item for a Navy or Department of Defense application. The RDT&E of non-Navy equipment/software/processes are applied to Department of Defense and usually Navy mission. An example of this would be the test of the American Native Technologies glider. The company hopes to provide this system to the Navy to measure environmental characterization sound velocity profiles measuring salinity and temperature with respect to depth. Non-Navy testing can also involve development of software for use aboard an aircraft carrier or in a Fleet helicopter for managing data from one platform to another. The test would be of the software package on the helicopter for example.

The U.S. Navy currently conducts activities involving non-Navy testing for an average of 5 days per year at each of the 3 range sites. Activities involving non-Navy testing may be scheduled for anywhere from 10 minutes to multiple days.

Acoustic and Nonacoustic Sensors
Acoustic sensors are any hydrophones on any kind of platform or mounted to crafts or towed at bottom or mid-depth. An example of the application of an acoustic sensor is the bottom moored array at the Dabob Bay site, which is an array of hydrophones moored to the bottom and suspended in the water column to enable identification of noise from passing torpedoes. The level of noise may change if there is a nick in a propeller or if a mechanism in the vehicle is malfunctioning.

These problems can be found by listening with passive acoustics before they become apparent with the vehicle in the shop. An example of a nonacoustic sensor is an oxygen sensor that detects the level of dissolved oxygen in the water with respect to depth. Sensors for conductivity and temperature with respect to depth are used frequently to improve tracking with updated sound velocity profiles from raw data. Magnetic sensors are non-acoustic sensors that can be placed on the bottom to detect passing vessels. A sensor may also be put on an unmanned undersea vehicle as a payload.

The U.S. Navy currently conducts acoustic and nonacoustic sensor tests for an average of 20 days per year at the Keyport Range site, 10 days per year within the Dabob Bay site, and 5 days per year within the Quinault Underwater Tracking Range site. Activities involving these systems may be anywhere from 10 minutes to multiple days in duration.

Countermeasure Test
Countermeasures, which may take many different forms and represent a range of tactics, attempt to disrupt an attack intended for a target. Underwater, a countermeasure may emit sound that is louder than the target or in a different location that is similar to the target, causing the attacker to detour away from the target. A countermeasure could also be something that looks like a threat or mimics the magnetic characteristics of a target, so that the actual threat or target remains undetected. By design, countermeasures emit active acoustic energy of varying frequencies into the water.

The U.S. Navy currently conducts activities involving countermeasures for an average of 5 days per year at the Keyport Range site, 50 days per year within the Dabob Bay site, and 5 days per year within the
Quinault Underwater Tracking Range site. Activities involving these systems may last anywhere from 8 to 36 hours.

Impact Testing
This type of test evaluates the durability of test vehicles by causing an impact between them or between the test vehicle and some other object. Such tests evaluate the functioning of approach and guidance and control capabilities of test vehicles. Currently, the U.S. Navy schedules activities of this type for an average of 10 days per year within the Dabob Bay site and 5 days per year within the Quinault Underwater Tracking Range site (no impact testing activities occur at the Keyport Range site). Individual tests of this type typically last about 8 hours.

Static In-Water Testing
Static tests are performed by holding the system under test in place, either hanging over the side of a vessel, mounted on the sea floor, or suspended within the water column. Static in-water testing includes any kind of test in which the system under test does not actually move through the water.

The U.S. Navy currently conducts static testing activities for an average of 10 days per year at the Keyport Range site, 10 days per year within the Dabob Bay site, and 6 days per year within the Quinault Underwater Tracking Range site. Individual tests of this type may be conducted for as little as 10 minutes to as much as 8 hours.

Unmanned Undersea Vehicle Testing
Unmanned undersea vehicles are any unmanned underwater vehicle that swims, floats, or crawls along the sea floor. They include torpedoes and they may carry a payload (e.g., an active acoustic system or a passive acoustic or nonacoustic sensor) that is being tested.

The U.S. Navy currently conducts activities involving unmanned undersea vehicles for an average of 45 days per year at the Keyport Range site, 120 days per year within the Dabob Bay site, and 40 days per year within the Quinault Underwater Tracking Range site. Unmanned undersea vehicle tests may be anywhere from 10 minutes to multiple days in duration.

Unmanned Aerial System Testing
Unmanned aerial systems are remotely piloted or self piloted (i.e., preprogrammed flight pattern) aircraft that include fixed-wing, rotary-wing, and other vertical takeoff vehicles. They can carry cameras, sensors, communications equipment, or other payloads. Unmanned aerial systems can vary in size up to approximately 10 ft (3 m) in length, with gross vehicle weights of a couple hundred pounds. Propulsion types can range from traditional turbofans, turboprops, and piston engine-driven propellers, to electric motor-driven propellers powered by rechargeable batteries (lead-acid, nickel-cadmium, and lithium ion), photovoltaic cells, and/or hydrogen fuel cells. At the Dabob Bay site, unmanned aerial systems testing could support one or more of the following mission areas: intelligence, surveillance, and reconnaissance; antisurface ship warfare and antisubmarine warfare; mine warfare; communications relay; and derivations of these themes. Since the Dabob Bay site is not overlain by restricted airspace or a Warning Area, and currently the Federal Aviation Administration does not permit unmanned aerial systems operations outside of such designated areas without a Certificate of Authorization, NUWC Keyport Range Complex would apply for such authorization in specific places within the Dabob Bay site for specific test events.
Depending on the unmanned aerial systems being tested, individual flights within the Dabob Bay site could extend just a few nautical miles or tens of nautical miles. Maximum altitudes for flights would be approximately 3,000 ft (915 m) above mean sea level. Maximum velocities attained would be approximately 50 knots (93 kph). Use of unmanned aerial systems would occur only in accordance with Federal Aviation Administration regulations. The types of unmanned aerial systems tests conducted could include demonstration of aircraft flight worthiness and endurance, surveillance activities using onboard cameras and other sensors, and over-the-horizon targeting. Approximately two flights per year would occur within the Dabob Bay site and two within the Quinault Underwater Tracking Range site; each flight would last up to 2 hours. At the completion of each flight test, the vehicle would land in a small clearing, the helipad at Zelatched Point, or using retrieval nets from a surface craft.

2.1.2 Fleet Activities (Not Including RDT&E Activities)
Fleet activities that occur within the Keyport Range Complex include the use of ships, aircraft, submarines, or Navy divers. Such activities provide sailors the opportunity to train with actual U.S. Navy assets in a controlled range environment. None of the fleet activities conducted in the NUWC Keyport Range Complex involve the use of hull-mounted active sonars.

Surface Ship Activities
Fleet activities involving surface ships occur an average of once per year at the Keyport Range site, and approximately 10 times per year at the Dabob Bay and Quinault Underwater Tracking Range sites. Each occurrence of these activities typically lasts about 8 hours. Surface ships are outfitted with navigation tracking systems so that their location on the instrumented range can be very accurately determined. Surface ships and the range use active acoustics to support navigation (tracking, depth sensors, etc.), detection, classification and localization. Surface ships may launch a lightweight torpedo and active and passive underwater targets while at a range site. There may also be a target simulator with passive acoustics to simulate a target engine noise at depth.

Aircraft Activities
Aircraft activities and submarine activities do not occur at the Keyport Range site. They occur an average of 10 days (aircraft) and 30 days (submarines) per year at the Dabob Bay and Quinault Underwater Tracking Range sites. Training activities involving aircraft typically last from 2 to 4 hours each, while submarine activities often last as much as 8 hours. Aircraft may drop or launch active and passive sonobuoys for detection, location and classification of underwater targets. There may be a target simulator with passive acoustics to simulate a target engine noise at depth. Additionally the aircrew may drop a torpedo and the torpedo acoustics may be activated as part of the training activity. Similarly, submarines are also outfitted with navigation tracking systems so that their location on the instrumented range can be accurately determined.

Submarine Activities
Submarines are used at the Dabob Bay and Quinault Undersea Tracking Range sites. Submarines use active acoustics to support navigation (tracking, depth sensors etc.), detection, classification and localization. A submarine may launch a lightweight torpedo and active and passive underwater targets, and there may be a target simulator with passive acoustics to simulate a target engine noise at depth.
Diver Activities
Fleet training for divers includes the Navy seal cold water training and other diver training related to Navy divers supporting range operations. Passive acoustic systems may be used in diver training and, unless on the tracking range, the diver activities are not likely to use acoustics for tracking, but they may have navigation capabilities. Diver activities occur an average of 45 days per year at the Keyport Range site, 5 days per year at the Dabob Bay site, and 15 days per year at the Quinault Underwater Tracking Range site. Each training session involving divers may last from 8 to 36 hours.

2.1.3 Deployment Systems
Several deployment systems are used in the NUWC Keyport Range Complex as summarized below.

Range Support Surface Launch Craft
A variety of small craft are used to deploy, tow, launch, and retrieve test vehicles, systems and platforms in support of testing activities. Such vessels may use standard commercial acoustic navigation (tracking, depth sensors, etc.) systems. No tactical hull-mounted active sonars are used. The U.S. Navy employs these craft for an average of 35 days per year at the Keyport Range site, 180 days at the Dabob Bay site, and 30 days at the Quinault Underwater Tracking Range site. Typical activities involving such craft may be from 8 hours to 1 week in duration.

Range Support Special Purpose Barges
These are platforms for deploying and monitoring recovery vehicles and operations. They may have self-propulsion or they may be towed into place and moved around by tug boats. They perform many of the same functions as the surface launch craft.

The U.S. Navy currently conducts range support barge operations for an average of 25 days per year at the Keyport Range site and 75 days per year at the Dabob Bay site; barges are not used at the Quinault Underwater Tracking Range site. Activities involving these barges may be anywhere from 8 hours to 2 weeks in duration.

Fleet Vessels, Aircraft, Other Shore and Pier Systems
The RDT&E deployment systems include Fleet vessels, rotary and fixed-wing aircraft, and shore/pier facilities. Fleet vessels may include any craft in the Fleet, including small surface and underwater craft used by Navy seals and divers. These vessels provide direct support to Fleet training at the range sites, and also take advantage of the Fleet platforms in the area for testing RDT&E systems using the platform and the sailors to ensure the equipment works and the sailors know how to use it before they are deployed.

Fleet vessels may provide berthing and personnel support for test managers, scientists, and others. These vessels may also deploy RDT&E systems from an existing system like a towed array and provide locations for launch and retrieval. Fleet vessel use typically ranges from 8 hours to 1 week in duration. Aircraft used in support of RDT&E deployment may include P-3s, float planes, helicopters, and other aircraft both civilian and military. Fixed wing and rotary aircraft are used for surveillance of the range for marine mammals, transporting personnel, and launching of sonobuoys, torpedoes, and sensors. Use of aircraft for such purposes typically ranges from 10 minutes to 2 hours. The pier and shore areas function as standalone platforms that support range operations, berthing and loading of ships, launch and retrieval of test vehicles, and other uses. Use of such resources is typically 8 hours at any one time.
The NUWC Keyport civilian and military customers conduct tests based on objectives that are appropriate for the development level of their particular system. Some systems are one-of-a-kind undergoing initial testing. Targets come in many forms, including mobile, moored, and over-the-side, which can be expendable or recoverable. A mobile target can be either towed or free-swimming, providing acoustic and maneuvering capability. Mobile targets can be tested on range or used as a test component, depending on the test plan. Some moored targets can be moved up and down in the water column from the sea floor. Some targets used on the range complex are temporary; they are not permanently moored to the ocean floor and can be removed when no longer necessary for test activities. Over-the-side targets can be placed or suspended in the water column from a surface vessel.

2.1.4 Autonomous and Non-Autonomous Vehicles
The autonomous vehicles the U.S. Navy typically deploys at the Keyport Range Complex include unmanned undersea, surface, and aerial self-guided vehicles. Unlike weapon/torpedo launch and retrieval, which is relatively standardized, autonomous vehicles launch and retrieval methods are highly variable because of the differences in autonomous vehicles technology involved and of the variety of tasks the U.S. Navy uses these vehicle to accomplish. For increased efficiency, many autonomous vehicles have multiple test objectives or payloads (such as cameras and side-scan or multibeam sonars) onboard so that numerous tests can be run during a single test activity.

Non-autonomous or remotely controlled vehicles are also used and tested. These may be tethered like remote-operated vehicles or remotely controlled vehicles that have radio links. They may be aerial, surface, or underwater (including bottom) vehicles. Some vehicles may be used to transport personnel (whether inside or outside the vehicle). They may have both manual and autonomous control capabilities. For example, they may be driven to a location and parked, driven to a destination and sent ‘home,’ or they may autonomously navigate their way to a rendezvous spot and be piloted ‘home.’

2.1.5 Retrieval and Recovery Capabilities
System retrieval and recovery occurs after the completion of a test. Retrieval is the collection of the test vehicle from the surface of the water by surface vessel or helicopter. Recovery is the collection of the test vehicle when it is lying on the bottom or has become buried in bottom sediments and requires some digging for collection. Approximately 95 percent of the underwater test vehicles contain buoyancy systems that allow the vehicles to float to the surface for retrieval upon test completion. Approximately 5 percent of test vehicles sink to the bottom and are typically recovered by either a remotely-operated vehicle or a Submerged Object Recovery Device.

Personnel from the NUWC Keyport Range Complex regularly apply their expertise in vehicle retrieval and recovery as they collect all major test equipment used anywhere within the NUWC Keyport Range Complex. This includes systems under test for post analysis and test equipment requiring maintenance or upgrade. This capability allows unique systems in early development to be tested and expensive equipment to be returned. Keyport personnel and equipment have also been called upon when private companies are unable either to locate or recover downed aircraft.

2.1.6 Acoustic Systems Routinely Used
Weapon systems, targets, and other autonomous vehicles may involve a variety of active and passive acoustic systems. Active systems are those that emit acoustic energy or sound into the water. Passive
acoustic systems do not generate acoustic energy in the water but are used to listen for sound in the water. The NUWC Keyport uses a number of passive acoustic measurement systems including a bottom moored array and various surface deployed arrays. The instrumented portions of the range sites have tracking arrays mounted on the sea floor to detect sound and the permanent tracking arrays provide 3-D tracking capability at the Dabob Bay and Quinault Underwater Tracking Range sites. Most test vehicles are instrumented with active acoustic sources to track real-time speed, location and recovery or retrieval at the end of activities.

General range tracking on the instrumented ranges and portable range sites have active output in narrow frequency bands. Operating frequencies are 10 to 100 kHz. At the Keyport Range site, the sound pressure level (spl) of the source (source level) is a maximum of 195 decibels reference 1 micro Pascal at 1 meter (dB re 1 μPa - 1 m). At the Dabob Bay and Quinault Underwater Tracking Range sites, the source level for general range tracking is a maximum of 203 dB re 1 μPa - 1 m.

Table 2. Primary Acoustic Sources Routinely Used within the NUWC Keyport Range Complex.

<table>
<thead>
<tr>
<th>Active Acoustic Source</th>
<th>Frequency (kHz)</th>
<th>Maximum Source Level (dB re 1 μPa - 1 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General range tracking (at Keyport Range site)</td>
<td>10 – 100</td>
<td>195</td>
</tr>
<tr>
<td>General range tracking (at DBRC and QUTR sites)</td>
<td>10 - 100</td>
<td>203</td>
</tr>
<tr>
<td>Unmanned undersea vehicle tracking</td>
<td>10 – 100</td>
<td>195</td>
</tr>
<tr>
<td>Torpedoes/Test vehicles</td>
<td>10 - 100</td>
<td>233</td>
</tr>
<tr>
<td>Range targets and special tests (at Keyport Range site)</td>
<td>5 – 100</td>
<td>195</td>
</tr>
<tr>
<td>Range targets and special tests (at DBRC and QUTR sites)</td>
<td>5 – 100</td>
<td>238</td>
</tr>
<tr>
<td>Special sonars (e.g., unmanned undersea vehicle payload)</td>
<td>100 – 2,500</td>
<td>235</td>
</tr>
<tr>
<td>Fleet aircraft—active sonobuoys and helo-dipping sonars</td>
<td>2 – 20</td>
<td>225</td>
</tr>
<tr>
<td>Side-scan</td>
<td>100 – 700</td>
<td>235</td>
</tr>
<tr>
<td>Other Acoustic Sources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustic modems</td>
<td>10 – 300</td>
<td>210</td>
</tr>
<tr>
<td>Target simulator</td>
<td>0.1 - 10</td>
<td>170</td>
</tr>
<tr>
<td>Aid to navigation (range equipment)</td>
<td>70 - 80</td>
<td>210</td>
</tr>
<tr>
<td>Sub-bottom profiler</td>
<td>2 - 7</td>
<td>210</td>
</tr>
<tr>
<td>Engine noise (surface vessels, submarines, torpedoes, unmanned undersea vehicles)</td>
<td>0.05 – 10</td>
<td>170</td>
</tr>
</tbody>
</table>

Unmanned undersea vehicle tracking systems operate at frequencies of 10 to 100 kHz with maximum source levels of 195 dB re 1 μPa - 1 m at all range sites.

Torpedo or test vehicle sonars are used for several purposes including detection, classification, and location and vary in frequency from 10 to 100 kHz. The maximum source level of a torpedo or test vehicle sonar is 233 dB re 1 μPa - 1 m.
Range targets and special test systems are within the 5 to 100 kHz frequency range at the Keyport Range site with a maximum source level of 195 dB re 1 μPa - 1 m. At the Dabob Bay and Quinault Underwater Tracking Range sites, the maximum source level is 238 dB re 1 μPa - 1 m.

Special sonars can be carried as a payload on an unmanned undersea vehicle, suspended from a range craft, or set on or above the sea floor. These can vary widely from 100 kHz to a very high frequency of 2,500 kHz. The maximum source level of these acoustic sources is 235 dB re 1 μPa - 1 m.

Sonobuoys and helicopter dipping sonars are deployed from Fleet aircraft and operate at frequencies of 2 to 20 kHz with maximum source levels of 225 dB re 1 μPa - 1 m. Dipping sonars are active or passive devices that are lowered on cable by helicopters or surface vessels to detect or maintain contact with underwater targets.

Side-scan sonar is used for mapping, detection, classification, and localization of items on the sea floor such as cabling, shipwrecks, and mine shapes. It is high frequency typically 100 to 700 kHz using multiple frequencies at one time with a very directional focus. The maximum source level is 235 dB re 1 μPa - 1 m. Side-scan and multibeam sonar systems are towed or mounted on a test vehicle or ship.

2.2 MMPA Requirements

When the U.S. Navy conducts its proposed military readiness activities on the NUWC Keyport Range Complex, the regulations the NMFS’ Permits Division promulgated require the U.S. Navy to implement and comply with the following measures, as described at 50 C.F.R. Part 218 Subpart R:

2.2.1 Mitigation

(a) Marine mammal observers training:

(i) All range personnel shall be trained in marine mammal recognition.

(ii) Marine mammal observer training shall be conducted by qualified organizations approved by NMFS.

(b) Lookouts onboard vessels:

(i) Vessels on a range shall use lookouts during all hours of range activities.

(ii) Lookout duties include looking for marine mammals.

(iii) All sightings of marine mammals shall be reported to the Range Officer in charge of overseeing the activity.

(c) Visual surveillance shall be conducted just prior to all in-water exercises.

(i) Surveillance shall include, as a minimum, monitoring from all participating surface craft and, where available, adjacent shore sites.

(ii) When cetaceans have been sighted in the vicinity of the operation, all range participants increase vigilance and take reasonable and practicable actions to avoid collisions and activities that may result in close interaction of naval assets and marine mammals.
(iii) Actions may include changing speed and/or direction, subject to environmental and other conditions (e.g., safety, weather).

(d) An “exclusion zone” shall be established and surveillance will be conducted to ensure that there are no marine mammals within this exclusion zone prior to the commencement of each in-water exercise.

(i) For cetaceans, the exclusion zone shall extend out 1,000 yards (914.4 m) from the intended track of the test unit.

(ii) For pinnipeds, the exclusion zone shall extend out 100 yards (91 m) from the intended track of the test unit.

(e) Range craft shall not approach within 100 yards (91 m) of marine mammals, to the extent practicable considering human and vessel safety priorities. This includes marine mammals “hauling-out” on islands, rocks, and other areas such as buoys.

(f) In the event of a collision between a Navy vessel and a marine mammal, NUWC Keyport activities shall notify immediately the Navy chain of Command, which shall notify NMFS immediately.

(g) Passive acoustic monitoring for cetaceans will be implemented throughout the NUWC Keyport Range Complex during RDT&E testing activities involving active sonar transmissions when passive acoustic monitoring capabilities are being operated during the testing activity.

(h) Procedures for reporting marine mammal sightings on the NAVSEA NUWC Keyport Range Complex shall be promulgated, and sightings shall be entered into the Range Operating System and forwarded to NOAA/NMML Platforms of Opportunity Program.

(i) If there is clear evidence that a marine mammal is injured or killed as a result of the proposed Navy RDT&E activities, the Naval activities shall be immediately suspended and the situation immediately reported by personnel involved in the activity to the Ranger Officer, who will follow Navy procedures for reporting the incident to NMFS through the Navy’s chain-of-command.

(j) For nighttime RDT&E activities of active acoustic transmissions in the Keyport Range proposed extension area, the Navy shall conduct passive acoustic monitoring within the Agate Pass and south of University Point in southern Port Orchard Reach. If Southern Resident killer whales are detected in the vicinity of the Keyport Range site, the Range Office shall be notified immediately and the active acoustic sources must be shutdown if killer whales are confirmed to approach at 1,000 yards from the source.

2.2.2 Monitoring And Reporting Requirements

The holder of the Authorization and any person(s) operating under his authority must implement the following monitoring and reporting measures.
(a) The Holder of the Letter of Authorization issued pursuant to § 216.106 of this chapter and § 218.176 for activities described in § 218.170(c) is required to cooperate with the NMFS when monitoring the impacts of the activity on marine mammals.

(b) The Holder of the Authorization must notify NMFS immediately (or as soon as clearance procedures allow) if the specified activity identified in § 218.170(c) is thought to have resulted in the mortality or injury of any marine mammals, or in any take of marine mammals not identified or authorized in § 218.171(c).

(c) The Navy must conduct all monitoring and required reporting under the Letter of Authorization, including abiding by the NAVSEA NUWC Keyport Range Complex Monitoring Plan, which is incorporated herein by reference, and which requires the Navy to implement, at a minimum, the monitoring activities summarized below:

(i) Visual Surveys:

 (A) The Holder of this Authorization shall conduct a minimum of 2 special visual surveys per year to monitor HFAS and MFAS respectively at the DBRC Range site.

 (B) For specified events, shore-based and vessel surveys shall be used 1 day prior to and 1-2 days post activity.

 (1) Shore-based Surveys:

 (a) Shore-based monitors shall observe test events that are planned in advance to occur adjacent to nearshore areas where there are elevated topography or coastal structures, and shall use binoculars or theodolite to augment other visual survey methods.

 (b) Shore-based surveys of the test area and nearby beaches shall be conducted for stranded marine animals following nearshore events. If any distressed, injured or stranded animals are observed, an assessment of the animal’s condition (alive, injured, dead, or degree of decomposition) shall be reported immediately to the Navy and the information shall be transmitted immediately to NMFS through the appropriate chain of command.

 (2) Vessel-based Surveys:

 (a) Vessel-based surveys shall be designed to maximize detections of marine mammals near mission activity event.

 (b) Post-analysis shall focus on how the location, speed and vector of the range craft and the location and direction of the sonar source (e.g. Navy surface vessel) relates to the animal.

 (c) Any other vessels or aircraft observed in the area shall also be documented.
Surveys shall include the range site with special emphasis given to the particular path of the test run. When conducting a particular survey, the survey team shall collect the following information.

1. Species identification and group size;
2. Location and relative distance from the acoustic source(s);
3. The behavior of marine mammals including standard environmental and oceanographic parameters;
4. Date, time and visual conditions associated with each observation;
5. Direction of travel relative to the active acoustic source; and
6. Duration of the observation.

Animal sightings and relative distance from a particular active acoustic source shall be used post-survey to determine potential received energy (dB re 1 micro Pa-sec). This data shall be used, post-survey, to estimate the number of marine mammals exposed to different received levels (energy based on distance to the source, bathymetry, oceanographic conditions and the type and power of the acoustic source) and their corresponding behavior.

Passive Acoustic Monitoring (PAM):

A. The Navy shall deploy a hydrophone array in the Keyport Range Complex Study Area for PAM.

B. The array shall be utilized during the two special monitoring surveys in DBRC as described in § 218.174(c)(1)(i).

C. The array shall have the capability of detecting low frequency vocalizations (<1,000 Hz) for baleen whales and relatively high frequency (up to 30 kHz) for odontocetes.

D. Acoustic data collected from the PAM shall be used to detect acoustically active marine mammals as appropriate.

Marine Mammal Observers on range craft or Navy vessels:

A. Navy Marine mammal observers (NMMOs) may be placed on a range craft or Navy platform during the event being monitored.

B. The NMMO must possess expertise in species identification of regional marine mammal species and experience collecting behavioral data.

C. The NMMOs may be placed alongside existing lookouts during the two specified monitoring events as described in § 218.174(c)(1)(i).

D. The NMMOs shall inform the lookouts of any marine mammal sighting so that appropriate action may be taken by the chain of command. NMMOs shall schedule their daily observations to duplicate the lookouts’ schedule.
(E) The NMMOs shall observe from the same height above water as the lookouts, and they shall collect the same data collected by lookouts listed in § 218.174(c)(1)(iii).

(d) Notification of Injured or Dead Marine Mammals - Navy personnel shall ensure that NMFS (regional stranding coordinator) is notified immediately (or as soon as clearance procedures allow) if an injured or dead marine mammal is found during or shortly after, and in the vicinity of, any Navy activities utilizing sonar. The Navy shall provide NMFS with species or description of the animal(s), the condition of the animal(s) (including carcass condition if the animal is dead), location, time of first discovery, observed behaviors (if alive), and photo or video (if available).

(e) Annual Keyport Range Complex Monitoring Plan Report - The Navy shall submit a report annually by December 1 describing the implementation and results (through September 1 of the same year) of the Keyport Range Complex Monitoring Plan. Data collection methods will be standardized across range complexes to allow for comparison in different geographic locations. Although additional information will also be gathered, the NMMOs collecting marine mammal data pursuant to the Keyport Range Complex Monitoring Plan shall, at a minimum, provide the same marine mammal observation data required in § 218.174(c). The Keyport Range Complex Monitoring Plan Report may be provided to NMFS within a larger report that includes the required Monitoring Plan Reports from Keyport Range Complex and multiple range complexes.

2.3 Action Area

The action area for this Opinion encompasses waters within and adjacent to the Keyport Range Complex (see Figures 1, 2, and 3). The Keyport Range site is located in Kitsap County and includes portions of Liberty Bay and Port Orchard Reach (also known as the Port Orchard Narrows). The Dabob Bay Range Complex is located in Hood Canal and Dabob Bay, in Jefferson and Kitsap counties. The Quinault Underwater Tracking Range is located in the Pacific Ocean off the coast of Jefferson County.

We assume that any activities that are likely to occur landward of the mean higher high water line — including activities that may affect threatened or endangered species of sea turtle landward of the mean higher high water line — are addressed in separate section 7 consultations with the U.S. Fish and Wildlife Service.
Figure 1. The proposed extension of the Keyport Range Complex site (adapted from Figure 2-4a of the U.S. Navy’s Draft Environmental Impact Statement/Overseas Environmental Impact Statement on the Keyport Range Complex Extension [Navy 2008c]).
Figure 2. The proposed extension of the Dabob Bay Range Complex sites (adapted from Figure 2-5a of the U.S. Navy’s Draft Environmental Impact Statement/Overseas Environmental Impact Statement on the Keyport Range Complex Extension (Navy 2008c).
Figure 3. The proposed extension of the Quinault Underwater Tracking Range site (adapted from Figure 2-6a of the U.S. Navy’s Draft Environmental Impact Statement/Overseas Environmental Impact Statement on the Keyport Range Complex Extension (Navy 2008c).
3 APPROACH TO THE ASSESSMENT

NMFS uses a series of sequential analyses to assess the effects of Federal actions on endangered and threatened species and designated critical habitat. The first analysis identifies those physical, chemical, or biotic aspects of the proposed actions that are likely to have individual, interactive, or cumulative direct and indirect effect on the environment (the term “potential stressors” is used for these aspects of an action). As part of this step, the spatial extent of any potential stressors is identified, including the degree to which the spatial extent of those stressors may change with time (the spatial extent of these stressors is the “action area” for a consultation).

The second step of the analyses starts by determining whether endangered species, threatened species, or designated critical habitat are likely to occur in the same space and at the same time as these potential stressors. If such co-occurrence is likely, then the nature of that co-occurrence is estimated (these represent our exposure analyses). In this step of the analyses, we try to identify the number, age (or life stage), and gender of the individuals that are likely to be exposed to an Action’s effects and the populations or subpopulations those individuals represent.

Once we identify which listed resources (endangered and threatened species and designated critical habitat) are likely to be exposed to potential stressors associated with an action and the nature of that exposure, in the third step of our analyses we examine the scientific and commercial data available to determine whether and how those listed resources are likely to respond given their exposure (these represent our response analyses) (see Section 5). The final steps of our analyses — establishing the risks those responses pose to listed resources — are different for listed species and designated critical habitat (these represent our risk analyses) (see Section 5).

3.1 Risk Analysis for Endangered and Threatened Species

Our jeopardy determinations must be based on an action’s effects on the continued existence of threatened or endangered species as those “species” have been listed, which can include true biological species, subspecies, or distinct population segments of vertebrate species. Because the continued existence of listed species depends on the fate of the populations that comprise them, the viability (that is, the probability of extinction or probability of persistence) of listed species depends on the viability of the populations that comprise the species. Similarly, the continued existence of populations are determined by the fate of the individuals that comprise them; populations grow or decline as the individuals that comprise the population live, die, grow, mature, migrate, and reproduce (or fail to do so). Our risk analyses reflect these relationships between listed species and the populations that comprise them, and the individuals that comprise those populations.

Our risk analyses begin by identifying the probable risks the proposed actions are likely to pose to listed individuals that are likely to be exposed to an action’s effects. Our analyses then integrate those risks to individuals to identify consequences to the populations that include those individuals. Our analyses conclude by determining the consequences of those population-level risks to the species those populations comprise.

We measure risks to listed individuals using the individual’s current or expected future reproductive success. In particular, we examine the scientific and commercial data available to determine if an individual’s probable response to stressors produced by an action would reasonably be expected to reduce the individual’s current or expected future reproductive success by increasing the individual’s likelihood of dying prematurely, having reduced
longevity, increasing the age at which individuals become reproductively mature, reducing the age at which individuals stop reproducing, reducing the number of live births individuals produce during any reproductive bout, decreasing the number of times an individual is likely to reproduce over its reproductive lifespan (in animals that reproduce multiple times), or causing an individual’s progeny to experience any of these phenomena (Brommer et al. 1998; Coulson et al. 2006; Kotiaho et al. 2005; McGraw and Caswell 1996; Oli and Dobson 2003; Saether et al. 2005; Sterns 1992).

When individual, listed plants or animals are expected to experience reductions in their current or expected future reproductive success, we would expect those reductions to also reduce the abundance, reproduction rates, or growth rates (or increase variance in one or more of these rates) of the populations those individuals represent (see Sterns 1992). Reductions in one or more of these variables (or one of the variables we derive from them) is a necessary condition for reductions in a population’s viability, which is itself a necessary condition for reductions in a species’ viability. On the other hand, when listed plants or animals exposed to an Action’s effects are not expected to experience reductions in fitness, we would not expect the Action to have adverse consequences on the viability of the populations those individuals represent or the species those populations comprise (for example, see Anderson 2000; Mills and Beatty 1979; Sterns 1992). If we conclude that listed plants or animals are not likely to experience reductions in their fitness, we would conclude our assessment.

If, however, we conclude that listed plants or animals are likely to experience reductions in their current or expected future reproductive success, our assessment tries to determine if those reductions are likely to be sufficient to reduce the viability of the populations those individuals represent (measured using changes in the populations’ abundance, reproduction, spatial structure and connectivity, growth rates, or variance in these measures to make inferences about the population’s extinction risks). In this step of our analyses, we use the population’s base condition (established in the Environmental Baseline and Status of Listed Resources sections of this opinion) as our point of reference.

Finally, our assessment tries to determine if changes in population viability are likely to be sufficient to reduce the viability of the species those populations comprise. In this step of our analyses, we use the species’ status (established in the Status of the Species section of this Opinion) as our point of reference. The primary advantage of this approach is that it considers the consequences of the response of endangered and threatened species in terms of fitness costs, which allows us to assess how particular behavioral decisions are likely to influence individual reproductive success (Bejder et al. 2009). Individual-level effects can then be translated into changes in demographic parameters of populations, thus allowing for an assessment of the biological significance of particular human disturbances.

Biological opinions, then, distinguish among different kinds of “significance” (as that term is commonly used for NEPA analyses). First, we focus on potential physical, chemical, or biotic stressors that are “significant” in the sense of “salient” in the sense of being distinct from ambient or background. We then ask if (a) exposing individuals to those potential stressors is likely to (a) represent a “significant” adverse experience in the life of individuals that have been exposed; (b) exposing individuals to those potential stressors is likely to cause the individuals to experience “significant” physical, chemical, or biotic responses; and (c) any “significant” physical, chemical, or biotic response is likely to have “significant” consequence for the fitness of the individual animal; in the latter two
cases, (items (b) and (c)), the term “significant” means “clinically or biotically significant” rather than statistically significant.

For populations (or sub-populations, demes, etc.), we are concerned about whether the number of individuals that experience “significant” reductions in fitness and the nature of any fitness reductions are likely to have a “significant” consequence for the viability of the population(s) those individuals represent. Here “significant” also means “clinically or biotically significant” rather than statistically significant.

For “species” (this term refers to the entity that has been listed as endangered or threatened, not the biological species concept commonly referred to as “species”), we are concerned about whether the number of populations that experience “significant” reductions in viability (= increases in their extinction probabilities) and the nature of any reductions in viability are likely to have “significant” consequence for the viability (= probability of demographic, ecological, or genetic extinction) of the “species” those population comprise. Here, again, “significant” also means “clinically or biotically significant” rather than statistically significant.

3.2 Risk Analysis for Designated Critical Habitat

Our “destruction or adverse modification” determinations must be based on an action’s effects on the conservation value of habitat that has been designated as critical to threatened or endangered species. If an area encompassed in a critical habitat designation is likely to be exposed to the direct or indirect consequences of the proposed action on the natural environment, we ask if primary or secondary constituent elements included in the designation (if there are any) or physical, chemical, or biotic phenomena that give the designated area value for the conservation are likely to respond to that exposure.

In this step of our assessment, we must identify (a) the spatial distribution of stressors and subsidies produced by an action; (b) the temporal distribution of stressors and subsidies produced by an action; (c) changes in the spatial distribution of the stressors with time; (d) the intensity of stressors in space and time; (e) the spatial distribution of constituent elements of designated critical habitat; and (f) the temporal distribution of constituent elements of designated critical habitat.

If primary or secondary constituent elements of designated critical habitat (or physical, chemical, or biotic phenomena that give the designated area value for the conservation of listed species) are likely to respond given exposure to the direct or indirect consequences of the proposed action on the natural environment, we ask if those responses are likely to be sufficient to reduce the quantity, quality, or availability of those constituent elements or physical, chemical, or biotic phenomena.

In this step of our assessment, we must identify or make assumptions about (a) the habitat’s probable condition before any exposure as our point of reference (that is part of the impact of the Environmental Baseline on the conservation value of the designated critical habitat); (b) the ecology of the habitat at the time of exposure; (c) where the exposure is likely to occur; and (d) when the exposure is likely to occur; (e) the intensity of exposure; (f) the duration of exposure; and (g) the frequency of exposure.
We recognize that the conservation value of critical habitat, like the base condition of individuals and populations, is a dynamic property that changes over time in response to changes in land use patterns, climate (at several spatial scales), ecological processes, changes in the dynamics of biotic components of the habitat, etc. For these reasons, some areas of critical habitat might respond to an exposure when others do not. We also consider how designated critical habitat is likely to respond to any interactions and synergisms between or cumulative effects of pre-existing stressors and proposed stressors.

If the quantity, quality, or availability of the primary or secondary constituent elements of the area of designated critical habitat (or physical, chemical, or biotic phenomena) are reduced, we ask if those reductions are likely to be sufficient to reduce the conservation value of the designated critical habitat for listed species in the action area. In this step of our assessment, we combine information about the contribution of constituent elements of critical habitat (or of the physical, chemical, or biotic phenomena that give the designated area value for the conservation of listed species, particularly for older critical habitat designations that have no constituent elements) to the conservation value of those areas of critical habitat that occur in the action area, given the physical, chemical, biotic, and ecological processes that produce and maintain those constituent elements in the action area. We use the conservation value of those areas of designated critical habitat that occur in the action area as our point of reference for this comparison. For example, if the critical habitat in the action area has limited current value or potential value for the conservation of listed species, the limited value is our point of reference for our assessment.

If the conservation value of designated critical habitat in an action area is reduced, the final step of our analyses asks if those reductions are likely to be sufficient to reduce the conservation value of the entire critical habitat designation. In this step of our assessment, we combine information about the constituent elements of critical habitat (or of the physical, chemical, or biotic phenomena that give the designated area value for the conservation of listed species, particularly for older critical habitat designations that have no constituent elements) that are likely to experience changes in quantity, quality, and availability given exposure to an action with information on the physical, chemical, biotic, and ecological processes that produce and maintain those constituent elements in the action area. We use the conservation value of the entire designated critical habitat as our point of reference for this comparison. For example, if the designated critical habitat has limited current value or potential value for the conservation of listed species, the limited value is our point of reference for our assessment.

3.3 Application of this Approach in this Consultation

The primary stressors associated with the military readiness activities the U.S. Navy proposes to conduct in waters on and adjacent to the Keyport Range Complex consist of:

1. The risk of collisions between or disturbance from surface vessels, unmanned underwater vehicles, torpedoes, and targets the U.S. Navy plans to employ as part of the proposed RDT&E activities.
2. Sound fields produced by the acoustic devices the U.S. Navy would employ during the RDT&E activities; and
3. Expendable materials.
The first step of our analysis evaluates the available evidence to determine the likelihood of listed species or critical habitat being exposed to these potential stressors. Our analysis assumed that these stressors pose no risk to listed species or critical habitat if these potential stressors do not co-occur, in space or time, with (1) individuals of endangered or threatened species or units of critical habitat that has been designated for endangered or threatened species; (2) species that are food for endangered or threatened species; (3) species that prey on or compete with endangered or threatened species; (4) pathogens for endangered or threatened species.

3.3.1 Exposure Analyses

Exposure analyses are designed to identify the listed resources that are likely to co-occur with these potential effects in space and time and the nature of that co-occurrence. This exposure analyses was designed to identify the number, age (or life stage), and gender of the individuals that are likely to be exposed to an Action’s effects and the populations or subpopulations (or other sub-divisions of “populations,” including demes, runs, or races) those individuals represent.

For this exposure analyses, NMFS generally relies on an action agency’s estimates of the number of marine mammals that might be “taken” (as that term is defined for the purposes of the MMPA). In a small number of consultations, however, NMFS has conducted separate analyses to estimate the number of endangered or threatened marine animals that might be exposed to stressors produced by a proposed action to assess the effect of assumptions in an action agency’s model on model estimates. For example, NMFS used a model based on components of Hollings’ disc equation (1959) ([Navy 2008a](#)) to independently estimate the number of marine mammals that might be exposed to Navy training activities in a few recent consultations that satisfied the following conditions; first, the sole or primary stressor was hull-mounted mid-frequency active sonar; and second, data were available on the density of endangered or threatened animals in an action area, the ship’s speed, the radial distance at which different received levels would be detected from a source given sound speed profiles, and the duration of specific training exercises.

These conditions have been met in less than one fourth of the consultations NMFS has completed on Navy training since 2002 (for example, opinions on anti-submarine warfare training on the Navy’s Hawai‘i Range Complex and Southern California Range Complex) so NMFS conducted independent exposure analyses and included the results of those analyses in biological opinions on those actions. In the remaining opinions, hull-mounted mid-frequency active sonar was not the primary stressor associated with proposed training or the data for one of the model’s variables were not available.

In this Opinion, we relied on the Navy and NMFS Permits Division exposure estimates of the number of ESA-listed species that might interact with sound fields associated with mid-frequency active sonar in the Keyport Range Complex because the primary stressor is not hull-mounted sonar.

3.3.2 Response Analyses

Once we identified which listed resources were likely to be exposed to active sonar associated with the proposed training activities and the nature of that exposure, we examined the scientific and commercial data available to determine whether and how those listed resources are likely to respond given their exposure. Prior to this consultation, we made several major changes to the conceptual model that forms the foundation for our response
analyses. First, we constructed our revised model on a model of animal behavior and behavioral decision-making, which incorporates the cognitive processes involved in behavioral decisions; earlier versions of this model ignored critical components of animal behavior and behavioral decision-making. As a result, our revised model assumes that Navy training activities primarily affect endangered and threatened species by changing their behavior, although we continue to recognize the risks of physical trauma and noise-induced losses in hearing sensitivity (threshold shift). Second, we expanded our concept of “hearing” to include cognitive processing of auditory cues, rather than a focus solely on the mechanical processes of the ear and auditory nerve. Third, our revised model incorporates the primary mechanisms by which behavioral responses affect the longevity and reproductive success of animals: changing an animal’s energy budget, changing an animal’s time budget (which is related to changes in an animal’s energy budget), forcing animals to make life history trade-offs (for example, engaging in evasive behavior such a deep dives that involve short-term risks while promoting long-term survival), or changes in social interactions among groups of animals (for example, interactions between a cow and her calf). For further description of the response analyses conceptual model please see the programmatic consultation on the Keyport Range Complex regulations (NMFS 2010b).

3.3.3 Risk Analysis
The final steps of our analyses — establishing the risks those responses pose to endangered and threatened species or designated critical habitat — normally begin by identifying the probable risks actions pose to listed individuals that are likely to be exposed to an action’s effects. Our analyses then integrate those individuals risks to identify consequences to the populations those individuals represent. Our analyses conclude by determining the consequences of those population-level risks to the species those populations comprise.

We measure risks to listed individuals using the concept of current or expected future reproductive success which, as we described in the preceding sub-section, integrates survival and longevity with current and future reproductive success. In particular, we examine the scientific and commercial data available to determine if an individual’s probable response to stressors produced by an Action would reasonably be expected to reduce the individual’s current or expected future reproductive success by increasing the individual’s likelihood of dying prematurely, having reduced longevity, increasing the age at which individuals become reproductively mature, reducing the age at which individuals stop reproducing, reducing the number of live births individual produce during any reproductive bout, reducing the number of times an individual is likely to reproduce over the reproductive lifespan (in animals that reproduce multiple times), or causing an individual’s progeny to experience any of these phenomena.

When individual plants or animals would be expected to experience reductions in their current or expected future reproductive success, we would also expect those reductions to also reduce the abundance, reproduction rates, or growth rates (or increase variance in one or more of these rates) of the populations those individuals represent (see Sterns 1992). If we conclude that listed plants or animals are not likely to experience reductions in their current or expected future reproductive success, we would conclude our assessment.

If we conclude that listed plants or animals are likely to experience reductions in their current or expected future reproductive success, we would integrate those individuals risks to determine if the number of individuals that experience reduced fitness (or the magnitude of any reductions) is likely to be sufficient to reduce the viability of the populations those individuals represent (measured using changes in the populations’ abundance, reproduction,
spatial structure and connectivity, growth rates, or variance in these measures to make inferences about a population’s probability of becoming demographically, ecologically, or genetically extinct in 10, 25, 50, or 100 years. For this step of our analyses, we would rely on the population’s base condition (established in the Environmental Baseline and Status of Listed Resources sections of this Opinion) as our point of reference.

Our risk analyses normally conclude by determining whether changes in the viability of one or more population is or is not likely to be sufficient to reduce the viability of the species (measured using probability of demographic, ecological, or genetic extinction in 10, 25, 50, or 100 years) those populations comprise. For these analyses, we combine our knowledge of the patterns that accompanied the decline, collapse, or extinction of populations and species that have experienced these phenomena in the past as well as a suite of population viability models.

Our assessment is designed to establish that a decline, collapse, or extinction of an endangered or threatened species is not likely to occur; we do not conduct these analyses to establish that such an outcome is likely to occur. For this step of our analyses, we would also use the species’ status (established in the Status of the Species section of this Opinion) as our point of reference.

3.4 Evidence Available for the Consultation

To conduct these analyses, we considered all lines of evidence available through published and unpublished sources that represent evidence of adverse consequences or the absence of such consequences. Over the past decade, a considerable body of scientific information on anthropogenic sounds and their effect on marine mammals and other marine life has become available. Many investigators have studied the potential responses of marine mammals and other marine organisms to human-generated sounds in marine environments or have integrated and synthesized the results of these studies (Bowles 1994; Croll et al. 2001b; Frankel and Clark 1998; Gisiner et al. 2006; McCauley and Cato. 2001; Norris 1994; NRC 2000; NRC 2005; Richardson et al. 1995; Southall et al. 2007; Tyack 2007; Tyack and Clark 2000; Wright et al. 2007).

To supplement our searches, we examined the literature that was cited in documents and any articles we collected through our electronic searches. If a reference’s title did not allow us to eliminate it as irrelevant to this inquiry, we acquired it. We did not conduct hand searches of published journals for this consultation. We organized the results of these searches using commercial bibliographic software.
Despite the information that is available, this assessment involved a large amount of uncertainty about the basic hearing capabilities of marine mammals; how marine mammals use sounds as environmental cues, how they perceive acoustic features of their environment; the importance of sound to the normal behavioral and social ecology of marine mammals; the mechanisms by which human-generated sounds affect the behavior and physiology (including the non-auditory physiology) of marine mammals, and the circumstances that are likely to produce outcomes that have adverse consequences for individual marine mammals and marine mammal populations (see NRC 2000 for further discussion of these unknowns).

We ranked the results of these searches based on the quality of their study design, sample sizes, level of scrutiny prior to and during publication, and study results. We ranked carefully-designed field experiments (for example, experiments that control variables, such as other sources of sound in an area, that might produce the same behavioral responses) higher than field experiments were not designed to control those variables. We ranked carefully-designed field experiments higher than computer simulations. Studies that were based on large sample sizes with small variances were generally ranked higher than studies with small sample sizes or large variances.

Despite the information that is available, this assessment involved a large amount of uncertainty about the basic hearing capabilities of marine mammals; how marine mammals use sounds as environmental cues, how they perceive acoustic features of their environment; the importance of sound to the normal behavioral and social ecology of marine mammals; the mechanisms by which human-generated sounds affect the behavior and physiology (including the non-auditory physiology) of marine mammals, and the circumstances that are likely to produce outcomes that have adverse consequences for individual marine mammals and marine mammal populations (see NRC 2000 for further discussion of these unknowns).

3.5 Treatment of “Cumulative Impacts” (in the sense of NEPA)

Over the past few years, several organizations have argued that several of our previous biological opinions on the Navy’s use of active sonar failed to consider the “cumulative impact” (in the NEPA sense of the term) of active sonar on the ocean environment and its organisms, particularly endangered and threatened species and critical habitat that has been designated for them. In each instance, we have had to explain how section 7 consultations and biological opinions consider “cumulative impacts” (in the NEPA sense of the term). We reiterate that explanation in this sub-section.

The U.S. Council on Environmental Quality defined “cumulative effects” (which we refer to as “cumulative impacts” to distinguish between NEPA and ESA uses of the same term) as “the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-federal) or person undertakes such other actions” (40 CFR §1508.7) (CEQ 1997).

By regulation, the Services assess the effects of a proposed action by adding its direct and indirect effects to the impacts of the activities we identify in an Environmental Baseline (50 CFR §402.02). Although our regulations use the term “adding” the effects of actions to an environmental baseline, we do not assume that the effects of actions are all additive; our assessments consider synergistic effects, multiplicative effects, and antagonistic effects of
stressors on endangered species, threatened species, and any critical habitat that has been designated for those species.

In practice we address “cumulative impacts” by focusing on individual organisms, which integrate the environments they occupy or interact with indirectly over the course of their lives. In our assessments, we think in terms of the biotic or ecological “costs” of exposing endangered and threatened individuals to a single stressor, a sequence of single stressors, or a suite of stressors (or “stress regime”). At the level of individual organisms, these “costs” consist of incremental reductions in the current or expected future reproductive success of the individuals that result from exposing those individuals to one or more stressors. The “costs” of those exposures might be immediately significant for an organism’s reproductive success (for example, when an individual dies or loses one of its young) or the “costs” might become significant only over time. The costs of synergistic interactions between two stressors or a sequence of stressors would be expected to be higher than the “costs” incurred without the synergism; the “costs” of antagonistic interactions would be expected to be lower than the “costs” incurred without the antagonism.

We begin our assessments by either qualitatively or quantitatively accumulate the biotic “costs” of exposing endangered or threatened individuals to the threats we identify in the Status of the Species and Environmental Baseline sections of our biological opinions. Then we estimate the probable additional “costs” associated with the proposed action on those individuals and ask whether or to what degree those “costs” would be expected to translate into reductions in the current and expected future reproductive success of those individuals. If we would expect those “costs” to reduce the current and expected future reproductive success of individuals or an endangered or threatened species, we would assess the consequences of those reductions on the population or populations those individuals represent and the species those populations comprise.

4 Status of Listed Resources

This section identifies the ESA-listed species that occur within the Action Area that may be affected by the Navy’s RDT&E activities in the NUWC Keyport Range Complex. It then summarizes the biology and ecology of those species and what is known about their life histories in the Action Area. The species occurring within the action area that may be affected by the Proposed Action are listed in Table 3, along with their ESA listing status.
Table 3. Species listed under the Federal Endangered Species Act (ESA) under NMFS jurisdiction that may occur in the Action Area for the NUWC Keyport Range Complex.

<table>
<thead>
<tr>
<th>Species</th>
<th>ESA Status</th>
<th>Critical Habitat</th>
<th>Recovery Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Mammals – Cetaceans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Whale (Balaenoptera musculus)</td>
<td>E - 35 FR 18319</td>
<td>-- --</td>
<td>07/1998</td>
</tr>
<tr>
<td>Fin Whale (Balaenoptera physalus)</td>
<td>E - 35 FR 18319</td>
<td>-- --</td>
<td>71 FR 38385</td>
</tr>
<tr>
<td>Humpback Whale (Megaptera novaeangliae)</td>
<td>E - 35 FR 18319</td>
<td>-- --</td>
<td>55 FR 29646</td>
</tr>
<tr>
<td>North Pacific Right Whale (Eubalaena japonica)</td>
<td>E - 73 FR 12024</td>
<td>73 FR 19000</td>
<td>-- --</td>
</tr>
<tr>
<td>Sei Whale (Balaenoptera borealis)</td>
<td>E - 35 FR 18319</td>
<td>-- --</td>
<td>-- --</td>
</tr>
<tr>
<td>Sperm Whale (Physeter macrocephalus)</td>
<td>E - 35 FR 18619</td>
<td>-- --</td>
<td>75 FR 81584</td>
</tr>
<tr>
<td>Southern resident killer whale (Orcinus orca)</td>
<td>E - 70 FR 69903</td>
<td>71 FR 69054</td>
<td>73 FR 4176</td>
</tr>
<tr>
<td>Marine Mammals - Pinnipeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steller Sea Lion–Eastern (Eumetopias jubatus)</td>
<td>T - 55 FR 49204</td>
<td>58 FR 45269</td>
<td>73 FR 11872</td>
</tr>
<tr>
<td>Sea Turtles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Turtle (Chelonia mydas)</td>
<td>E - 43 FR 32800</td>
<td>63 FR 46693</td>
<td>63 FR 28359</td>
</tr>
<tr>
<td>Loggerhead Turtle (Caretta caretta)</td>
<td>Prop. E - 75 FR 12598</td>
<td>Prop. 75 FR 12598</td>
<td>63 FR 28359</td>
</tr>
<tr>
<td>Olive Ridley Turtle (Lepidochelys olivacea)</td>
<td>E - 61 FR 17</td>
<td>-- --</td>
<td>63 FR 28359</td>
</tr>
<tr>
<td>Leatherback Turtle (Dermochelys coriacea)</td>
<td>E - 61 FR 17</td>
<td>Prop. 75 FR 319</td>
<td>63 FR 28359</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia Basin Bocaccio (Sebastes paucispinus)</td>
<td>E - 75 FR 22276</td>
<td>-- --</td>
<td>-- --</td>
</tr>
<tr>
<td>Georgia Basin Canary rockfish (Sebastes pinniger)</td>
<td>T - 75 FR 22276</td>
<td>-- --</td>
<td>-- --</td>
</tr>
<tr>
<td>Georgia Basin Yelloweye rockfish (Sebastes ruberrimus)</td>
<td>T - 75 FR 22276</td>
<td>-- --</td>
<td>-- --</td>
</tr>
<tr>
<td>Green sturgeon (Acipenser medirostris)</td>
<td>T - 75 FR 22276</td>
<td>74 FR 52300</td>
<td>-- --</td>
</tr>
<tr>
<td>Pacific Eulachon/smelt (Thaleichthys pacificus)</td>
<td>T - 75 FR 13012</td>
<td>Prop. 76 FR 515</td>
<td>-- --</td>
</tr>
<tr>
<td>Chinook Salmon (Oncorhynchus tshawytscha) ESUs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puget Sound ESU</td>
<td>T - 70 FR 37160</td>
<td>70 FR 52630</td>
<td>72 FR 2493</td>
</tr>
<tr>
<td>Lower Columbia River ESU</td>
<td>T - 70 FR 37160</td>
<td>70 FR 52630</td>
<td></td>
</tr>
<tr>
<td>Chum Salmon (Oncorhynchus keta) ESUs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia River ESU</td>
<td>T - 70 FR 37160</td>
<td>70 FR 52630</td>
<td>-- --</td>
</tr>
<tr>
<td>Hood Canal Summer Run ESU</td>
<td>T - 70 FR 37160</td>
<td>70 FR 52630</td>
<td>72 FR 29121</td>
</tr>
<tr>
<td>Coho Salmon (Oncorhynchus kisutch) ESUs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Columbia River ESU</td>
<td>T - 70 FR 37160</td>
<td>-- --</td>
<td>-- --</td>
</tr>
<tr>
<td>Sockeye Salmon (Oncorhynchus nerka) ESUs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozette Lake ESU</td>
<td>T - 70 FR 37160</td>
<td>70 FR 52630</td>
<td>74 FR 25706</td>
</tr>
<tr>
<td>Steelhead Trout (Oncorhynchus mykiss) DPS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Columbia River DPS</td>
<td>T - 71 FR 834</td>
<td>70 FR 52630</td>
<td>-- --</td>
</tr>
<tr>
<td>Puget Sound DPS</td>
<td>T - 72 FR 26722</td>
<td>-- --</td>
<td>-- --</td>
</tr>
</tbody>
</table>
4.1 Species and Critical Habitat Not Considered Further in this Opinion

As described in the Approach to the Assessment, NMFS uses two criteria to identify those endangered or threatened species or critical habitat that are not likely to be adversely affected by the various proposed activities. The first criterion was exposure or some reasonable expectation of a co-occurrence between one or more potential stressors associated with the Navy’s activities and a particular listed species or designated critical habitat: if we conclude that a listed species or designated critical habitat is not likely to be exposed to the activities, we must also conclude that the critical habitat is not likely to be adversely affected by those activities. The second criterion is the probability of a response given exposure, which considers susceptibility: species that may be exposed to sound transmissions from active sonar, for example, but are likely to be unaffected by the sonar (at sound pressure levels they are likely to be exposed to) are also not likely to be adversely affected by the sonar. We applied these criteria to the species listed at the beginning of this section; this subsection summarizes the results of those evaluations.

4.1.1 North Pacific Right Whale

Historically, the endangered North Pacific right whale occurred in waters off the coast of British Columbia and the States of Washington, Oregon, and California (Clapham et al. 2004; Scarff 1986). However, the extremely low population numbers of this species in the North Pacific Ocean over the past five decades and the rarity of reports from these waters suggests that these right whales have probabilities of being exposed to ship and aircraft traffic and sonar transmissions associated with the activities considered in this Opinion that are sufficiently small for us to conclude that North Pacific right whales are not likely to be exposed to the activities considered in this consultation. As a result, this species will not be considered in greater detail in the remainder of this Opinion.

4.1.2 Green Sea Turtle

Green sea turtles occur along the coasts of British Columbia and the States of Washington, Oregon, and northernmost California (Bowlby et al. 1994), but those occurrences are usually associated with mild or strong El Nino currents that push warmer water masses northward. When those water masses dissipate, as has happened at least twice over the past two years, green sea turtles become hypothermic in the colder, ambient temperatures. Because the Action Area occurs at the thermal limits of green sea turtles (primarily because of low sea surface temperatures), the probability of green sea turtles occurring in the Action Area is sufficiently small for us to conclude that green sea turtles are not likely to be exposed to the activities considered in this consultation. As a result, this species will not be considered in greater detail in the remainder of this Opinion.

4.1.3 Loggerhead Sea Turtle

Loggerhead sea turtles occur along the coasts of British Columbia and the States of Washington, Oregon, and northernmost California, but those occurrences are usually associated with mild or strong El Nino currents that push warmer water masses northward. When those water masses dissipate, as has happened at least twice over the past two years, loggerhead sea turtles become hypothermic in the colder, ambient temperatures. Because the Action Area occurs at the thermal limits of loggerhead sea turtles (primarily because of low sea surface temperatures), the probability of loggerhead sea turtles occurring in the Action Area is sufficiently small for us to conclude that loggerhead sea turtles are not likely to be exposed to the activities considered in this consultation. As a result, this species will not be considered in greater detail in the remainder of this Opinion.
4.1.4 Olive Ridley Sea Turtle
Like green sea turtles, olive ridley sea turtles also occur along the coasts of British Columbia and the States of Washington, Oregon, and northernmost California, but those occurrences are usually associated with mild or strong El Nino currents that push warmer water masses northward. When those water masses dissipate, as has happened at least twice over the past two years, green sea turtles become hypothermic in the colder, ambient temperatures. Because the Action Area occurs at the thermal limits of olive ridley sea turtles (primarily because of low sea surface temperatures), the probability of olive ridley sea turtles occurring in the Action Area is sufficiently small for us to conclude that olive ridley sea turtles are not likely to be exposed to the activities considered in this consultation. As a result, this species will not be considered in greater detail in the remainder of this Opinion.

4.1.5 Georgia Basin Bocaccio
The Georgia Basin Bocaccio are listed as an endangered “species,” which, in this case, means a distinct population segment (75 FR 22276). The listing includes bocaccio throughout Puget Sound, which encompasses all waters south of a line connecting Point Wilson on the Olympic Peninsula and Partridge on Whidbey Island; West Point on Whidbey Island, Deception Island, and Rosario Head on Fidalgo Island; and the southern end of Swinomish Channel between Fidalgo Island and McGlinn Island, and the Strait of Georgia, which encompasses the waters inland of Vancouver Island, the Gulf Islands, and the mainland coast of British Columbia.

Georgia Basin bocaccio would not be exposed to most of the RDT&E activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex because, with the exception of some mine countermeasures, insertion/extraction, and RDT&E of unmanned aerial systems, all of the training activities the U.S. Navy plans to conduct on the Keyport Training Range Complex would occur in offshore areas of the complex.

As a result, we conclude that Georgia Basin bocaccio are not likely to be exposed to the activities considered in this consultation. As a result, this species will not be considered in greater detail in the remainder of this Opinion.

4.1.6 Georgia Basin Canary Rockfish
Canary rockfish that occur in the Georgia Basin are listed as a threatened “species” (75 FR 22276). The listing includes canary rockfish throughout Puget Sound, which encompasses all waters south of a line connecting Point Wilson on the Olympic Peninsula and Partridge on Whidbey Island; West Point on Whidbey Island, Deception Island, and Rosario Head on Fidalgo Island; and the southern end of Swinomish Channel between Fidalgo Island and McGlinn Island, and the Strait of Georgia, which encompasses the waters inland of Vancouver Island, the Gulf Islands, and the mainland coast of British Columbia.

Like bocaccio, Georgia Basin canary rockfish would not be exposed to most of the training activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex because, with the exception of some mine countermeasures, insertion/extraction, and RDT&E of unmanned aerial systems, all of the training activities the U.S. Navy plans to conduct on the Keyport Training Range Complex would occur on offshore areas of the complex.

As a result, we conclude that Georgia Basin canary rockfish are not likely to be exposed to the activities considered in this consultation. As a result, this species will not be considered in greater detail in the remainder of this Opinion.
4.1.7 Georgia Basin Yelloweye Rockfish
The yelloweye rockfish that occur in the Georgia Basin are listed as a threatened “species” (75 FR 22276). The listing includes yelloweye rockfish through Puget Sound, which encompasses all waters south of a line connecting Point Wilson on the Olympic Peninsula and Partridge on Whidbey Island; West Point on Whidbey Island, Deception Island, and Rosario Head on Fidalgo Island; and the southern end of Swinomish Channel between Fidalgo Island and McGlinn Island, and the Strait of Georgia, which encompasses the waters inland of Vancouver Island, the Gulf Islands, and the mainland coast of British Columbia.

Like bocaccio and canary rockfish, Georgia Basin yelloweye rockfish would not be exposed to most of the training activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex because, with the exception of some mine countermeasures, insertion/extraction, and RDT&E of unmanned aerial systems, all of the RDT&E activities the U.S. Navy plans to conduct on the Keyport Training Range Complex would occur on offshore areas of the complex.

As a result, we conclude that Georgia Basin yelloweye rockfish are not likely to be exposed to the activities considered in this consultation. As a result, this species will not be considered in greater detail in the remainder of this Opinion.

4.1.8 Critical Habitat For Southern Resident Killer Whales
Critical habitat that has been designated for southern resident killer whales includes the summer core area in Haro Strait and waters around the San Juan Islands, the Puget Sound area, and the Strait of Juan de Fuca, which together comprise about 2,560 square miles of marine and coastal habitat (71 FR 69054). The designated critical habitat includes three specific marine areas of Puget Sound in Clallam, Jefferson, King, Kitsap, Island, Mason, Pierce, San Juan, Skagit, Snohomish, Thurston, and Whatcom Counties in the State of Washington. The critical habitat designation includes all waters relative to a contiguous shoreline delimited by the line at a depth of 20 feet (6.1 m) relative to extreme high water in (see 50 CFR § 226.206 for complete latitude and longitude references to all points contained in the following narratives):

1. the summer core areas, which includes all U.S. marine waters in Whatcom and San Juan counties; and all marine waters in Skagit County west and north of the Deception Pass Bridge (Highway 20);
2. Puget Sound, which includes (a) all marine waters in Island County east and south of the Deception Pass Bridge (Highway 20) and east of a line connecting the Point Wilson Lighthouse and a point on Whidbey Island located at 48°12'30"N latitude and 122°44'26"W longitude; (b) all marine waters in Skagit County east of the Deception Pass Bridge (Highway 20); (c) all marine waters of Jefferson County east of a line connecting the Point Wilson Lighthouse and a point on Whidbey Island located at latitude 48°12'33"N latitude and 122°44'26"W longitude, and north of the Hood Canal Bridge (Highway 104); (d) all marine waters in eastern Kitsap County east of the Hood Canal Bridge (Highway 104); (e) all marine waters (excluding Hood Canal) in Mason County; and (f) all marine waters in King, Pierce, Snohomish, and Thurston counties
3. Strait of Juan de Fuca Area: All U.S. marine waters in Clallam County east of a line connecting Cape Flattery, Washington, Tatoosh Island, Washington, and Bonilla Point, British Columbia; all marine waters
in Jefferson and Island counties west of the Deception Pass Bridge (Highway 20), and west of a line connecting the Point Wilson Lighthouse and a point on Whidbey Island located at 48°12′30″N. latitude and 122°44′26″W. longitude.

Critical habitat that has been designated for southern resident killer whales does not include waters offshore of the Washington coast, Hood Canal or Dabob Bay, the Keyport Range Complex. However, the proposed expansion of the Keyport Range Complex includes areas that have been designated as critical habitat for southern resident killer whales. As a result, we assume that these portions of critical habitat would be exposed to the RDT&E activities the U.S. Navy proposes to conduct on the Keyport Range Complex (or the Quinault Underwater Tracking Range, Dabob Bay Range Complex, the Keyport units of the Range Complex).

Based on our analyses of the evidence available, the quantity, quality, or availability of the constituent elements or other physical, chemical, or biotic resources is not likely to decline as a result of being exposed to stressors associated with the RDT&E activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex and these stressors are not likely to exclude southern resident killer whales from designated critical habitat, so those activities may affect, but are not likely to adversely affect the designated critical habitat for southern resident killer whales. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.1.9 Critical Habitat For the Eastern Population Of Steller Sea Lions

Critical habitat that has been designated for the eastern population of Steller sea lions includes an air zone that extends 3,000 feet (0.9 km) above areas historically occupied by sea lions at each major rookery in California and Oregon, measured vertically from sea level. Critical habitat includes an aquatic zone that extends 3,000 feet (0.9 km) seaward in State and Federally managed waters from the baseline or base point of each major rookery in California and Oregon.

In Oregon, the Steller sea lion rookeries included in the critical habitat designation are Pyramid Rock on Rogue Reef (42 26.4N latitude, 124 28.1W longitude) and Long Brown Rock (42 47.3N latitude, 124 36.2W longitude) and Seal Rock (42 47.1N latitude 124 35.4W longitude) on Orford Reef. In California, the Steller sea lion rookeries included in the critical habitat designation are Ano Nuevo Island (37 06.3N latitude, 122 20.3W longitude), southeast Farallon Island (37 41.3N latitude, 123 00.1W longitude), and Sugarloaf Island.- Cape Mendocino (40 26.0N latitude, 124 24.0W longitude). Critical habitat for the eastern population of Steller sea lions has not been designated in the State of Washington.

Designated critical habitat for the eastern population of Steller sea lions does not occur on the Keyport Range Complex and does not co-occur with the areas that might be ensonified by active sonar associated with RDT&E activities on the Keyport Range Complex. Therefore, the activities the U.S. Navy proposes to conduct on the Keyport Range Complex are not likely to affect critical habitat that has been designated for the eastern population of Steller sea lions. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.1.10 Critical Habitat for Leatherback Sea Turtle

In 1979, NMFS designated critical habitat for leatherback turtles to include the coastal waters adjacent to Sandy Point, St. Croix, U.S. Virgin Islands (44 FR 17710).
In 2007, NMFS received a petition to revise the leatherback critical habitat designation to include waters off the U.S. West Coast. NMFS published a 90-day finding on the petition in December 2007. Then, on January 5, 2010, NMFS published a proposed rule to revise the critical habitat designation (75 FR 319). The revised critical habitat proposed designating additional areas within the Pacific Ocean. Specific areas proposed for designation include two adjacent marine areas totaling approximately 46,100 square miles (119,400 square km) stretching along the California coast from Point Arena to Point Vincente; and one 24,500 square mile (63,455 square km) marine area stretching from Cape Flattery, Washington to the Umpqua River (Winchester Bay), Oregon east of a line approximating the 2,000 meter depth contour.

The Critical Habitat Review Team (CHRT) identified two PCEs essential for the conservation of leatherbacks in marine waters off the U.S. West Coast: (1) Occurrence of prey species, primarily scyphomedusae of the order Semaeostomeae (Chrysaora, Aurelia, Phacellophora, and Cyanea) of sufficient condition, distribution, diversity, and abundance to support individual as well as population growth, reproduction, and development; (2) Migratory pathway conditions to allow for safe and timely passage and access to/from/within high use foraging areas.

The RDT&E activities would not be expected to alter or reduce the occurrence of prey species of the leatherback sea turtle and the CHRT determined that only permanent or long-term structures that alter the habitat would be considered as having potential effects on passage. Given this determination, the CHRT did not consider fishing gear or vessel traffic as potential threats to passage. Based on our analyses of the evidence available, the quantity, quality, or availability of the constituent elements or other physical, chemical, or biotic resources is not likely to decline as a result of being exposed to stressors associated with the RDT&E activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex and these stressors are not likely to exclude leatherback sea turtles from designated critical habitat or alter the primary constituent elements of the critical habitat, so the activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex may affect, but are not likely to adversely affect the designated critical habitat for leatherback sea turtles. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.1.11 Critical Habitat for the Southern Population of Green Sturgeon

On October 9, 2009, NMFS designated critical habitat for southern green sturgeon (74 FR 52300). The area identified as critical habitat is the entire range of the biological species, green sturgeon, from the Bering Sea, Alaska, to Ensenada, Mexico. Specific freshwater areas include the Sacramento River, Feather River, Yuba River, and the Sacramento-San Joaquin Delta.

Specific coastal bays and estuaries include estuaries from Elkhorn Slough, California, to Puget Sound, Washington. Coastal marine areas include waters along the entire biological species range within a depth of 60 fathoms. The principle biological or physical constituent elements essential for the conservation of southern green sturgeon in freshwater include: food resources; substrate of sufficient type and size to support viable egg and larval development; water flow, water quality such that the chemical characteristics support normal behavior, growth and viability; migratory corridors; water depth; and sediment quality. Primary constituent elements of estuarine habitat include food resources, water flow, water quality, migratory corridors, water depth, and sediment quality. The specific primary constituent elements of marine habitat include food resources, water quality, and migratory corridors.
Critical habitat of southern green sturgeon is threatened by several anthropogenic factors. Four dams and several other structures currently are impassible for green sturgeon to pass on the Sacramento, Feather, and San Joaquin rivers, preventing movement into spawning habitat. Threats to these riverine habitats also include increasing temperature, insufficient flow that may impair recruitment, the introduction of striped bass that may eat young sturgeon and compete for prey, and the presence of heavy metals and contaminants in the river.

Based on our analyses of the evidence available, the quantity, quality, or availability of the constituent elements or other physical, chemical, or biotic resources is not likely to decline as a result of being exposed to stressors associated with the RDT&E activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex and these stressors are not likely to exclude green sturgeon from designated critical habitat, so the activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex may affect, but are not likely to adversely affect the designated critical habitat for southern green sturgeon. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.1.12 Critical Habitat for Pacific Eulachon
On January 5, 2011, the NMFS proposed to designate critical habitat for the southern DPS of Pacific eulachon, including roughly 470 km of streams and rivers in Washington State (Grays, Elochoman, Cowlitz, Kalama, Lewis, Quinault, and Elwa rivers), Oregon (Columbia River), and California (Mad, Klamath, Umpqua, and Sandy rivers as well as Tenmile Creek). These areas contain physical or biological features essential to the conservation of the DPS, including (1) freshwater spawning and incubation sites with water flow, quality and temperature conditions and substrate supporting spawning and incubation, (2) freshwater and estuarine migration corridors free of obstruction and with water flow, quality and temperature conditions supporting larval and adult mobility, and with abundant prey items supporting larval feeding after the yolk sac is depleted, and (3) nearshore and offshore marine foraging habitat with water quality and available prey, supporting juveniles and adult survival.

Based on our analyses of the evidence available, the quantity, quality, or availability of the constituent elements or other physical, chemical, or biotic resources is not likely to decline as a result of being exposed to stressors associated with the RDT&E activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex and these stressors are not likely to exclude Pacific eulachon from designated critical habitat, so the activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex may affect, but are not likely to adversely affect the designated critical habitat for Pacific eulachon. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.1.13 Critical Habitat for Puget Sound Chinook Salmon
NMFS designated critical habitat for Puget Sound Chinook salmon on September 2, 2005 (70 FR 52630). The specific geographic area includes portions of the Nooksack River, Skagit River, Sauk River, Stillaguamish River, Skykomish River, Snoqualmie River, Lake Washington, Green River, Puyallup River, White River, Nisqually River, Hamma Hamma River and other Hood Canal watersheds, the Dungeness/Elwha Watersheds, and nearshore marine areas of the Strait of Georgia, Puget Sound, Hood Canal and the Strait of Juan de Fuca. This designation includes the stream channels within the designated stream reaches, and includes a lateral extent as defined by the ordinary high water line. In areas where the ordinary high-water line is not defined the lateral extent is defined as the bank full elevation.
The designation for this species includes sites necessary to support one or more Chinook salmon life stages. These areas are important for the species’ overall conservation by protecting quality growth, reproduction, and feeding. Specific primary constituent elements include freshwater spawning sites, freshwater rearing sites, freshwater migration corridors, nearshore marine habitat, and estuarine areas. The physical or biological features that characterize these sites include water quality and quantity, natural cover, forage, adequate passage conditions, and floodplain connectivity.

Based on our analyses of the evidence available, the quantity, quality, or availability of the constituent elements or other physical, chemical, or biotic resources of this critical habitat designation is not likely to decline as a result of being exposed to stressors associated with the activities the U.S. Navy proposes to conduct on the Keyport Range Complexes and these stressors are not likely to exclude Puget Sound Chinook salmon from designated critical habitat, so the RDT&E activities the U.S. Navy proposes to conduct on the Keyport Range Complexes may affect, but are not likely to adversely affect the designated critical habitat for Puget Sound Chinook salmon. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.1.14 Critical Habitat for Lower Columbia River Chinook Salmon
NMFS designated critical habitat for Lower Columbia River Chinook salmon on September 2, 2005 (70 FR 52630). Designated critical habitat includes all Columbia River estuarine areas and river reaches proceeding upstream to the confluence with the Hood Rivers as well as specific stream reaches in a number of tributary subbasins. These areas are important for the species’ overall conservation by protecting quality growth, reproduction, and feeding. The critical habitat designation for this species identifies primary constituent elements that include sites necessary to support one or more Chinook salmon life stages. Specific sites include freshwater spawning sites, freshwater rearing sites, freshwater migration corridors, nearshore marine habitat and estuarine areas. The physical or biological features that characterize these sites include water quality and quantity, natural cover, forage, adequate passage conditions, and floodplain connectivity.

The critical habitat for Lower Columbia River Chinook salmon does not overlap or occur in proximity to the Keyport Range Complex, so the military readiness activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex will not affect the designated critical habitat for Lower Columbia River Chinook salmon. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.1.15 Critical Habitat for Columbia River Chum Salmon
NMFS designated critical habitat for Columbia River chum salmon on September 2, 2005 (70 FR 52630). The designated includes defined areas in the following subbasins: Middle Columbia/Hood, Lower Columbia/Sandy, Lewis, Lower Columbia/Clatskanie, Lower Cowlitz, Lower Columbia subbasin and river corridor. This designation includes the stream channels within the designated stream reaches, and includes a lateral extent as defined by the ordinary high water line. In areas where the ordinary high-water line is not defined the lateral extent is defined as the bank full elevation.

The critical habitat designation for this species identifies primary constituent elements that include sites necessary to support one or more chum salmon life stages. These areas are important for the species’ overall conservation by protecting quality growth, reproduction, and feeding and are rated as having high conservation value to the species.
Columbia River chum salmon have primary constituent elements of freshwater spawning, freshwater rearing, freshwater migration, estuarine areas free of obstruction, nearshore marine areas free of obstructions, and offshore marine areas with good water quality. The physical or biological features that characterize these sites include water quality and quantity, natural cover, forage, adequate passage conditions, and floodplain connectivity.

The critical habitat for Columbia River chum salmon does not overlap or occur in proximity to the Keyport Range Complex, so the military readiness activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex will not affect the designated critical habitat for Columbia River chum salmon. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.1.16 Critical Habitat for Hood Canal Summer Run Chum Salmon
NMFS designated critical habitat for Hood Canal summer-run chum salmon on September 2, 2005 (70 FR 52630). The specific geographic area includes the Skokomish River, Hood Canal subbasin, which includes the Hamma Hamma and Dosewallips rivers and others, the Puget Sound subbasin, Dungeness/Elwha subbasin, and nearshore marine areas of Hood Canal and the Strait of Juan de Fuca from the line of extreme high tide to a depth of 30 meters. This includes a narrow nearshore zone from the extreme high-tide to mean lower low tide within several Navy security/restricted zones. This also includes about 8 miles of habitat that was unoccupied at the time of the designation Finch, Anderson and Chimacum creeks (69 FR 74572; 70 FR 52630), but has recently been re-seeded. The designation for Hood Canal summer-run chum, like others made at this time, includes the stream channels within the designated stream reaches, and includes a lateral extent as defined by the ordinary high water line. In areas where the ordinary high-water line is not defined the lateral extent is defined as the bank full elevation.

The specific primary constituent elements identified for Hood Canal summer-run chum salmon are areas for spawning, freshwater rearing and migration, estuarine areas free of obstruction, nearshore marine areas free of obstructions, and offshore marine areas with good water quality. The physical or biological features that characterize these sites include water quality and quantity, natural cover, forage, adequate passage conditions, and floodplain connectivity.

Of 17 subbasins reviewed in NMFS’ assessment of critical habitat for the Hood Canal chum salmon, 14 subbasins were rated as having a high conservation value, while only three were rated as having a medium value to the conservation. These areas are important for the species’ overall conservation by protecting quality growth, reproduction, and feeding. Limiting factors identified for this species include degraded floodplain and mainstem river channel structure, degraded estuarine conditions and loss of estuarine habitat, riparian area degradation and loss of in-river wood in mainstem, excessive sediment in spawning gravels, and reduced stream flow in migration areas.

Based on our analyses of the evidence available, the quantity, quality, or availability of the constituent elements or other physical, chemical, or biotic resources of this critical habitat designation is not likely to decline as a result of being exposed to stressors associated with the military readiness activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex and these stressors are not likely to exclude Hood Canal chum salmon from designated critical habitat, so the military readiness activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex may affect, but are not likely to adversely affect the designated critical habitat for Hood
Canal chum salmon. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.1.17 Critical Habitat for Ozette Lake Sockeye Salmon
NMFS designated critical habitat for Ozette Lake sockeye salmon on September 2, 2005 (70 FR 52630). The specific geographic area includes Critical habitat: Ozette Lake and the Ozette Lake watershed, including the Ozette River upstream to endpoints in: Big River; Coal Creek; the East Branch of Umbrella Creek; North Fork Crooked Creek; Ozette River; South Fork Crooked Creek; Umbrella Creek (48.2127, -124.5787); and three unnamed Ozette Lake tributaries (“Hatchery Creek,” tributary to Umbrella Creek, and “Stony Creek”).

The designation for Ozette Lake sockeye salmon, like others made at this time, includes the stream channels within the designated stream reaches, and includes a lateral extent as defined by the ordinary high water line. In areas where the ordinary high-water line is not defined the lateral extent is defined as the bank full elevation.

The specific primary constituent elements identified for Ozette Lake sockeye salmon are areas for spawning, freshwater rearing and migration, estuarine areas free of obstruction, nearshore marine areas free of obstructions, and offshore marine areas with good water quality. The physical or biological features that characterize these sites include water quality and quantity, natural cover, forage, adequate passage conditions, and floodplain connectivity.

There is one watershed supporting the Ozette Lake sockeye ESU and it was rated as having a high conservation value. These areas are important for the species’ overall conservation by protecting quality growth, reproduction, and feeding. Limiting factors identified for this species include degraded water quality, predation in the lake, reduced quality and quantity of beach spawning habitat, changes in lake level that dewater redds decreasing egg-to-fry survival, variability in marine survival, and reduced stream flow in migration areas.

The critical habitat for Lower Columbia River steelhead does not overlap or occur in proximity to the Keyport Range Complex, so the military readiness activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex will not affect the designated critical habitat for Ozette Lake sockeye salmon. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.1.18 Critical Habitat for Lower Columbia River Steelhead
NMFS designated critical habitat for Lower Columbia River steelhead on September 2, 2005 (70 FR 52630). Designated critical habitat includes the following subbasins: Middle Columbia/Hood subbasin, Lower Columbia/Sandy subbasin, Lewis subbasin, Lower Columbia/Clatskanie subbasin, Upper Cowlitz subbasin, Cowlitz subbasin, Clackamas subbasin, Lower Willamette subbasin, and the Lower Columbia River corridor. These areas are important for the species’ overall conservation by protecting quality growth, reproduction, and feeding. The critical habitat designation for this species identifies primary constituent elements that include sites necessary to support one or more steelhead life stages. Specific sites include freshwater spawning sites, freshwater rearing sites, freshwater migration corridors, nearshore marine habitat and estuarine areas. The physical or biological features that characterize these sites include water quality and quantity, natural cover, forage, adequate passage conditions, and floodplain connectivity. The critical habitat designation (70 FR 52630) contains additional description of the watersheds that are included as part of this designation, and any areas specifically excluded from the designation.
The critical habitat for Lower Columbia River steelhead does not overlap or occur in proximity to the Keyport Range Complex, so the military readiness activities the U.S. Navy proposes to conduct on the Keyport Training Range Complex will not affect the designated critical habitat for Lower Columbia River steelhead. As a result, we will not consider this critical habitat in greater detail in the remainder of this Opinion.

4.2 Climate Change

There is now widespread consensus within the scientific community that atmospheric temperatures on earth are increasing (warming) and that this will continue for at least the next several decades (IPCC 2001; Oreskes 2004). There is also consensus within the scientific community that this warming trend will alter current weather patterns and patterns associated with climatic phenomena, including the timing and intensity of extreme events such as heatwaves, floods, storms, and wet-dry cycles. The threats posed by the direct and indirect effects of global climate change are, or will be, common to all of the species we discuss in this Opinion. Because of this commonality, we present this narrative here rather than in each of the species-specific narratives that follow.

The IPCC estimated that average global land and sea surface temperature has increased by 0.6°C (±0.2) since the mid-1800s, with most of the change occurring since 1976. This temperature increase is greater than what would be expected given the range of natural climatic variability recorded over the past 1,000 years (Crowley 2000). The IPCC reviewed computer simulations of the effect of greenhouse gas emissions on observed climate variations that have been recorded in the past and evaluated the influence of natural phenomena such as solar and volcanic activity. Based on their review, the IPCC concluded that natural phenomena are insufficient to explain the increasing trend in land and sea surface temperature, and that most of the warming observed over the last 50 years is likely to be attributable to human activities (IPCC 2001). Climatic models estimate that global temperatures would increase between 1.4 to 5.8°C from 1990 to 2100 if humans do nothing to reduce greenhouse gas emissions (IPCC 2001). These projections identify a suite of changes in global climate conditions that are relevant to the future status and trend of endangered and threatened species (Table 4).

Climate change is projected to have substantial direct and indirect effects on individuals, populations, species, and the structure and function of marine, coastal, and terrestrial ecosystems in the foreseeable future (Houghton 2001; IPCC 2001; Parry et al. 2007). The direct effects of climate change would result in increases in atmospheric temperatures, changes in sea surface temperatures, changes in patterns of precipitation, and changes in sea level. Oceanographic models project a weakening of the thermohaline circulation resulting in a reduction of heat transport into high latitudes of Europe, an increase in the mass of the Antarctic ice sheet, and a decrease in the Greenland ice sheet, although the magnitude of these changes remain unknown.

The indirect effects of climate change would result from changes in the distribution of temperatures suitable for calving and rearing calves, the distribution and abundance of prey, and the distribution and abundance of competitors or predators. For example, variations in the recruitment of krill (Euphausia superba) and the reproductive success of krill predators have been linked to variations in sea-surface temperatures and the extent of sea-ice cover during the winter months. Although the IPCC (2001) did not detect significant changes in the extent of Antarctic sea-ice using satellite measurements, Curran (2003) analyzed ice-core samples from 1841 to 1995 and concluded Antarctic sea ice cover had declined by about 20 percent since the 1950s.
Table 4. Phenomena associated with projections of global climate change including levels of confidence associated with projections (adapted from IPCC 2001 and Campbell-Lendrum Woodruff 2007).

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Confidence in Observed Changes (observed in the latter 20th Century)</th>
<th>Confidence in Projected Changes (during the 21st Century)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher maximum temperatures and a greater number of hot days over almost all land areas</td>
<td>Likely</td>
<td>Very likely</td>
</tr>
<tr>
<td>Higher minimum temperatures with fewer cold days and frost days over almost all land areas</td>
<td>Very likely</td>
<td>Very likely</td>
</tr>
<tr>
<td>Reduced diurnal temperature range over most land areas</td>
<td>Very likely</td>
<td>Very likely</td>
</tr>
<tr>
<td>Increased heat index over most land areas</td>
<td>Likely over many areas</td>
<td>Very likely over most areas</td>
</tr>
<tr>
<td>More intense precipitation events</td>
<td>Likely over many mid- to high-latitude areas in Northern Hemisphere</td>
<td>Very likely over many areas</td>
</tr>
<tr>
<td>Increased summer continental drying and associated probability of drought</td>
<td>Likely in a few areas</td>
<td>Likely over most mid-latitude continental interiors (projections are inconsistent for other areas)</td>
</tr>
<tr>
<td>Increase in peak wind intensities in tropical cyclones</td>
<td>Not observed</td>
<td>Likely over some areas</td>
</tr>
<tr>
<td>Increase in mean and peak precipitation intensities in tropical cyclones</td>
<td>Insufficient data</td>
<td>Likely over some areas</td>
</tr>
</tbody>
</table>

The Antarctic Peninsula, which is the northern extension of the Antarctic continent, contains the richest areas of krill in the Southern Ocean. The extent of sea ice cover around this Peninsula has the highest degree of variability relative to other areas within the distribution of krill. Relatively small changes in climate conditions are likely to exert a strong influence on the seasonal pack-ice zone in the Peninsula area, which is likely to affect densities of krill in this region. Because krill are important prey for baleen whales or form a critical component of the food chains on which baleen whales depend, increasing the variability of krill densities or causing those densities to decline dramatically is likely to have adverse effect on populations of baleen whales in the Southern Ocean.

Reid and Croxall (2001) analyzed a 23-year time series of the reproductive performance of predators that depend on krill for prey — Antarctic fur seals (*Arctocephalus gazella*), gentoo penguins (*Pygoscelis papua*), macaroni penguins (*Eudyptes chrysolophus*), and black-browed albatrosses (*Thalassarche melanophrys*) — at South Georgia Island and concluded that these populations experienced increases in the 1980s followed by significant declines in the 1990s accompanied by an increase in the frequency of years with reduced reproductive success. The authors concluded that macaroni penguins and black-browed albatrosses had declined by as much as 50 percent in the 1990s, although incidental mortalities in longline fisheries probably contributed to the decline of the albatross. These authors concluded, however, that these declines result, at least in part, from changes in the structure of the krill population, particularly reduced recruitment into older age classes, which lowers the number of predators this prey
species can sustain. The authors concluded that the biomass of krill within the largest size class was sufficient to support predator demand in the 1980s but not in the 1990s.

Similarly, a study of relationships between climate and sea-temperature changes and the arrival of squid off southwestern England over a 20-year period concluded that veined squid (*Loligo forbesi*) migrate eastwards in the English Channel earlier when water in the preceding months is warmer, and that higher temperatures and early arrival correspond with warm phases of the North Atlantic oscillation (*Sims et al.*, 2001). The timing of squid peak abundance advanced by 120-150 days in the warmest years compared with the coldest. Seabottom temperature were closely linked to the extent of squid movement and temperature increases over the five months prior to and during the month of peak squid abundance did not differ between early and late years. These authors concluded that the temporal variation in peak abundance of squid seen off Plymouth represents temperature-dependent movement, which is in turn mediated by climatic changes associated with the North Atlantic Oscillation.

Climate-mediated changes in the distribution and abundance of keystone prey species like krill and climate-mediated changes in the distribution of cephalopod populations worldwide is likely to affect marine mammal populations as they re-distribute throughout the world’s oceans in search of prey. Blue whales, as predators that specialize in eating krill, seem likely to change their distribution in response to changes in the distribution of krill (for example, see *Payne et al.*, 1990; *Payne*, 1986); if they did not change their distribution or could not find the biomass of krill necessary to sustain their population numbers, their populations seem likely to experience declines similar to those observed in other krill predators, which would cause dramatic declines in their population sizes or would increase the year-to-year variation in population size; either of these outcomes would dramatically increase the extinction probabilities of these whales.

Sperm whales, whose diets can be dominated by cephalopods, would have to re-distribute following changes in the distribution and abundance of their prey. This statement assumes that projected changes in global climate would only affect the distribution of cephalopod populations, but would not reduce the number or density of cephalopod populations. If, however, cephalopod populations collapse or decline dramatically, sperm whale populations are likely to collapse or decline dramatically as well.

The response of North Atlantic right whales to changes in the North Atlantic Oscillation also provides insight into the potential consequences of a changing climate on large whales. Changes in the climate of the North Atlantic have been directly linked to the North Atlantic Oscillation, which results from variability in pressure differences between a low pressure system that lies over Iceland and a high pressure system that lies over the Azore Islands. As these pressure systems shift from east to west, they control the strength of westerly winds and storm tracks across the North Atlantic Ocean. The North Atlantic Oscillation Index, which is positive when both systems are strong (producing increased differences in pressure that produce more and stronger winter storms) and negative when both systems are weak (producing decreased differences in pressure resulting in fewer and weaker winter storms), varies from year to year, but also exhibits a tendency to remain in one phase for intervals lasting several years.

Sea surface temperatures in the North Atlantic Ocean are closely related to this oscillation which influences the abundance of marine mammal prey such as zooplankton and fish. In the 1970s and 1980s, the North Atlantic Oscillation Index has been positive and sea surface temperatures increased. These increased are believed to have
produced conditions that were favorable for the copepod (*Calanus finmarchicus*), which is the principal prey of North Atlantic right whales (*Conversi et al. 2001*) and may have increased calving rates of these whales (we cannot verify this association because systematic data on North Atlantic right whale was not collected until 1982) (*Greene et al. 2003a*). In the late 1980s and 1990s, the North Atlantic Oscillation Index was mainly positive but exhibited two substantial, multi-year reversals to negative values. This was followed by two major, multi-year declines in copepod prey abundance (*Drinkwater et al. 2003; Pershing et al. 2010*). Calving rates for North Atlantic right whales followed the declining trend in copepod abundance, although there was a time lag between the two (*Greene et al. 2003b*).

Although the North Atlantic Oscillation Index has been positive for the past 25 years, atmospheric models suggest that increases in ocean temperature associated with climate change forecasts may produce more severe fluctuations in the North Atlantic Oscillation. Such fluctuations would be expected to cause dramatic shifts in the reproductive rate of critically endangered North Atlantic right whales (*Drinkwater et al. 2003; Greene et al. 2003b*) and possibly a northward shift in the location of right whale calving areas (*Kenney 2007*).

Changes in global climatic patterns are also projected to have profound effect on the coastlines of every continent by increasing sea levels and increasing the intensity, if not the frequency, of hurricanes and tropical storms. Based on computer models, these phenomena would inundate nesting beaches of sea turtles, change patterns of coastal erosion and sand accretion that are necessary to maintain those beaches, and would increase the number of turtle nests that are destroyed by tropical storms and hurricanes. Further, the combination of increasing sea levels, changes in patterns of coastal erosion and accretion, and changes in rainfall patterns are likely to affect coastal estuaries, submerged aquatic vegetation, and reef ecosystems that provide foraging and rearing habitat for several species of sea turtles. Finally, changes in ocean currents associated with climate change projections would affect the migratory patterns of sea turtles. The loss of nesting beaches, by itself, would have catastrophic effect on sea turtle populations globally if they are unable to colonize any new beaches that form or if the beaches that form do not provide the sand depths, grain patterns, elevations above high tides, or temperature regimes necessary to allow turtle eggs to survive. When combined with changes in coastal habitats and ocean currents, the future climates that are forecast place sea turtles at substantially greater risk of extinction than they already face.

4.3 Species Considered Further in this Biological Opinion

The rest of this section of our Opinion consists of narratives for each of the threatened and endangered species that occur in the action area and that may be adversely affected by the readiness activities the U.S. Navy proposes to conduct in waters on the Keyport Range Complex. In each narrative, we present a summary of information on the distribution and population structure of each species to provide a foundation for the exposure analyses that appear later in this Opinion. Then we summarize information on the threats to the species and the species’ status given those threats to provide points of reference for the jeopardy determinations we make later in this Opinion. That is, we rely on a species’ status and trend to determine whether or not an action’s direct or indirect effects are likely to increase the species’ probability of becoming extinct.

After the Status subsection of each narrative, we present information on the diving and social behavior of the different species because that behavior helps determine whether aerial and ship board surveys are likely to detect each species. We also summarize information on the vocalizations and hearing of the different species because that
background information lays the foundation for our assessment of how the different species are likely to respond to sounds produced by detonations.

More detailed background information on the status of these species and critical habitat can be found in a number of published documents including status reviews, recovery plans for the blue whale (NMFS 1998b), fin whales (NMFS 2010c), fin and sei whale (NMFS 1998a), humpback whale (NMFS 1991), right whale (NMFS 2004), sperm whale (NMFS 2010d), a status report on large whales prepared by Perry et al. (1999a) and the status review and recovery plan for the leatherback sea turtle (NMFS and USFWS 1998; NMFS and USFWS 2007). Richardson et al. (1995) and Tyack (2000) provide detailed analyses of the functional aspects of cetacean communication and their responses to active sonar. Finally, Croll et al. (1999b), NRC (2000; 2003; 2005), and Richardson and Wursig (1995) provide information on the potential and probable effects of active sonar on the marine animals considered in this Opinion.

4.3.1 Blue Whale

The blue whale, *Balaenoptera musculus* (Linnaeus 1758), is a cosmopolitan species of baleen whale. It is the largest animal ever known to have lived on Earth: adults in the Antarctic have reached a maximum body length of about 33 m and can weigh more than 150,000 kg. The largest blue whales reported from the North Pacific are a female that measured 26.8 m (88 ft) taken at Port Hobron in 1932 (Reeves et al. 1985) and a 27.1 m (89 ft) female taken by Japanese pelagic whaling operations in 1959 (NMFS 1998b).

As is true of other baleen whale species, female blue whales are somewhat larger than males. Blue whales are identified by the following characteristics: a long-body and comparatively slender shape; a broad, flat "rostrum" when viewed from above; a proportionately smaller dorsal fin than other baleen whales; and a mottled gray color pattern that appears light blue when seen through the water.

Distribution

Blue whales are found along the coastal shelves of North America and South America (Clarke 1980; Donovan 1984; Rice 1998). In the western North Atlantic Ocean, blue whales are found from the Arctic to at least the mid-latitude waters of the North Atlantic (CETAP 1982; Gagnon and Clark 1993; Wenzel et al. 1988; Yochem and Leatherwood 1985). Blue whales have been observed frequently off eastern Canada, particularly in waters off Newfoundland, during the winter. In the summer month, they have been observed in Davis Strait (Mansfield 1985), the Gulf of St. Lawrence (from the north shore of the St. Lawrence River estuary to the Strait of Belle Isle), and off eastern Nova Scotia (Sears 1987a). In the eastern North Atlantic Ocean, blue whales have been observed off the Azores Islands, although Reiner et al. (1996) do not consider them common in that area.

In 1992, the Navy conducted an extensive acoustic survey of the North Atlantic Ocean using the Integrated Underwater Surveillance System’s fixed acoustic array system (Clark 1995). Concentrations of blue whale sounds were detected in the Grand Banks off Newfoundland and west of the British Isles. In the lower latitudes, one blue whale was tracked acoustically for 43 days, during which time the animal traveled 1400 nautical miles around the western North Atlantic from waters northeast of Bermuda to the southwest and west of Bermuda (Gagnon and Clark 1993).
In the North Pacific Ocean, blue whales have been recorded off the island of Oahu in the main Hawaiian Islands and off Midway Island in the western edge of the Hawaiian Archipelago (Barlow 2006; Northrop et al. 1971; Thompson and Friedl 1982), although blue whales are rarely sighted in Hawaiian waters and have not been reported to strand in the Hawaiian Islands.

In the eastern tropical Pacific Ocean, the Costa Rica Dome appears to be important for blue whales based on the high density of prey (euphausiids) available in the Dome and the number of blue whales that appear to reside there (Reilly and Thayer 1990). Blue whales have been sighted in the Dome area in every season of the year, although their numbers appear to be highest from June through November. Blue whales have also been reported year-round in the northern Indian Ocean, with sightings in the Gulf of Aden, Persian Gulf, Arabian Sea, and across the Bay of Bengal to Burma and the Strait of Malacca (Mizroch et al. 1984). The migratory movements of these whales are unknown.

Blue whales in the eastern Pacific winter from California south; in the western Pacific, they winter from the Sea of Japan, the East China and Yellow Seas, and the Philippine Sea. Blue whales occur in summer foraging areas in the Chukchi Sea, the Sea of Okhotsk, around the Aleutian Islands, and the Gulf of Alaska. Nishiwaki (1966) reported that blue whales occur in the Aleutian Islands and in the Gulf of Alaska. An array of hydrophones, deployed in October 1999, detected two blue whale call types in the Gulf of Alaska (Stafford 2003). Fifteen blue whale sightings off British Columbia and in the Gulf of Alaska have been made since 1997 (Calambokidis et al. 2009). Three of these photographically verified sightings were in the northern Gulf of Alaska within 71 nm of each other and were less than 100 nm offshore (Calambokidis et al. 2009).

Blue whales appear to migrate to waters offshore of Washington, Oregon, and northern California to forage. Thus far, blue whales are associated with deeper, pelagic waters in the action area; they have not been reported to occur proximate to the coast or in Puget Sound itself. Although a resident population of blue whales might occur off the coast of Vancouver Island throughout the year (Burtenshaw et al. 2004), most blue whales that occur in the action area for this consultation appear to migrate between summer, foraging areas and winter rearing areas along the Pacific Coast of the United States. That seasonal migration brings them to waters off the Keyport Range Complex (with some individuals continuing north to the Gulf of Alaska) during the warm, summer season with a southward migration to waters off California, south to Central America, during the winter season (Calambokidis et al. 2009; Gregr et al. 2000; Mate et al. 1998).

Population Structure

For this and all subsequent species, the term “population” refers to groups of individuals whose patterns of increase or decrease in abundance over time are determined by internal dynamics (births resulting from sexual interactions between individuals in the group and deaths of those individuals) rather than external dynamics (immigration or emigration). This definition is a reformulation of definitions articulated by Futuymda (1986) and Wells and Richmond (1995) and is more restrictive than those uses of ‘population’ that refer to groups of individuals that co-occur in space and time but do not have internal dynamics that determine whether the size of the group increases or decreases over time (see review by Wells and Richmond 1995). The definition we apply is important to section 7 consultations because such concepts as ‘population decline,’ ‘population collapse,’ ‘population extinction,’ and ‘population recovery’ apply to the restrictive definition of ‘population’ but do not explicitly apply to alternative
definitions. As a result, we do not treat the different whale “stocks” recognized by the International Whaling Commission or other authorities as populations unless those distinctions were clearly based on demographic criteria. We do, however, acknowledge those “stock” distinctions in these narratives.

At least three subspecies of blue whales have been identified based on body size and geographic distribution (B. musculus intermedia, which occurs in the higher latitudes of the Southern Oceans, B. m. musculus, which occurs in the Northern Hemisphere, and B. m. brevicauda which occurs in the mid-latitude waters of the southern Indian Ocean and north of the Antarctic convergence), but this consultation will treat them as a single entity. Readers who are interested in these subspecies will find more information in Gilpatrick et al. (1997), Kato et al. (1995), Omura et al. (1970), and Ichihara (1966).

In addition to these subspecies, the International Whaling Commission’s Scientific Committee has formally recognized one blue whale population in the North Pacific (Donovan 1991), although there is increasing evidence that there may be more than one blue whale population in the Pacific Ocean Gilpatrick et al. (1997), Barlow et al. (1995), Mizroch et al. (1984), Ohsumi and Wada (1972). For example, studies of the blue whales that winter off Baja California and in the Gulf of California suggest that these whales are morphologically distinct from blue whales of the western and central North Pacific (Gilpatrick et al. 1997), although these differences might result from differences in the productivity of their foraging areas more than genetic differences (Barlow et al. 1997; Calambokidis et al. 1990; Sears 1987b). A population of blue whales that has distinct vocalizations inhabits the northeast Pacific from the Gulf of Alaska to waters off Central America (Gregg et al. 2000; Mate et al. 1998; Stafford 2003). We assume that this population is the one affected by the activities considered in this Opinion.

Natural Threats

Natural causes of mortality in blue whales are largely unknown, but probably include predation and disease (not necessarily in their order of importance). Blue whales are known to become infected with the nematode Carricauda boopis (Baylis 1928), which are believed to have caused fin whales to die as a result of renal failure (Lambertsen 1986; see additional discussion under Fin whales). Killer whales and sharks are also known to attack, injure, and kill very young or sick fin and humpback whales and probably hunt blue whales as well (Perry et al. 1999a).

Anthropogenic Threats

Two human activities are known to threaten blue whales; whaling and shipping. Historically, whaling represented the greatest threat to every population of blue whales and was ultimately responsible for listing blue whales as an endangered species. As early as the mid-seventeenth century, the Japanese were capturing blue, fin, and other large whales using a fairly primitive open-water netting technique (Tonnessen and Johnsen 1982). In 1864, explosive harpoons and steam-powered catcher boats were introduced in Norway, allowing the large-scale exploitation of previously unobtainable whale species.

From 1889 to 1965, whalers killed about 5,761 blue whales in the North Pacific Ocean (Hill et al. 1999). From 1915 to 1965, the number of blue whales captured declined continuously (Mizroch et al. 1984). Evidence of a population decline was seen in the catch data from Japan. In 1912, whalers captured 236 blue whales; in 1913, 58 blue whales; in 194, 123 blue whales; from 1915 to 1965, the number of blue whales captured declined continuously (Mizroch et al. 1984). In the eastern North Pacific, whalers killed 239 blue whales off the California coast in 1926. And, in the
late 1950s and early 1960s, Japanese whalers killed 70 blue whales per year off the Aleutian Islands (Mizroch et al.,
1984).

Although the International Whaling Commission banned commercial whaling in the North Pacific in 1966, Soviet whaling fleets continued to hunt blue whales in the North Pacific for several years after the ban. Surveys conducted in these former-whaling areas in the 1980s and 1990s failed to find any blue whales (Forney and Brownell Jr., 1996). By 1967, Soviet scientists wrote that blue whales in the North Pacific Ocean (including the eastern Bering Sea and Prince William Sound) had been so overharvested by Soviet whaling fleets that some scientists concluded that any additional harvests were certain to cause the species to become extinct in the North Pacific (Latishev 2007). As its legacy, whaling has reduced blue whales to a fraction of their historic population size and, as a result, makes it easier for other human activities to push blue whales closer to extinction. Otherwise, whaling currently does not threaten blue whale populations.

In 1980, 1986, 1987, and 1993, ship strikes have been implicated in the deaths of blue whales off California (Barlow 1997). More recently, Berman-Kowalewski et al. (2010) reported that between 1988 and 2007, 21 blue whale deaths were reported along the California coast, typically one or two cases annually. In addition, several photo-identified blue whales from California waters were observed with large scars on their dorsal areas that may have been caused by ship strikes. Studies have shown that blue whales respond to approaching ships in a variety of ways, depending on the behavior of the animals at the time of approach, and speed and direction of the approaching vessel. While feeding, blue whales react less rapidly and with less obvious avoidance behavior than whales that are not feeding (Sears 1983). Within the St. Lawrence Estuary, blue whales are believed to be affected by large amounts of recreational and commercial vessel traffic. Blue whales in the St. Lawrence appeared more likely to react to these vessels when boats made fast, erratic approaches or sudden changes in direction or speed (Edds and Macfarlane 1987).

Although commercial fisheries using large gill nets or other large set gears poses some entanglement risk to marine mammals, there is little direct evidence of blue whale mortality from fishing gears. Therefore it is difficult to estimate the numbers of blue whales killed or injured by gear entanglements. The offshore drift gillnet fishery is the only fishery that is likely to take blue whales from this stock, but no fishery mortalities or serious injuries have been observed. In addition, the injury or mortality of large whales due to interactions or entanglements in fisheries may go unobserved because large whales swim away with a portion of the net or gear. Fishermen have reported that large whales tend to swim through their nets without becoming entangled and cause little damage to nets (Carretta et al., 2008).

Status and Trends

Blue whales (including all subspecies) were originally listed as endangered in 1970 (35 FR 18319), and this status continues since the inception of the ESA in 1973. Blue whales are listed as endangered on the IUCN Red List of Threatened Animals (IUCN 2010). They are also protected by the Convention on International Trade in Endangered Species of wild flora and fauna and the MMPA. Critical habitat has not been designated for blue whales.

It is difficult to assess the current status of blue whales because (1) there is no general agreement on the size of the blue whale population prior to whaling and (2) estimates of the current size of the different blue whale populations
vary widely. We may never know the size of the blue whale population prior to whaling, although some authors have concluded that their population numbers about 200,000 animals before whaling. Similarly, estimates of the global abundance of blue whales are uncertain. Since the cessation of whaling, the global population of blue whales has been estimated to range from 11,200 to 13,000 animals (Maser et al. 1981). These estimates, however, are more than 20 years old.

A lot of uncertainty surrounds estimates of blue whale abundance in the North Pacific Ocean. Barlow (1994) estimated the North Pacific population of blue whales at approximately 1,400 to 1,900. Barlow (1995) estimated the abundance of blue whales off California at 2,200 individuals. Wade and Gerrodette (1993) and Barlow et al. (1997) estimated there were a minimum of 3,300 blue whales in the North Pacific Ocean in the 1990s.

The size of the blue whale population in the North Atlantic is also uncertain. The population has been estimated to number from a few hundred individuals (Allen 1970; Mitchell 1974) to 1,000 to 2,000 individuals (Sigurjónsson 1995). Gambell (1976) estimated there were between 1,100 and 1,500 blue whales in the North Atlantic before whaling began and Braham (1991) estimated there were between 100 and 555 blue whales in the North Atlantic during the late 1980s and early 1990s. Sears et al. (1987) identified over 300 individual blue whales in the Gulf of St. Lawrence, which provides a minimum estimate for their population in the North Atlantic. Sigurjónsson and Gunnlaugson (1990) concluded that the blue whale population had been increasing since the late 1950s and argued that the blue whale population had increased at an annual rate of about 5 percent between 1979 and 1988, although the level of confidence we can place in these estimates is low.

Estimates of the number of blue whales in the Southern Hemisphere range from 5,000 to 6,000 (Yochem and Leatherwood 1985) with an average rate of increase that has been estimated at between 4 and 5 percent per year. Butterworth et al. (1993), however, estimated the Antarctic population at 710 individuals. More recently, Stern (2001) estimated the blue whale population in the Southern Ocean at between 400 and 1,400 animals (CV 0.4). The pygmy blue whale population has been estimated at 6,000 individuals (Yochem and Leatherwood 1985).

The information available on the status and trend of blue whales do not allow us to reach any conclusions about the extinction risks facing blue whales as a species, or particular populations of blue whales. With the limited data available on blue whales, we do not know whether these whales exist at population sizes large enough to avoid demographic phenomena that are known to increase the extinction probability of species that exist as “small” populations (that is, “small” populations experience phenomena such as demographic stochasticity, inbreeding depression, and Allee effects, among others, that cause their population size to become a threat in and of itself) or if blue whales are threatened more by exogenous threats such as anthropogenic activities (primarily whaling and ship strikes) or natural phenomena (such as disease, predation, or changes in the distribution and abundance of their prey in response to changing climate).

Diving and Social Behavior

Blue whales spend more than 94 percent of their time underwater (Lagerquist et al. 2000). Generally, blue whales dive 5-20 times at 12-20 sec intervals before a deep dive of 3-30 min (Croll et al. 1999a; Leatherwood et al. 1976; Maser et al. 1981; Yochem and Leatherwood 1985). Average foraging dives are 140 m deep and last for 7.8 min (Croll et al. 2001a). Non-foraging dives are shallower and shorter, averaging 68 m and 4.9 min (Croll et al. 2001a).
However, dives of up to 300 m are known (Calambokidis et al. 2003). Nighttime dives are generally shallower (50 m).

Blue whales occur singly or in groups of two or three (Aguayo 1974; Mackintosh 1965; Nemoto 1964; Pike and Macaskie 1969; Ruud 1956; Slijper 1962). However, larger foraging aggregations, even with other species such as fin whales, are regularly reported (Fiedler et al. 1998; Schoenherr 1991). Little is known of the mating behavior of blue whales.

Vocalization and Hearing

Blue whales produce prolonged low-frequency vocalizations that include moans in the range from 12.5-400 Hz, with dominant frequencies from 16-25 Hz, and songs that span frequencies from 16-60 Hz that last up to 36 sec repeated every 1 to 2 min (see McDonald et al. 1995). Berchok et al. (2006) examined vocalizations of St. Lawrence blue whales and found mean peak frequencies ranging from 17.0-78.7 Hz. Reported source levels are 180-188 dB re 1μPa, but may reach 195 dB re 1μPa (Aburto et al. 1997; Clark and Gagnon 2004; Ketten 1998; McDonald et al. 2001). Samaran et al. (2010) estimated Antarctic blue whale calls in the Indian Ocean at 179 ± 5 dB re 1 μPa rms -1 m in the 17-30 Hz range and pygmy blue whale calls at 175± 1 dB re 1 μPa rms -1 m in the 17-50 Hz range.

As with other baleen whale vocalizations, blue whale vocalization function is unknown, although numerous hypotheses exist (maintaining spacing between individuals, recognition, socialization, navigation, contextual information transmission, and location of prey resources) (Edds-Walton 1997; Payne and Webb. 1971; Thompson et al. 1992). Intense bouts of long, patterned sounds are common from fall through spring in low latitudes, but these also occur less frequently while in summer high-latitude feeding areas. Short, rapid sequences of 30-90 Hz calls are associated with socialization and may be displays by males based upon call seasonality and structure. The low-frequency sounds produced by blue whales can, in theory, travel long distances, and it is possible that such long-distance communication occurs (Edds-Walton 1997; Payne and Webb. 1971). The long-range sounds may also be used for echolocation in orientation or navigation (Tyack 1999).

Cetaceans have an auditory anatomy that follows the basic mammalian pattern, with some modifications to adapt to the demands of hearing in the sea. The typical mammalian ear is divided into the outer ear, middle ear, and inner ear. The outer ear is separated from the inner ear by the tympanic membrane, or eardrum. In terrestrial mammals, the outer ear, eardrum, and middle ear function to transmit airborne sound to the inner ear, where the sound is detected in a fluid. Since cetaceans already live in a fluid medium, they do not require this matching, and thus do not have an air-filled external ear canal. The inner ear is where sound energy is converted into neural signals that are transmitted to the central nervous system via the auditory nerve. Acoustic energy causes the basilar membrane in the cochlea to vibrate. Sensory cells at different positions along the basilar membrane are excited by different frequencies of sound (Tyack 1999). Baleen whales have inner ears that appear to be specialized for low-frequency hearing. In a study of the morphology of the mysticete auditory apparatus, Ketten (1997) hypothesized that large mysticetes have acute infrasonic hearing.

Direct studies of blue whale hearing have not been conducted, but it is assumed that blue whales can hear the same frequencies that they produce (low-frequency) and are likely most sensitive to this frequency range (Ketten 1997; Richardson et al. 1995).
Critical Habitat
NMFS has not designated critical habitat for blue whales.

4.3.2 Fin Whale
The fin whale, *Balaenoptera physalus* (Linnaeus 1758), is a well-defined, cosmopolitan species of baleen whale (Gambell 1985a). Fin whales are the second-largest whale species by length. Fin whales are long-bodied and slender, with a prominent dorsal fin set about two-thirds of the way back on the body. The streamlined appearance can change during feeding when the pleated throat and chest area becomes distended by the influx of prey and seawater, giving the animal a tadpole-like appearance. The basic body color of the fin whale is dark gray dorsally and white ventrally, but the pigmentation pattern is complex. The lower jaw is gray or black on the left side and creamy white on the right side. This asymmetrical coloration extends to the baleen plates as well, and is reversed on the tongue. Individually distinctive features of pigmentation, along with dorsal fin shapes and body scars, have been used in photo-identification studies (Agler et al. 1990). Fin whales live 70-80 years (Kjeld 1982).

Distribution
Fin whales are distributed widely in every ocean except the Arctic Ocean. In the North Atlantic Ocean, fin whales occur in summer foraging areas from the coast of North America to the Arctic, around Greenland, Iceland, northern Norway, Jan Meyers, Spitzbergen, and the Barents Sea. In the western Atlantic, they winter from the edge of sea ice south to the Gulf of Mexico and the West Indies. In the eastern Atlantic, they winter from southern Norway, the Bay of Biscay, and Spain with some whales migrating into the Mediterranean Sea (Gambell 1985a). In the Southern Hemisphere, fin whales are distributed broadly south of 50° S in the summer and migrate into the Atlantic, Indian, and Pacific Oceans in the winter, along the coast of South America (as far north as Peru and Brazil), Africa, and the islands in Oceania north of Australia and New Zealand (Gambell 1985a).

In the Southern Hemisphere, fin whales are distributed broadly south of 50° S in the summer and migrate into the Atlantic, Indian, and Pacific Oceans in the winter, along the coast of South America (as far north as Peru and Brazil), Africa, and the islands in Oceania north of Australia and New Zealand (Gambell 1985a).

Fin whales are common off the Atlantic coast of the United States in waters immediately off the coast seaward to the continental shelf (about the 1,000-fathom contour). In this region, they tend to occur north of Cape Hatteras where they accounted for about 46 percent of the large whales observed in surveys conducted between 1978 and 1982. During the summer months, fin whales in this region tend to congregate in feeding areas between 41°20'N and 51°00'N, from shore seaward to the 1,000-fathom contour. This species preys opportunistically on both invertebrates and fish (Watkins et al. 1984). They feed by filtering large volumes of water for the associated prey.

In the North Pacific Ocean, fin whales occur in summer foraging areas in the Chukchi Sea, the Sea of Okhotsk, around the Aleutian Islands, and the Gulf of Alaska; in the eastern Pacific, they occur south to California; in the western Pacific, they occur south to Japan. Fin whales in the eastern Pacific winter from California south; in the western Pacific, they winter from the Sea of Japan, the East China and Yellow Seas, and the Philippine Sea (Gambell 1985a). The overall distribution may be based on prey availability. Fin whales are larger and faster than humpback and right whales and are less concentrated in nearshore environments.

Population Structure
Fin whales have two recognized subspecies: *Balaenoptera physalus physalus* occurs in the North Atlantic Ocean while *B. p. quoyi* (Fischer 1829) occurs in the Southern Ocean. Globally, fin whales are sub-divided into three major
groups: Atlantic, Pacific, and Antarctic. Within these major areas, different organizations use different population structure.

In the North Atlantic Ocean, the International Whaling Commission recognizes seven management units or “stocks” of fin whales: (1) Nova Scotia, (2) Newfoundland-Labrador, (3) West Greenland, (4) East Greenland-Iceland, (5) North Norway, (6) West Norway-Faroe Islands, and (7) British Isles-Spain-Portugal. In addition, the population of fin whales that resides in the Ligurian Sea, in the northwestern Mediterranean Sea, is believed to be genetically distinct from other fin whale populations.

In the North Pacific Ocean, the International Whaling Commission recognizes two “stocks”: (1) East China Sea and (2) rest of the North Pacific (Donovan 1991). However, Mizroch et al. (1984) concluded that there were five possible “stocks” of fin whales within the North Pacific based on histological analyses and tagging experiments: (1) East and West Pacific that intermingle around the Aleutian Islands; (2) East China Sea; (3) British Columbia; (4) Southern-Central California to Gulf of Alaska; and (5) Gulf of California. Based on genetic analyses, Berube et al. (1998) concluded that fin whales in the Sea of Cortez represent an isolated population that has very little genetic exchange with other populations in the North Pacific Ocean (although the geographic distribution of this population and other populations can overlap seasonally). They also concluded that fin whales in the Gulf of St. Lawrence and Gulf of Maine are distinct from fin whales found off Spain and in the Mediterranean Sea.

Regardless of how different authors structure the fin whale population, mark-recapture studies have demonstrated that individual fin whales migrate between management units (Mitchell 1974; Sigurjónsson et al. 1989), which suggests that these management units are not geographically isolated populations.

Mizroch et al. (1984) identified five fin whale “feeding aggregations” in the Pacific Ocean: (1) an eastern group that move along the Aleutians, (2) a western group that move along the Aleutians (Berzin and Rovnin 1966; Nasu 1974); (3) an East China Sea group; (4) a group that moves north and south along the west coast of North America between California and the Gulf of Alaska (Rice 1974); and (5) a group centered in the Sea of Cortez (Gulf of California).

Hatch (2004) reported that fin whale vocalizations among five regions of the eastern North Pacific were heterogeneous: the Gulf of Alaska, the northeast North Pacific (Washington and British Columbia), the southeast North Pacific (California and northern Baja California), the Gulf of California, and the eastern tropical Pacific.

Sighting data show no evidence of migration between the Sea of Cortez and adjacent areas in the Pacific, but seasonal changes in abundance in the Sea of Cortez suggests that these fin whales might not be isolated (Tershy et al. 1993). Nevertheless, Bérubé et al. (2002) concluded that the Sea of Cortez fin whale population is genetically distinct from the oceanic population and have lower genetic diversity, which suggests that these fin whales might represent an isolated population.

Fin whales also appear to migrate to waters offshore of Washington, Oregon, and northern California to forage. Most fin whales that occur in the action area for this consultation appear to migrate between summer, foraging areas and winter rearing areas along the Pacific Coast of the United States, although Moore et al. (1998) recorded fin whale vocalizations in waters off Washington and Oregon throughout the year, with concentrations between
September and February, which demonstrates that fin whales are likely to occur in the action area throughout the year.

Natural Threats

Natural sources and rates of mortality are largely unknown, but Aguilar and Lockyer (1987) suggested annual natural mortality rates might range from 0.04 to 0.06 for northeast Atlantic fin whales. The occurrence of the nematode *Crassicauda boopis* appears to increase the potential for kidney failure and may be preventing some fin whale populations from recovering (Lambertsen 1983). Adult fin whales engage in flight responses (up to 40 km/h) to evade killer whales, which involves high energetic output, but show little resistance if overtaken (Ford and Reeves 2008). Killer whale or shark attacks may also result in serious injury or death in very young and sick individuals (Perry et al. 1999a).

Anthropogenic Threats

Fin whales have undergone significant exploitation, but are currently protected under the IWC. Fin whales are still hunted in subsistence fisheries off West Greenland. In 2004, five males and six females were killed, and two other fin whales were struck and lost. In 2003, two males and four females were landed and two others were struck and lost (IWC 2005). Between 2003 and 2007, the IWC set a catch limit of up to 19 fin whales in this subsistence fishery. However, the scientific recommendation was to limit the number killed to four individuals until accurate populations could be produced (IWC 2005). The Japanese whalers plan to kill 50 whales per year starting in the 2007-2008 season and continuing for the next 12 years (IWC 2006; Nishiwaki et al. 2006).

Fin whales experience significant injury and mortality from fishing gear and ship strikes (Carretta et al. 2007; Douglas et al. 2008; Lien 1994; Perkins and Beamish 1979; Waring et al. 2007). Between 1969 and 1990, 14 fin whales were captured in coastal fisheries off Newfoundland and Labrador; of these seven are known to have died because of capture (Lien 1994; Perkins and Beamish 1979). In 1999, one fin whale was reported killed in the Gulf of Alaska pollock trawl fishery and one was killed the same year in the offshore drift gillnet fishery (Angliss and Outlaw 2005; Carretta and Chivers, 2004). According to Waring et al. (2007), four fin whales in the western North Atlantic died or were seriously injured in fishing gear, while another five were killed or injured as a result of ship strikes between January 2000 and December 2004.

Jensen and Silber (2004) review of the NMFS’ ship strike database revealed fin whales as the most frequently confirmed victims of ship strikes (26 percent of the recorded ship strikes \(n = 75/292 \) records)), with most collisions occurring off the east coast, followed by the west coast of the U.S. and Alaska/Hawaii. Between 1999-2005, there were 15 reports of fin whales strikes by vessels along the U.S. and Canadian Atlantic coasts (Cole et al. 2005; Nelson et al. 2007). Of these, 13 were confirmed, resulting in the deaths of 11 individuals. Five of seven fin whales stranded along Washington State and Oregon showed evidence of ship strike with incidence increasing since 2002 (Douglas et al. 2008). Similarly, 2.4 percent of living fin whales from the Mediterranean show ship strike injury and 16 percent of stranded individuals were killed by vessel collision (Panigada et al. 2006). There are also numerous reports of ship strikes off the Atlantic coasts of France and England (Jensen and Silber 2004).

Management measures aimed at reducing the risk of ships hitting right whales should also reduce the risk of collisions with fin whales. In the Bay of Fundy, recommendations for slower vessel speeds to avoid right whale ship
strike appear to be largely ignored (Vanderlaan et al. 2008). However, new rules for seasonal (June through December) slowing of vessel traffic to 10 knots and changing shipping lanes by less than one nautical mile to avoid the greatest concentrations of right whales are predicted to be capable of reducing ship strike mortality by 27 percent in the Bay of Fundy region.

The organochlorines DDE, DDT, and PCBs have been identified from fin whale blubber, but levels are lower than in toothed whales due to the lower level in the food chain that fin whales feed at (Aguilar and Borrell 1988; Borrell 1993; Borrell and Aguilar 1987; Henry and Best 1983; Marsili and Focardi 1996). Females contained lower burdens than males, likely due to mobilization of contaminants during pregnancy and lactation (Aguilar and Borrell 1988; Gauthier et al. 1997). Contaminant levels increase steadily with age until sexual maturity, at which time levels begin to drop in females and continue to increase in males (Aguilar and Borrell 1988).

Climate change also presents a potential threat to fin whales, particularly in the Mediterranean Sea, where fin whales appear to rely exclusively upon northern krill as a prey source. These krill occupy the southern extent of their range and increases in water temperature could result in their decline and that of fin whales in the Mediterranean Sea (Gambaiani et al. 2009).

Status and Trends

Fin whales were originally listed as endangered in 1970 (35 FR 18319), and this status continues since the inception of the ESA in 1973. Although fin whale population structure remains unclear, various abundance estimates are available. Pre-exploitation fin whale abundance is estimated at 464,000 individuals worldwide; the estimate for 1991 was roughly 25 percent of this (Braham 1991). Historically, worldwide populations were severely depleted by commercial whaling, with more than 700,000 whales harvested in the twentieth century (Cherfas 1989).

The status and trend of fin whale populations is largely unknown. Over 26,000 fin whales were harvested between 1914-1975 (Braham 1991 as cited in Perry et al. 1999a). NMFS estimates roughly 3,000 individuals occur off California, Oregon, and Washington based on ship surveys in summer/autumn of 1996, 2001, and 2005, of which estimates of 283 and 380 have been made for Oregon and Washington alone (Barlow 2003; Barlow and Taylor 2001; Forney 2007). Barlow (2003) noted densities of up to 0.0012 individuals/km² off Oregon and Washington and up to 0.004 individuals/km² off California.

Fin whales were extensively hunted in coastal waters of Alaska as they congregated at feeding areas in the spring and summer (Mizroch et al. 2009). There has been little effort in the Gulf of Alaska since the cessation of whaling activities to assess abundance of large whale stocks. Fin whale calls have been recorded year-round in the Gulf of Alaska, but are most prevalent from August-February (Moore et al. 1998; Moore et al. 2006).

Regardless of which of these estimates, if any, have the closest correspondence to the actual size and trend of the fin whale population, all of these estimates suggest that the global population of fin whales consists of tens of thousands of individuals and that the North Atlantic population consists of at least 2,000 individuals. Based on ecological theory and demographic patterns derived from several hundred imperiled species and populations, fin whales appear to exist at population sizes that are large enough to avoid demographic phenomena that are known to increase the extinction probability of species that exist as “small” populations (that is, “small” populations experience
phenomena such as demographic stochasticity, inbreeding depression, and Allee effects, among others, that cause their population size to become a threat in and of itself. As a result, we assume that fin whales are likely to be threatened more by exogenous threats such as anthropogenic activities (primarily whaling, entanglement, and ship strikes) or natural phenomena (such as disease, predation, or changes in the distribution and abundance of their prey in response to changing climate) than endogenous threats caused by the small size of their population.

Nevertheless, based on the evidence available, the number of fin whales that are recorded to have been killed or injured in the past 20 years by human activities or natural phenomena, does not appear to be increasing the extinction probability of fin whales, although it may slow the rate at which they recover from population declines that were caused by commercial whaling.

Diving and Social Behavior

The amount of time fin whales spend at the surface varies. Some authors have reported that fin whales make 5-20 shallow dives, each of 13-20 s duration, followed by a deep dive of 1.5-15 min (Gambell 1985a; Lafortuna et al., 2003; Stone et al. 1992). Other authors have reported that the fin whale’s most common dives last 2-6 min (Hain et al. 1992; Watkins 1981b). The most recent data support average dives of 98 m and 6.3 min for foraging fin whales, while non-foraging dives are 59 m and 4.2 min (Croll et al. 2001a). However, Lafortuna et al. (1999) found that foraging fin whales have a higher blow rate than when traveling. Foraging dives in excess of 150 m are known (Panigada et al. 1999). In waters off the U.S. Atlantic Coast, individuals or duos represented about 75 percent of sightings during the Cetacean and Turtle Assessment Program (Hain et al. 1992).

Individuals or groups of less than five individuals represented about 90 percent of the observations. Barlow (2003) reported mean group sizes of 1.1–4.0 during surveys off California, Oregon, and Washington.

Vocalization and Hearing

Fin whales produce a variety of low-frequency sounds in the 10-200 Hz range (Edds 1988; Thompson et al. 1992; Watkins 1981a; Watkins et al. 1987). Typical vocalizations are long, patterned pulses of short duration (0.5-2 s) in the 18-35 Hz range, but only males are known to produce these (Clark et al. 2002; Patterson and Hamilton 1964). Richardson et al. (1995) reported the most common sound as a 1 s vocalization of about 20 Hz, occurring in short series during spring, summer, and fall, and in repeated stereotyped patterns in winter. Au (2000) reported moans of 14-118 Hz, with a dominant frequency of 20 Hz, tonal vocalizations of 34-150 Hz, and songs of 17-25 Hz (Cummings and Thompson 1994; Edds 1988; Watkins 1981a). Source levels for fin whale vocalizations are 140-200 dB re 1μPa-m (see also Clark and Gagnon 2004; as compiled by Erbe 2002b). The source depth of calling fin whales has been reported to be about 50 m (Watkins et al. 1987).

Although their function is still in doubt, low-frequency fin whale vocalizations travel over long distances and may aid in long-distance communication (Edds-Walton 1997; Payne and Webb, 1971). During the breeding season, fin whales produce pulses in a regular repeating pattern, which have been proposed to be mating displays similar to those of humpbacks (Croll et al. 2002). These vocal bouts last for a day or longer (Tyack 1999).

Cetaceans have an auditory anatomy that follows the basic mammalian pattern, with some modifications to adapt to the demands of hearing in the sea. The typical mammalian ear is divided into the outer ear, middle ear, and inner ear.
The outer ear is separated from the inner ear by the tympanic membrane, or eardrum. In terrestrial mammals, the outer ear, eardrum, and middle ear function to transmit airborne sound to the inner ear, where the sound is detected in a fluid. Since cetaceans already live in a fluid medium, they do not require this matching, and thus do not have an air-filled external ear canal. The inner ear is where sound energy is converted into neural signals that are transmitted to the central nervous system via the auditory nerve. Acoustic energy causes the basilar membrane in the cochlea to vibrate. Sensory cells at different positions along the basilar membrane are excited by different frequencies of sound (Tyack 1999). Baleen whales have inner ears that appear to be specialized for low-frequency hearing. In a study of the morphology of the mysticete auditory apparatus, Ketten (1997) hypothesized that large mysticetes have acute infrasonic hearing.

Direct studies of fin whale hearing have not been conducted, but it is assumed that fin whales can hear the same frequencies that they produce (low) and are likely most sensitive to this frequency range (Ketten 1997; Richardson et al. 1995).

Critical Habitat

NMFS has not designated critical habitat for fin whales.

4.3.3 Humpback Whale

Humpback whales (*Megaptera novaeangliae*) are distinguished from other whales in the same Family (Balaenopteridae) by extraordinarily long flippers (up to 5 m or about 1/3 total body length), a more robust body, fewer throat grooves (14-35), more variable dorsal fin, and utilization of very long (up to 30 min.), complex, repetitive vocalizations (songs) (Payne and McVay 1971) during courtship. Their grayish-black baleen plates, approximately 270-440 on each side of the jaw, are intermediate in length (6570 cm) to those of other baleen whales. Humpbacks in different geographical areas vary somewhat in body length, but maximum recorded size is 18m (Winn and Reichley 1985).

The whales are generally dark on the back, but the flippers, sides and ventral surface of the body and flukes may have substantial areas of natural white pigmentation plus acquired scars (white or black). Researchers distinguish individual humpbacks by the apparently unique black and white patterns on the underside of the flukes as well as other individually variable features (Glockner and Venus 1983; Katona and Whitehead 1981; Kaufman and Osmond 1987).

Distribution

Humpback whales are a cosmopolitan species that occur in the Atlantic, Indian, Pacific, and Southern oceans. Humpback whales migrate seasonally between warmer, tropical or sub-tropical waters in winter months (where they breed and give birth to calves, although feeding occasionally occurs) and cooler, temperate or sub-Arctic waters in summer months (where they feed). In both regions, humpback whales tend to occupy shallow, coastal waters. However, migrations are undertaken through deep, pelagic waters (Winn and Reichley 1985).

In the North Pacific Ocean, the summer range of humpback whales includes coastal and inland waters from Point Conception, California, north to the Gulf of Alaska and the Bering Sea, and west along the Aleutian Islands to the Kamchatka Peninsula and into the Sea of Okhotsk (Tomlin 1967, Nemoto 1957, Johnson and Wolman 1984 as cited...
in NMFS 1991). These whales migrate to Hawai‘i, southern Japan, the Mariana Islands, and Mexico during the winter.

Population Structure
Descriptions of the population structure of humpback whales differ depending on whether an author focuses on where humpback whales winter or where they feed. During winter months in northern or southern hemispheres, adult humpback whales migrate to specific areas in warmer, tropical waters to reproduce and give birth to calves. During summer months, humpback whales migrate to specific areas in northern temperate or sub-arctic waters to forage. In summer months, humpback whales from different “reproductive areas” will congregate to feed; in the winter months, whales will migrate from different foraging areas to a single wintering area. In either case, humpback whales appear to form “open” populations; that is, populations that are connected through the movement of individual animals.

North Pacific. Based on genetic and photo-identification studies, the NMFS currently recognizes four stocks, likely corresponding to populations, of humpback whales in the North Pacific Ocean: two in the eastern North Pacific, one in the central North Pacific, and one in the western Pacific (Hill and DeMaster 1998). However, gene flow between them may exist. Humpback whales summer in coastal and inland waters from Point Conception, California, north to the Gulf of Alaska and the Bering Sea, and west along the Aleutian Islands to the Kamchatka Peninsula and into the Sea of Okhotsk (Johnson and Wolman 1984; Nemoto 1957; Tomilin 1967). These whales migrate to Hawai‘i, southern Japan, the Mariana Islands, and Mexico during winter. However, more northerly penetrations in Arctic waters occur on occasion (Hashagen et al. 2009). The central North Pacific population winters in the waters around Hawai‘i while the eastern North Pacific population (also called the California-Oregon-Washington-Mexico stock) winters along Central America and Mexico. However, Calambokidis et al. (1997) identified individuals from several populations wintering (and potentially breeding) in the areas of other populations, highlighting the potential fluidity of population structure. Herman (1979) presented extensive evidence that humpback whales associated with the main Hawaiian Islands immigrated there only in the past 200 years. Winn and Reichley (1985) identified genetic exchange between the humpback whales that winter off Hawai‘i and Mexico (with further mixing on feeding areas in Alaska) and suggested that humpback whales that winter in Hawai‘i may have emigrated from Mexican wintering areas. A “population” of humpback whales winters in the South China Sea east through the Philippines, Ryukyu Retto, Ogasawara Gunto, Mariana Islands, and Marshall Islands, with occurrence in the Mariana Islands, at Guam, Rota, and Saipan from January-March (Darling and Cerchio 1993; Eldredge 1991; Eldredge 2003; Rice 1998). During summer, whales from this population migrate to the Kuril Islands, Bering Sea, Aleutian Islands, Kodiak, Southeast Alaska, and British Columbia to feed (Angliss and Outlaw 2008; Calambokidis 1997; Calambokidis et al. 2001).

Separate feeding groups of humpback whales are thought to inhabit western U.S. and Canadian waters, with the boundary between them located roughly at the U.S./Canadian border. The southern feeding ground ranges between 32°-48°N, with limited interchange with areas north of Washington State (Calambokidis et al. 2004; Calambokidis et al. 1996). Humpback whales feed along the coasts of Oregon and Washington from May-November, with peak numbers reported May-September, when they are the most commonly reported large cetacean in the region (Calambokidis and Chandler, 2000; Calambokidis et al. 2004; Dohl 1983; Green et al. 1992). Off Washington State, humpback whales concentrate between Juan de Fuca Canyon and the outer edge of the shelf break in a region called
“the Prairie,” near Barkley and Nitnat canyons, in the Blanco upwelling zone, and near Swiftsure Bank (Calambokidis et al. 2004). Humpback whales also tend to congregate near Heceta Bank off the coast of Oregon (Green et al. 1992). Additional data suggest that further subdivisions in feeding groups may exist, with up to six feeding groups present between Kamchatka and southern California (Witteveen et al. 2009).

Humpback whales primarily feed along the shelf break and continental slope (Green et al. 1992; Tynan et al. 2005). Although humpback whales were common in inland Washington State waters in the early 1900s, severe hunting throughout the eastern North Pacific has diminished their numbers and few recent inshore sightings have been made (Calambokidis et al. 1990; Scheffer and Slipp 1948).

Historically, humpback whales occurred in Puget Sound. Since the 1970s, however, humpback whales have become rare within Puget Sound, although at least five humpback whales have been observed in Puget Sound since 1976 (Calambokidis et al. 1990; Calambokidis et al. 2004; Osborne et al. 1988). Because of their contemporary rarity in Puget Sound, we assume that humpback whales would not be exposed to Navy training activities within the Sound itself, but would be exposed in waters offshore of Washington.

Although humpback whales no longer appear to occur in Puget Sound, they have consistently been more common than any other large cetacean observed off the coast of Washington State for more than a decade (Calambokidis et al. 2009; Calambokidis et al. 2004; Forney 2007). Humpback whales occur in those waters seasonally from May through November, becoming fairly common beginning in July, and reaching peak densities from August to September and declines substantially from September onward (Calambokidis 1997; Calambokidis and Chandler, 2000; Calambokidis et al. 2001; Calambokidis et al. 1997; Green et al. 1992). During that time interval, humpback whales have been reported in coastal waters, on the continental shelf, and the continental slope, with concentrations occurring in steep slope water near Grays, Astoria, and Nitinat canyons (Forney 2007; Green et al. 1992).

Several authors have reported that humpback whales do not occur off the coasts of Washington and Oregon in the winter (Green et al. 1992). However, Shelden et al. (Shelden et al. 2000) reported observations of humpback whales north and south of Juan de Fuca canyon (off northern Washington) in late December. These authors also reported that humpback whales were common in Georgia Strait during the winter in the early 1900s and they suggested that, as their population increases, humpback whales might be re-occupying areas they had previously abandoned after their populations were decimated by whalers; these authors also allowed that humpback whales might remain in waters off Washington when their prey is abundant late in the year.

Natural Threats

Natural sources and rates of mortality of humpback whales are not well known. Based upon prevalence of tooth marks, attacks by killer whales appear to be highest among humpback whales migrating between Mexico and California, although populations throughout the Pacific Ocean appear to be targeted to some degree (Steiger et al. 2008). Juveniles appear to be the primary age group targeted. Humpback whales engage in grouping behavior, flailing tails, and rolling extensively to fight off attacks. Calves remain protected near mothers or within a group and lone calves have been known to be protected by presumably unrelated adults when confronted with attack (Ford and Reeves 2008).
Parasites and biotoxins from red-tide blooms are other potential causes of mortality (Perry et al. 1999a). The occurrence of the nematode Crassicauda boopis appears to increase the potential for kidney failure in humpback whales and may be preventing some populations from recovering (Lambertsen 1992). Studies of 14 humpback whales that stranded along Cape Cod between November 1987 and January 1988 indicate they apparently died from a toxin produced by dinoflagellates during this period.

Anthropogenic Threats

Three human activities are known to threaten humpback whales: whaling, commercial fishing, and shipping. Historically, whaling represented the greatest threat to every population of whales and was ultimately responsible for listing several species as endangered.

Humpback whales are also killed or injured during interactions with commercial fishing gear. Like fin whales, humpback whales have been entangled by fishing gear off Newfoundland and Labrador, Canada. A total of 595 humpback whales were reported captured in coastal fisheries in those two provinces between 1969 and 1990, of which 94 died (Lien 1994; Perkins and Beamish 1979). Along the Atlantic coast of the U.S. and the Maritime Provinces of Canada, there were 160 reports of humpback whales being entangled in fishing gear between 1999 and 2005 (Cole et al. 2005; Nelson et al. 2007). Of these, 95 entangled humpback whales were confirmed, with 11 whales sustaining injuries and nine dying of their wounds. NMFS estimates that between 2002 and 2006, there were incidental serious injuries to 0.2 humpback annually in the Bering Sea/Aleutian Islands sablefish longline fishery. This estimation is not considered reliable. Observers have not been assigned to a number of fisheries known to interact with the Central and Western North Pacific stocks of humpback whale. In addition, the Canadian observation program is also limited and uncertain (Angliss and Allen 2009).

More humpback whales are killed in collisions with ships than any other whale species except fin whales (Jensen and Silber 2003). Along the Pacific coast, a humpback whale is known to be killed about every other year by ship strikes (Barlow et al. 1997). Of 123 humpback whales that stranded along the Atlantic coast of the U.S. between 1975 and 1996, 10 (8.1 percent) showed evidence of collisions with ships (Laist et al. 2001). Between 1999 and 2005, there were 18 reports of humpback whales being struck by vessels along the Atlantic coast of the U.S. and the Maritime Provinces of Canada (Cole et al. 2005; Nelson et al. 2007). Of these reports, 13 were confirmed as ship strikes and in seven cases, ship strike was determined to be the cause of death. In the Bay of Fundy, recommendations for slower vessel speeds to avoid right whale ship strike appear to be largely ignored (Vanderlaan et al. 2008). However, new rules for seasonal (June through December) slowing of vessel traffic to 10 knots and changing shipping lanes by less than one nautical mile to avoid the greatest concentrations of right whales are expected to reduce the chance of humpback whales being hit by ships by 9 percent.

Organochlorines, including PCB and DDT, have been identified from humpback whale blubber (Gauthier et al. 1997). Higher PCB levels have been observed in Atlantic waters versus Pacific waters along the United States and levels tend to increase with individual age (Elfes et al. 2010). Although humpback whales in the Gulf of Maine and off Southern California tend to have the highest PCB concentrations, overall levels are on par with other baleen whales, which are generally lower than odontocete cetaceans (Elfes et al. 2010). As with blue whales, these contaminants are transferred to young through the placenta, leaving newborns with contaminant loads equal to that of mothers before bioaccumulating additional contaminants during life and passing the additional burden to the next
Contaminant levels are relatively high in humpback whales as compared to blue whales. Humpback whales feed higher on the food chain, where prey carry higher contaminant loads than the krill that blue whales feed on.

Status and Trends

Humpback whales were originally listed as endangered in 1970 (35 FR 18319), and this status remains under the ESA.

In the North Pacific the pre-exploitation population size may have been as many as 15,000 humpback whales, and current estimates are 6,000-8,000 whales (Calambokidis et al. 2009; Rice 1978). It is estimated that 15,000 humpback whales resided in the North Pacific in 1905 (Rice 1978). However, from 1905 to 1965, nearly 28,000 humpback whales were harvested in whaling operations, reducing the number of all North Pacific humpback whale to roughly 1,000 (Perry et al. 1999a). Population estimates have risen over time from 1,407-2,100 in the 1980s to 6,010 in 1997 (Baker 1985; Baker and Herman 1987; Calambokidis et al. 1997; Darling and Morowitz 1986). Based on surveys between 2004 and 2006, Calambokidis et al. (2008) estimated that the number of humpback whales in the North Pacific consisted of about 18,300 whales, not counting calves. Because estimates vary by methodology, they are not directly comparable and it is not clear which of these estimates is more accurate or if the change from 1,407 to 18,300 is the result of a real increase or an artifact of model assumptions. Tentative estimates of the eastern North Pacific stock suggest an increase of 6-7 percent annually, but fluctuations have included negative growth in the recent past (Angliss and Outlaw 2005).

Diving

Maximum diving depths are approximately 170 m, with a very deep dive (240 m) recorded off Bermuda (Hamilton et al. 1997). Dives can last for up to 21 min, although feeding dives ranged from 2.1-5.1 min in the north Atlantic (Dolphin 1987). In southeast Alaska, average dive times were 2.8 min for feeding whales, 3.0 min for non-feeding whales, and 4.3 min for resting whales (Dolphin 1987). Because most humpback prey is likely found within 300 m of the surface, most humpback dives are probably relatively shallow. In Alaska, capelin are the primary prey of humpback and are found primarily between 92 and 120 m; depths to which humpbacks apparently dive for foraging (Witteveen et al. 2008).

Social Behavior

During the feeding season, humpback whales form small groups that occasionally aggregate on concentrations of food that may be stable for long-periods of times. Humpbacks use a wide variety of behaviors to feed on various small, schooling prey including krill and fish (Hain et al. 1982; Hain et al. 1995; Jurasz and Jurasz 1979; Weinrich et al. 1992). There is good evidence of some territoriality on feeding and calving areas (Clapham 1994; Clapham 1996; Tyack 1981). Humpback whales are generally believed to fast while migrating and on breeding grounds, but some individuals apparently feed while in low-latitude waters normally believed to be used exclusively for reproduction and calf-rearing (Danilewicz et al. 2009; Pinto De Sa Alves et al. 2009). Some individuals, such as juveniles, may not undertake migrations at all (Findlay and Best 1995).

Humpback whales feed on pelagic schooling euphausiids and small fish including capelin, herring and mackerel. Like other large mysticetes, they are a “lunge feeder” taking advantage of dense prey patches and engulfing as much
food as possible in a single gulp. They also blow nets, or curtains, of bubbles around or below prey patches to concentrate the prey in one area, then lunge with open mouths through the middle. Dives appear to be closely correlated with the depths of prey patches, which vary from location to location. In the north Pacific (southeast Alaska), most dives were of fairly short duration (<4 min) with the deepest dive to 148 m (Dolphin 1987), while whales observed feeding on Stellwagen Bank in the North Atlantic dove to <40 m (Hain et al. 1995). Hamilton et al. (1997) tracked one possibly feeding whale near Bermuda to 240 m depth.

Vocalization and Hearing

Humpback whale vocalization is much better understood than is hearing. Different sounds are produced that correspond to different functions: feeding, breeding, and other social calls (Dunlop et al. 2008). Males sing complex sounds while in low-latitude breeding areas in a frequency range of 20 Hz to 4 kHz with estimated source levels from 144-174 dB (Au et al. 2006; Au et al. 2000; Frazer and Mercado III 2000; Richardson et al. 1995; Winn et al. 1970). Males also produce sounds associated with aggression, which are generally characterized as frequencies between 50 Hz to 10 kHz and having most energy below 3 kHz (Silber 1986; Tyack 1983). Such sounds can be heard up to 9 km away (Tyack 1983). Other social sounds from 50 Hz to 10 kHz (most energy below 3 kHz) are also produced in breeding areas (Richardson et al. 1995; Tyack 1983). While in northern feeding areas, both sexes vocalize in grunts (25 Hz to 1.9 kHz), pulses (25-89 Hz), and songs (ranging from 30 Hz to 8 kHz but dominant frequencies of 120 Hz to 4 kHz) which can be very loud (175-192 dB re 1 μPa at 1 m; (Au et al. 2000; Erbe 2002a; Payne 1985; Richardson et al. 1995; Thompson et al. 1986). However, humpbacks tend to be less vocal in northern feeding areas than in southern breeding areas (Richardson et al. 1995).

Critical Habitat

NMFS has not designated critical habitat for humpback whales.

4.3.4 Sei Whale

Sei whales (pronounced "say" or "sigh"; *Balaenoptera borealis*) are members of the baleen whale family and are considered one of the "great whales" or rorquals. Two subspecies of sei whales are recognized, *B. b. borealis* in the Northern Hemisphere and *B. b. schlegellii* in the Southern Hemisphere.

These large animals can reach lengths of about 40-60 ft (12-18 m) and weigh 100,000 lbs (45,000 kg). Females may be slightly longer than males. Sei whales have a long, sleek body that is dark bluish-gray to black in color and pale underneath. The body is often covered in oval-shaped scars (probably caused from cookie-cutter shark and lamprey bites) and sometimes has subtle "mottling". This species has an erect "falcate", "dorsal" fin located far down (about two-thirds) the animals back. They often look similar in appearance to Bryde's whales, but can be distinguished by the presence of a single ridge located on the animal's "rostrum". Bryde's whales, unlike other rorquals, have three distinct prominent longitudinal ridges on their rostrum. Sei whales have 219-410 baleen plates that are dark in color with gray/white fine inner fringes in their enormous mouths. They also have 30-65 relatively short ventral pleats that extend from below the mouth to the naval area. The number of throat grooves and baleen plates may differ depending on geographic population.

The Sei is regarded as the fastest swimmer among the great whales, reaching bursts of speed in excess of 20 knots. When a sei whale begins a dive it usually submerges by sinking quietly below the surface, often remaining only a
few meters deep, leaving a series of swirls or tracks as it move its flukes. When at the water's surface, sei whales can be sighted by a columnar or bushy blow that is about 10-13 feet (3-4 m) in height. The dorsal fin usually appears at the same time as the blowhole, when the animal surfaces to breathe. This species usually does not arch its back or raise its flukes when diving.

Sei whales become sexually mature at 6-12 years of age when they reach about 45 ft (13 m) in length, and generally mate and give birth during the winter in lower latitudes. Females breed every 2-3 years, with a gestation period of 11-13 months. Females give birth to a single calf that is about 15 ft (4.6 m) long and weighs about 1,500 lbs (680 kg). Calves are usually nursed for 6-9 months before being weaned on the preferred feeding grounds. Sei whales have an estimated lifespan of 50-70 years.

Distribution

The sei whale occurs in all oceans of the world except the Arctic. The migratory pattern of this species is thought to encompass long distances from high-latitude feeding areas in summer to low-latitude breeding areas in winter; however, the location of winter areas remains largely unknown (Perry et al. 1999a). Sei whales are often associated with deeper waters and areas along continental shelf edges (Hain et al. 1985). This general offshore pattern is disrupted during occasional incursions into shallower inshore waters (Waring et al. 2004). The species appears to lack a well-defined social structure and individuals are usually found alone or in small groups of up to six whales (Perry et al. 1999a). When on feeding grounds, larger groupings have been observed (Gambell 1985b).

In the western Atlantic Ocean, sei whales occur from Nova Scotia and Labrador in the summer months and migrate south to Florida, the Gulf of Mexico, and the northern Caribbean (Gambell 1985b). In the eastern Atlantic Ocean, sei whales occur in the Norwegian Sea (as far north as Finnmark in northeastern Norway), occasionally occurring as far north as Spitsbergen Island, and migrate south to Spain, Portugal, and northwest Africa (Gambell 1985b).

In the North Pacific Ocean, sei whales occur from the Bering Sea south to California (on the east) and the coasts of Japan and Korea (on the west). During the winter, sei whales are found from 20°-23°N (Gambell 1985b; Masaki 1977).

Sei whales occur throughout the Southern Ocean during the summer months, although they do not migrate as far south to feed as blue or fin whales. During the austral winter, sei whales occur off Brazil and the western and eastern coasts of Southern Africa and Australia.

Population Structure

The population structure of sei whales is not well defined, but presumed to be discrete by ocean basin (north and south), except for sei whales in the Southern Ocean, which may form a ubiquitous population or several discrete ones.

North Pacific. Some mark-recapture, catch distribution, and morphological research indicate more than one population may exist – one between 155°-175° W, and another east of 155° W (Masaki 1976; Masaki 1977). Sei whales have been reported primarily south of the Aleutian Islands, in Shelikof Strait and waters surrounding Kodiak Island, in the Gulf of Alaska, and inside waters of southeast Alaska and south to California to the east and Japan and Korea to the west (Leatherwood et al. 1982; Nasu 1974). Sightings have also occurred in Hawaiian waters (Smultea
et al. 2010). Sei whales have been occasionally reported from the Bering Sea and in low numbers on the central Bering Sea shelf (Hill and DeMaster 1998). Whaling data suggest that sei whales do not venture north of about 55°N (Gregr et al. 2000). Masaki (1977) reported sei whales concentrating in the northern and western Bering Sea from July-September, although other researchers question these observations because no other surveys have reported sei whales in the northern and western Bering Sea. Harwood (1987) evaluated Japanese sighting data and concluded that sei whales rarely occur in the Bering Sea. Harwood (1987) reported that 75-85 percent of the North Pacific population resides east of 180°. During winter, sei whales are found from 20°-23° N (Gambell 1985b; Masaki 1977). Considering the many British Columbia whaling catches in the early to mid 1900s, sei whales have clearly utilized this area in the past (Gregr et al. 2000; Pike and Macaskie 1969).

Sei whales appear to prefer to forage in regions of steep bathymetric relief, such as continental shelf breaks, canyons, or basins situated between banks and ledges (Best and Lockyer 2002; Gregr and Trites 2001; Kenney and Winn 1987), where local hydrographic features appear to help concentrate zooplankton, especially copepods. In their foraging areas, sei whales appear to associate with oceanic frontal systems (Horwood 1987). In the north Pacific, sei whales are found feeding particularly along the cold eastern currents (Perry et al. 1999a).

In the early to mid-1900s, sei whales were hunted off the coast of British Columbia (Gregr et al. 2000; Pike and Macaskie 1969). Masaki (1977) presented sightings data on sei whales in the North Pacific from the mid-1960s to the early 1970s. Over that time interval sei whales did not appear to occur in waters of Washington State and southern British Columbia in May or June, their densities increased in those waters in July and August (1.9 - 2.4 and 0.7 - 0.9 whales per 100 miles of distance for July and August, respectively), then declined again in September. More recently, sei whales have become known for an irruptive migratory habit in which they appear in an area then disappear for time periods that can extend to decades. Based on a sei whale that stranded near Port Angeles and the sei whales observed by Forney and her co-workers (Forney 2007), we know that these whales still occur in waters off Washington, Oregon, and northern California.

Natural Threats
The foraging areas of right and sei whales in the western North Atlantic Ocean overlap and both whales feed preferentially on copepods (Mitchell 1975).

Andrews (1916) suggested that killer whales attacked sei whales less frequently than fin and blue whales in the same areas. Sei whales engage in a flight responses to evade killer whales, which involves high energetic output, but show little resistance if overtaken (Ford and Reeves 2008). Endoparasitic helminths (worms) are commonly found in sei whales and can result in pathogenic effects when infestations occur in the liver and kidneys (Rice 1977).

Anthropogenic Threats
Human activities known to threaten sei whales include whaling, commercial fishing, and maritime vessel traffic. Historically, whaling represented the greatest threat to every population of sei whales and was ultimately responsible for listing sei whales as an endangered species. Sei whales are thought to not be widely hunted, although harvest for scientific whaling or illegal harvesting may occur in some areas.
Sei whales, because of their offshore distribution and relative scarcity in U.S. Atlantic and Pacific waters, probably have a lower incidence of entrapment and entanglement than fin whales. Data on entanglement and entrapment in non-U.S. waters are not reported systematically. Heyning and Lewis (1990) made a crude estimate of about 73 rorquals killed/year in the southern California offshore drift gillnet fishery during the 1980s. Some of these may have been fin whales instead of sei whales. Some balaenopterids, particularly fin whales, may also be taken in the drift gillnet fisheries for sharks and swordfish along the Pacific coast of Baja California, Mexico (Barlow et al. 1997). Heyning and Lewis (1990) suggested that most whales killed by offshore fishing gear do not drift far enough to strand on beaches or to be detected floating in the nearshore corridor where most whale-watching and other types of boat traffic occur. Thus, the small amount of documentation may not mean that entanglement in fishing gear is an insignificant cause of mortality. Observer coverage in the Pacific offshore fisheries has been too low for any confident assessment of species-specific entanglement rates (Barlow et al. 1997). The offshore drift gillnet fishery is the only fishery that is likely to take sei whales from this stock, but no fishery mortalities or serious injuries to sei whales have been observed. Sei whales, like other large whales, may break through or carry away fishing gear. Whales carrying gear may die later, become debilitated or seriously injured, or have normal functions impaired, but with no evidence recorded.

Sei whales are occasionally killed in collisions with vessels. Of three sei whales that stranded along the U.S. Atlantic coast between 1975 and 1996, two showed evidence of collisions (Laist et al. 2001). Between 1999 and 2005, there were three reports of sei whales being struck by vessels along the U.S. Atlantic coast and Canada’s Maritime Provinces (Cole et al. 2005; Nelson et al. 2007). Two of these ship strikes were reported as having resulted in death. One sei whale was killed in a collision with a vessel off the coast of Washington in 2003 (Waring et al. 2009). New rules for seasonal (June through December) slowing of vessel traffic in the Bay of Fundy to 10 knots and changing shipping lanes by less than one nautical mile to avoid the greatest concentrations of right whales are predicted to reduce sei whale ship strike mortality by 17 percent.

Sei whales are known to accumulate DDT, DDE, and PCBs (Borrell 1993; Borrell and Aguilar 1987; Henry and Best 1983). Males carry larger burdens than females, as gestation and lactation transfer these toxins from mother to offspring.

Status and Trends
The sei whale was originally listed as endangered in 1970 (35 FR 18319), and this status remained since the inception of the ESA in 1973.

Ohsumi and Fukuda (1975) estimated that sei whales in the North Pacific numbered about 49,000 whales in 1963, had been reduced to 37,000-38,000 whales by 1967, and reduced again to 20,600-23,700 whales by 1973. From 1910-1975, approximately 74,215 sei whales were caught in the entire North Pacific Ocean (Harwood and Hembree, 1987; Perry et al. 1999a). From the early 1900s, Japanese whaling operations consisted of a large proportion of sei whales: 300-600 sei whales were killed per year from 1911-1955. The sei whale catch peaked in 1959, when 1,340 sei whales were killed. In 1971, after a decade of high sei whale catch numbers, sei whales were scarce in Japanese waters. Japanese and Soviet catches of sei whales in the North Pacific and Bering Sea increased from 260 whales in 1962 to over 4,500 in 1968-1969, after which the sei whale population declined rapidly (Mizroch et al. 1984). When commercial whaling for sei whales ended in 1974, the population in the North Pacific had been reduced to 7,260-
12,620 animals (Tillman 1977). There have been no direct estimates of sei whale populations for the eastern Pacific Ocean (or the entire Pacific). Between 1991 and 2001, during aerial surveys, there were two confirmed sightings of sei whales along the U.S. Pacific coast.

Sei whales are known to occur in the Gulf of Alaska and as far north as the Bering Sea in the north Pacific. However, their distribution is poorly understood. The only stock estimate for U.S. waters is for the eastern north Pacific stock offshore California, Oregon and Washington (Carretta et al. 2009); abundance in Alaskan waters is unknown and they have not been sighted during recent surveys (Rone et al. 2010; Waite et al. 2003).

Diving

Generally, sei whales make 5-20 shallow dives of 20-30 sec duration followed by a deep dive of up to 15 min (Gambell 1985b). The depths of sei whale dives have not been studied; however the composition of their diet suggests that they do not perform dives in excess of 300 meters. Sei whales are usually found in small groups of up to 6 individuals, but they commonly form larger groupings when they are on feeding grounds (Gambell 1985b).

Social Behavior

Sei whales are primarily planktivorous, feeding mainly on euphausiids and copepods, although they are also known to consume fish (Waring et al. 2007). In the Northern Hemisphere, sei whales consume small schooling fish such as anchovies, sardines, and mackerel when locally abundant (Mizroch et al. 1984; Rice 1977). Sei whales in the North Pacific feed on euphausiids and copepods, which make up about 95 percent of their diets (Calkins 1986). The dominant food for sei whales off California during June-August is northern anchovy, while in September-October whales feed primarily on krill (Rice 1977). The balance of their diet consists of squid and schooling fish, including smelt, sand lance, Arctic cod, rockfish, pollack, capelin, and Atka mackerel (Nemoto and Kawamura 1977). In the Southern Ocean, analysis of stomach contents indicates sei whales consume Calanus spp. and small-sized euphausiids with prey composition showing latitudinal trends (Kawamura 1974). Evidence indicates that sei whales in the Southern Hemisphere reduce direct interspecific competition with blue and fin whales by consuming a wider variety of prey and by arriving later to feeding grounds (Kirkwood 1992). Rice (1977) suggested that the diverse diet of sei whales may allow them greater opportunity to take advantage of variable prey resources, but may also increase their potential for competition with commercial fisheries.

Little is known about the actual social system of these animals. Groups of 2-5 individuals are typically observed, but sometimes thousands may gather if food is abundant. However, these large aggregations may not be dependent on food supply alone, as they often occur during times of migration. Norwegian workers call the times of great sei whale abundance "invasion years." During mating season, males and females may form a social unit, but strong data on this issue are lacking.

Vocalization and Hearing

Data on sei whale vocal behavior is limited, but includes records off the Antarctic Peninsula of broadband sounds in the 100-600 Hz range with 1.5 s duration and tonal and upsweep calls in the 200-600 Hz range of 1-3 s durations (McDonald et al. 2005). Differences may exist in vocalizations between ocean basins (Rankin et al. 2009).

Vocalizations from the North Atlantic consisted of paired sequences (0.5-0.8 sec, separated by 0.4-1.0 sec) of 10-20 short (4 msec) FM sweeps between 1.5-3.5 kHz (Richardson et al. 1995).
A general description of the anatomy of the ear for cetaceans is provided in the description of the blue whale.

Critical Habitat

The NMFS has not designated critical habitat for sei whales.

4.3.5 Sperm Whale

Sperm whales (*Physeter macrocephalus*) are the largest of the odontocetes (toothed whales) and the most sexually dimorphic cetaceans, with males considerably larger than females. Adult females may grow to lengths of 36 feet (11 m) and weigh 15 tons (13,607 kg). Adult males, however, reach about 52 feet (16 m) and may weigh as much as 45 tons (40,823 kg).

The sperm whale is distinguished by its extremely large head, which takes up to 25 to 35 percent of its total body length. It is the only living cetacean that has a single blowhole asymmetrically situated on the left side of the head near the tip. Sperm whales have the largest brain of any animal (on average 17 pounds (7.8 kg) in mature males), however, compared to their large body size, the brain is not exceptional in size.

There are between 20-26 large conical teeth in each side of the lower jaw. The teeth in the upper jaw rarely erupt and are often considered to be vestigial. It appears that teeth may not be necessary for feeding, since they do not break through the gums until puberty, if at all, and healthy sperm whales have been caught that have no teeth.

Sperm whales are mostly dark gray, but oftentimes the interior of the mouth is bright white, and some whales have white patches on the belly. Their flippers are paddle-shaped and small compared to the size of the body, and their flukes are very triangular in shape. They have small dorsal fins that are low, thick, and usually rounded.

Distribution

Sperm whales are distributed in all of the world’s oceans, from equatorial to polar waters, and are highly migratory. Mature males range between 70º N in the North Atlantic and 70º S in the Southern Ocean (*Perry et al. 1999a; Reeves and Whitehead 1997*), whereas mature females and immature individuals of both sexes are seldom found higher than 50º N or S (*Reeves and Whitehead 1997*). In winter, sperm whales migrate closer to equatorial waters (*Kasuya and Miyashita 1988; Waring 1993*) where adult males join them to breed.

Population Structure

There is no clear understanding of the global population structure of sperm whales (*Dufault et al. 1999*). Recent ocean-wide genetic studies indicate low, but statistically significant, genetic diversity and no clear geographic structure, but strong differentiation between social groups (*Lyrholm and Gyllensten 1998; Lyrholm et al. 1996; Lyrholm et al. 1999*). The IWC currently recognizes four sperm whale stocks: North Atlantic, North Pacific, northern Indian Ocean, and Southern Hemisphere (*Dufault et al. 1999; Reeves and Whitehead 1997*). The NMFS recognizes six stocks under the MMPA- three in the Atlantic/Gulf of Mexico and three in the Pacific (Alaska, California-Oregon-Washington, and Hawai’i; *Perry et al. 1999b; Waring et al. 2004*). Genetic studies indicate that movements of both sexes through expanses of ocean basins are common, and that males, but not females, often breed in different ocean basins than the ones in which they were born (*Whitehead 2003*). Sperm whale populations appear to be structured socially, at the level of the clan, rather than geographically (*Whitehead 2003; Whitehead 2008*).
Sperm whales are found throughout the North Pacific and are distributed broadly in tropical and temperate waters to the Bering Sea as far north as Cape Navarin in summer, and occur south of 40°N in winter (Gosho et al. 1984; Miyashita et al. 1995 as cited in Carretta et al. 2005; Rice 1974). Sperm whales are found year-round in Californian and Hawaiian waters (Barlow 1995; Dohl 1983; Forney et al. 1995; Shallenberger 1981). They are seen in every season except winter (December-February) in Washington and Oregon (Green et al. 1992). Summer/fall surveys in the eastern tropical Pacific (Wade and Gerrodette 1993). Summer/fall surveys in the eastern tropical Pacific (Wade and Gerrodette 1993).

Sperm whales are seasonal migrants to waters off the coast of Washington and Oregon where their densities are highest during spring and summer; they do not appear to occur in these waters during the winter. Sperm whales also tend to occur in the deeper water at the western edge of the action area. In surveys of waters off Oregon and Washington conducted by Green et al. (1992), no sperm whales were encountered in waters less than 200 meters deep, 12 percent of the sperm whales were encountered in waters 200 to 2000 meters deep (the continental slope), and the remaining 88 percent of the sperm whales were encountered in waters greater than 2,000 meters deep. In surveys conducted by Forney and her co-workers (Forney 2007), sperm whales were reported from the Olympic Coast Slope transects (west of the Olympic Coast National Marine Sanctuary), but not from surveys conducted over the National Marine Sanctuary or the area immediately west of Cape Flattery.

Natural Threats

Sperm whales are known to be occasionally predated upon by killer whales (Jefferson et al. 1991; Pitman et al. 2001) by pilot whales (Arnbom et al. 1987; Palacios and Mate. 1996; Rice 1989; Weller et al. 1996; Whitehead et al. 1997) and large sharks (Best et al. 1984) and harassed by pilot whales (Arnbom et al. 1987; Palacios and Mate. 1996; Rice 1989; Weller et al. 1996; Whitehead et al. 1997). Strandings are also relatively common events, with one to dozens of individuals generally beaching themselves and dying during any single event. Although several hypotheses, such as navigation errors, illness, and anthropogenic stressors, have been proposed (Goold et al. 2002; Wright 2005), direct widespread causes remain unclear. Calcivirus and papillomavirus are known pathogens of this species (Lambertsen et al. 1987; Smith and Latham 1978).

Anthropogenic Threats

Sperm whales historically faced severe depletion from commercial whaling operations. From 1800 to 1900, the IWC estimated that nearly 250,000 sperm whales were killed by whalers, with another 700,000 from 1910 to 1982 (IWC Statistics 1959-1983). However, other estimates have included 436,000 individuals killed between 1800-1987 (Carretta et al. 2005). However, all of these estimates are likely underestimates due to illegal killings and inaccurate reporting by Soviet whaling fleets between 1947 and 1973. In the Southern Hemisphere, these whalers killed an estimated 100,000 whales that they did not report to the IWC (Yablokov et al. 1998), with smaller harvests in the Northern Hemisphere, primarily the North Pacific, that extirpated sperm whales from large areas (Yablokov 2000). Additionally, Soviet whalers disproportionately killed adult females in any reproductive condition (pregnant or lactating) as well as immature sperm whales of either gender.

Following a moratorium on whaling by the IWC, significant whaling pressures on sperm whales were eliminated. However, sperm whales are known to have become entangled in commercial fishing gear and 17 individuals are
known to have been struck by vessels (Jensen and Silber 2004). Whale-watching vessels are known to influence sperm whale behavior (Richter et al. 2006).

In U.S. waters in the Pacific, sperm whales have been incidentally taken only in drift gillnet operations, which killed or seriously injured an average of nine sperm whales per year from 1991-1995 (Barlow et al. 1997).

Interactions between sperm whales and longline fisheries in the Gulf of Alaska have been reported since 1995 and are increasing in frequency (Hill and DeMaster 1998; Hill et al. 1999; Rice 1989). Between 2002 and 2006, there were three observed serious injuries (considered mortalities) to sperm whales in the Gulf of Alaska from the sablefish longline fishery (Angliss and Outlaw 2008). Sperm whales have also been observed in Gulf of Alaska feeding off longline gear (for sablefish and halibut) at 38 of the surveyed stations (Angliss and Outlaw 2008). Recent findings suggest sperm whales in Alaska may have learned that fishing vessel propeller cavitations (as gear is retrieved) are an indicator that longline gear with fish is present as a predation opportunity (Thode et al. 2007).

Contaminants have been identified in sperm whales, but vary widely in concentration based upon life history and geographic location, with northern hemisphere individuals generally carrying higher burdens (Evans et al. 2004). Contaminants include dieldrin, chlordane, DDT, DDE, PCBs, HCB and HCHs in a variety of body tissues (Aguilar 1983; Evans et al. 2004), as well as several heavy metals (Law et al. 1996). However, unlike other marine mammals, females appear to bioaccumulate toxins at greater levels than males, which may be related to possible dietary differences between females who remain at relatively low latitudes compared to more migratory males (Aguilar 1983; Wise et al. 2009). Chromium levels from sperm whales skin samples worldwide have varied from undetectable to 122.6 μg Cr/g tissue, with the mean (8.8 μg Cr/g tissue) resembling levels found in human lung tissue with chromium-induced cancer (Wise et al. 2009). Older or larger individuals did not appear to accumulate chromium at higher levels.

Status and Trends

Sperm whales were originally listed as endangered in 1970 (35 FR 18319), and this status remained with the inception of the ESA in 1973. Although population structure of sperm whales is unknown, several studies and estimates of abundance are available. Sperm whale populations probably are undergoing the dynamics of small population sizes, which is a threat in and of itself. In particular, the loss of sperm whales to directed Soviet whaling likely inhibits recovery due to the loss of adult females and their calves, leaving sizeable gaps in demographic and age structuring (Whitehead and Mesnick 2003).

There are approximately 76,803 sperm whales in the eastern tropical Pacific, eastern North Pacific, Hawai‘i, and western North Pacific (Whitehead 2002a). Minimum estimates in the eastern North Pacific are 1,719 individuals and 5,531 in the Hawaiian Islands (Carretta et al. 2007). The tropical Pacific is home to approximately 26,053 sperm whales and the western North Pacific has approximately 29,674 (Whitehead 2002a). There was a dramatic decline in the number of females around the Galapagos Islands during 1985-1999 versus 1978-1992 levels, likely due to migration to nearshore waters of South and Central America (Whitehead and Mesnick 2003).

Hill and DeMaster (1999) concluded that about 258,000 sperm whales were harvested in the North Pacific between 1947-1987. Although the IWC protected sperm whales from commercial harvest in 1981, Japanese whalers
continued to hunt sperm whales in the North Pacific until 1988 (Reeves and Whitehead 1997). In 2000, the Japanese Whaling Association announced plans to kill 10 sperm whales in the Pacific Ocean for research. Although consequences of these deaths are unclear, the paucity of population data, uncertainty regarding recovery from whaling, and re-establishment of active programs for whale harvesting pose risks for the recovery and survival of this species. Sperm whales are also hunted for subsistence purposes by whalers from Lamalera, Indonesia, where a traditional whaling industry has been reported to kill up to 56 sperm whales per year.

Diving

Sperm whales are probably the deepest and longest diving mammalian species, with dives to 3 km down and durations in excess of 2 hours (Clarke 1976; Watkins 1985; Watkins et al. 1993). However, dives are generally shorter (25-45 min) and shallower (400-1,000 m). Dives are separated by 8-11 min rests at the surface (Gordon 1987; Watwood et al. 2006) (Jochens et al. 2006; Papastavrou et al. 1989). Sperm whales typically travel ~3 km horizontally and 0.5 km vertically during a foraging dive (Whitehead 2003). Differences in night and day diving patterns are not known for this species, but, like most diving air-breathers for which there are data (rorquals, fur seals, and chinstrap penguins), sperm whales probably make relatively shallow dives at night when prey are closer to the surface.

Unlike other cetaceans, there is a preponderance of dive information for this species, most likely because it is the deepest diver of all cetacean species so generates a lot of interest. Sperm whales feed on large and medium-sized squid, octopus, rays and sharks, on or near the ocean floor (Clarke 1986; Whitehead 2002b). Some evidence suggests that they do not always dive to the bottom of the sea floor (likely if food is elsewhere in the water column), but that they do generally feed at the bottom of the dive. Davis et al. (2007) report that dive-depths (100-500 m) of sperm whales in the Gulf of California overlapped with depth distributions (200-400 m) of jumbo squid, based on data from satellite-linked dive recorders placed on both species, particularly during daytime hours. Their research also showed that sperm whales foraged throughout a 24-hour period, and that they rarely dove to the sea floor bottom (>1000 m). The most consistent sperm whale dive type is U-shaped, during which the whale makes a rapid descent to the bottom of the dive, forages at various velocities while at depth (likely while chasing prey) and then ascends rapidly to the surface. There is some evidence that male sperm whales, feeding at higher latitudes during summer months, may forage at several depths including <200 m, and utilize different strategies depending on position in the water column (Teloni et al. 2007).

Social Behavior

Movement patterns of Pacific female and immature male groups appear to follow prey distribution and, although not random, movements are difficult to anticipate and are likely associated with feeding success, perception of the environment, and memory of optimal foraging areas (Whitehead 2008). However, no sperm whale in the Pacific has been known to travel to points over 5,000 km apart and only rarely have been known to move over 4,000 km within a time frame of several years. This means that although sperm whales do not appear to cross from eastern to western sides of the Pacific (or vice-versa), significant mixing occurs that can maintain genetic exchange. Movements of several hundred miles are common, (i.e. between the Galapagos Islands and the Pacific coastal Americas). Movements appear to be group or clan specific, with some groups traveling straighter courses than others over the course of several days. However, general transit speed averages about 4 km/h. Sperm whales in the
Caribbean region appear to be much more restricted in their movements, with individuals repeatedly sighted within less than 160 km of previous sightings.

Gaskin (1973) proposed a northward population shift of sperm whales off New Zealand in the austral autumn based on reduction of available food species and probable temperature tolerances of calves.

Sperm whales have a strong preference for waters deeper than 1,000 m (Reeves and Whitehead 1997; Watkins and Schevill 1977), although Berzin (1971) reported that they are restricted to waters deeper than 300 m. While deep water is their typical habitat, sperm whales are rarely found in waters less than 300 m in depth (Clarke 1956; Rice 1989). Sperm whales have been observed near Long Island, New York, in water between 40-55 m deep (Scott and Sadove 1997). When they are found relatively close to shore, sperm whales are usually associated with sharp increases in topography where upwelling occurs and biological production is high, implying the presence of a good food supply (Clarke 1956). Such areas include oceanic islands and along the outer continental shelf.

Sperm whales are frequently found in locations of high productivity due to upwelling or steep underwater topography, such as continental slopes, seamounts, or canyon features (Jaquet 1996; Jaquet and Whitehead, 1996). Cold-core eddy features are also attractive to sperm whales in the Gulf of Mexico, likely because of the large numbers of squid that are drawn to the high concentrations of plankton associated with these features (Biggs et al. 2000; Davis et al. 2000; Davis et al. 2002). Surface waters with sharp horizontal thermal gradients, such as along the Gulf Stream in the Atlantic, may also be temporary feeding areas for sperm whales (Griffin 1999; Jaquet and Whitehead, 1996; Waring et al. 1993). Sperm whales over George’s Bank were associated with surface temperatures of 23.2-24.9°C (Waring et al. 2004).

Local information is inconsistent regarding sperm whale tendencies. Gregr and Trites (2001) reported that female sperm whales off British Columbia were relatively unaffected by the surrounding oceanography. However, Tynan et al. (2005) reported increased sperm whales densities with strong turbulence associated topographic features along the continental slope near Heceta Bank. Two noteworthy strandings in the region include an infamous incident (well publicized by the media) of attempts to dispose of a decomposed sperm whale carcass on an Oregon beach by using explosives. In addition, a mass stranding of 47 individuals in Oregon occurred during June 1979 (Norman et al. 2004; Rice et al. 1986).

Stable, long-term associations among females form the core of sperm whale societies (Christal et al. 1998). Up to about a dozen females usually live in such groups, accompanied by their female and young male offspring. Young individuals are subject to alloparental care by members of either sex and may be suckled by non-maternal individuals (Gero et al. 2009). Group sizes may be smaller overall in the Caribbean Sea (6-12 individuals) versus the Pacific (25-30 individuals) (Jaquet and Gendron 2009). Males start leaving these family groups at about 6 years of age, after which they live in “bachelor schools,” but this may occur more than a decade later (Pinela et al. 2009). The cohesion among males within a bachelor school declines with age. During their breeding prime and old age, male sperm whales are essentially solitary (Christal and Whitehead 1997).
Vocalization and Hearing

Sound production and reception by sperm whales are better understood than in most cetaceans. Sperm whales produce broad-band clicks in the frequency range of 100 Hz to 20 kHz that can be extremely loud for a biological source (200-236 dB re 1μPa), although lower source level energy has been suggested at around 171 dB re 1μPa (Goold and Jones 1995; Madsen et al. 2003; Weilgart and Whitehead 1997; Weilgart et al. 1993). Most of the energy in sperm whale clicks is concentrated at around 2-4 kHz and 10-16 kHz (Goold and Jones 1995; NMFS 2006a; Weilgart et al. 1993). The highly asymmetric head anatomy of sperm whales is likely an adaptation to produce the unique clicks recorded from these animals (Cranford 1992; Norris and Harvey 1972). These long, repeated clicks are associated with feeding and echolocation (Goold and Jones 1995; Weilgart and Whitehead 1993; Weilgart and Whitehead 1997). However, clicks are also used in short patterns (codas) during social behavior and intra-group interactions (Weilgart et al. 1993). They may also aid in intra-specific communication. Another class of sound, “squeals”, are produced with frequencies of 100 Hz to 20 kHz (e.g., Weir et al. 2007).

Our understanding of sperm whale hearing stems largely from the sounds they produce. The only direct measurement of hearing was from a young stranded individual from which auditory evoked potentials were recorded (Carder and Ridgway 1990). From this whale, responses support a hearing range of 2.5-60 kHz. However, behavioral responses of adult, free-ranging individuals also provide insight into hearing range; sperm whales have been observed to frequently stop echolocating in the presence of underwater pulses made by echosounders and submarine sonar (Watkins 1985; Watkins and Schevill 1975). They also stop vocalizing for brief periods when codas are being produced by other individuals, perhaps because they can hear better when not vocalizing themselves (Goold and Jones 1995). Because they spend large amounts of time at depth and use low-frequency sound, sperm whales are likely to be susceptible to low frequency sound in the ocean (Croll et al. 1999b).

Critical Habitat
NMFS has not designated critical habitat for sperm whales.

4.3.6 Southern Resident Killer Whale

Killer whales (Orcinus orca) are the most widely distributed cetacean (e.g., whales, dolphins, and porpoises) species in the world and likely represent the most widely distributed mammal species in the world. Killer whales have a distinctive color pattern, with black dorsal and white ventral portions. They also have a conspicuous white patch above and behind the eye and a highly variable gray or white saddle behind the dorsal fin.

The species shows considerable size "dimorphism". Adult males develop larger pectoral flippers, dorsal fins, tail flukes, and girths than females. Male adult killer whales can reach up to 32 feet (9.8 m) in length and can weigh nearly 22,000 pounds (10,000 kg); females can reach 28 feet (8.5 m) in length and can weigh up to 16,500 pounds (7,500 kg).

Most information on killer whale life history and biology is from long-term studies of several populations in the eastern North Pacific. Sexual maturity of female killer whales is achieved when the whales reach lengths of approximately 15-18 feet (4.6 m-5.4 m), depending on geographic region. The gestation period for killer whales varies from 15-18 months, and birth may take place in any month. Calves are nursed for at least 1 year, and may be
weaned between 1 and 2 years of age. The birth rate for killer whales is not well understood, but, in some populations, is estimated as every 5 years for an average period of 25 years.

Life expectancy for wild female killer whales is approximately 50 years, with maximum longevity estimated at 80-90 years. Male killer whales typically live for about 30 years, with maximum longevity estimated at 50-60 years.

Distribution

Three kinds of killer whales occur along the Pacific Coast of the United States: Eastern North Pacific (ENP) southern resident killer whales, ENP offshore killer whales, and ENP transient killer whales. Of these only the southern resident killer whales are listed as endangered or threatened under the ESA. Southern resident killer whales primarily occur in the inland waters of Washington State and southern Vancouver Island, although individuals from this population have been observed off the Queen Charlotte Islands (north of their traditional range) and off coastal California in Monterey Bay, near the Farallon Islands, and off Point Reyes (NMFS 2005a).

Southern Resident killer whales spend a significant portion of the year in the inland waterways of the Strait of Georgia, Strait of Juan de Fuca, and Puget Sound, particularly during the spring, summer, and fall, when all three pods regularly occur in the Georgia Strait, San Juan Islands, and Strait of Juan de Fuca (Felleman et al. 1991; Heimlich-Boran 1988; Olson 1998; Osborne 1999). The K and L pods typically arrive in May or June and remain in this core area until October or November, although both pods make frequent trips lasting a few days to the outer coasts of Washington and southern Vancouver Island (Ford et al. 2000). The J pod will occur intermittently in the Georgia Basin and Puget Sound during late fall, winter and early spring. During the warmer months, all of the pods concentrate their activities in Haro Strait, Boundary Passage, the southern Gulf Islands, the eastern end of the Strait of Juan de Fuca, and several localities in the southern Georgia Strait (Felleman et al. 1991; Ford et al. 2000; Heimlich-Boran 1988; Olson 1998).

The local movement of southern resident killer whales usually follows the distribution of salmon, which are their preferred prey (Heimlich-Boran 1988; Heimlich-Boran 1986; Nichol and Shackleton 1996). Areas that are major corridors for migrating salmon, and therefore, for southern resident killer whales, include Haro Strait and Boundary Passage, the southern tip of Vancouver Island, Swanson Channel off North Pender Island, and the mouth of the Fraser River delta, which is visited by all three pods in September and October (Felleman et al. 1991; Ford et al. 2000).

Population Structure

Southern resident killer whales are the only marine mammal that begin and end their lives almost entirely within the action area. Southern resident killer whales consist of three pods, or stable familial groups: the J pod, K pod, and L pod. The J pod is seen most frequently along the western shore of San Juan Island and is the only pod observed regularly in Puget Sound throughout winter (Heimlich-Boran 1988; Osborne 1999). The K pod is most frequently observed during May and June when they occur along the western shore of San Juan Island while searching for salmon. The L pod is the largest of the three pods (Ford et al. 1994) and frequently breaks off into separate subgroups. During the months of July, August, and September, all three pods of southern resident killer whales remain in the inland waterways of Puget Sound, Strait of Juan de Fuca, and southern Georgia Strait. Since the late 1970s, K and L pods typically arrived in this area in May or June and remained there until October or November and
appeared to have left these waters by December (Osborne 1999). Since the late 1990s, however, all three pods have tended to remain in this area through December and K and L pods have remained in inland waters until January or February for several years (NMFS 2008a). While they tend to spend most of their time in inland waters, both of these pods would, however, travel to the outer coasts of Washington and southern Vancouver Island (Ford et al. 2000).

Less is known about the distribution and movements of southern resident killer whales from late fall, through winter, and into early spring. Over this time interval, the J pod has been observed periodically in the Georgia Basin and Puget Sound, but their movement at other times is uncertain (Osborne 1999); although this pod was sighted once off Cape Flattery, Washington, in March 2004 (NMFS 2008a). The K and L pods have been sighted as they passed through the Strait of Juan de Fuca in late fall, which led Krahn et al. (Krahn et al. 2002) to conclude that these pods might travel to the outer coasts of Vancouver Island and Washington, although they may continue to other areas from there. Based on sighting information and stranding data collected from 1975 through 2007, southern resident killer whales travel to Vancouver Island and the Queen Charlotte Islands, coastal Washington, coastal Oregon, and California (NMFS 2008a).

Natural Threats

Southern resident killer whales, like many wild animal populations, experience highest mortality in the first year age class (Krahn et al. 2002; Olesiuk et al. 1990), although the reasons for these mortalities are still uncertain. The causes could include poor mothering, infectious or non-infectious diseases, and infanticide (Gaydos et al. 2004).

Gaydos et al. (2004) identified 16 infectious agents in free-ranging and captive southern resident killer whales, but concluded that none of these pathogens were known to have high potential to cause epizootics. They did, however, identify pathogens in sympatric odontocete species that could threaten the long-term viability of the small southern resident population.

Anthropogenic Threats

Several human activities appeared to contribute to the decline of southern resident killer whales. Southern resident killer whales were once shot deliberately in Washington and British Columbia (Baird 2001; Olesiuk et al. 1990). However, between 1967 and 1973, 43 to 47 killer whales were removed from the population for displays in oceanaria; because of those removals, the southern resident killer whale population declined by about 30 percent. By 1971, the population had declined to about 67 individuals. Since then, the population has fluctuated between highs of about 90 individuals and lows of about 75 individuals.

Over the same time interval, southern resident killer whales have been exposed to changes in the distribution and abundance of their prey base (primarily Pacific salmon) which has reduced their potential forage base, potential competition with salmon fisheries, which reduces their realized forage base, disturbance from vessels, and persistent toxic chemicals in their environment.

Salmon, which are the primary prey species for southern resident killer whales, have declined because of land alteration throughout the Pacific Northwest associated with agriculture, timber harvest practices, the construction of dams, and urbanization, fishery harvest practices, and hatchery operations. Many of the salmon populations that
were once abundant historically have declined to the point where they have been listed as endangered or threatened with extinction. Since the late 1800s, salmon populations throughout the Columbia River basin have declined (Krahn et al. 2002). Two recent studies have examined the relationships between salmon abundance and population dynamics of resident killer whales and support the belief that Chinook and chum salmon are most important to the Southern Residents. Both studies, however, are limited by incomplete data on salmon occurrence and year-round range use by the whales (NMFS 2008a).

Since the 1970s commercial shipping, whale watching, ferry operations, and recreational boat traffic have increased in Puget Sound and the coastal islands of southern British Columbia. This traffic exposes southern resident killer whales to several threats that have consequences for the species’ likelihood of avoiding extinction and recovering if it manages to avoid extinction. First, these vessels increase the risks of southern resident killer whales being struck, injured, or killed by ships. In 2005, a southern resident killer whale was injured in a collision with a commercial whale watch vessel although the whale subsequently recovered from those injuries. However, in 2006, an adult male southern resident killer whale, L98, was killed in a collision with a tug boat; given the gender imbalances in the southern resident killer whale population, we assume that the death of this adult male would have reduced the demographic health of this population.

Second, the number and proximity of vessels, particularly whale-watch vessels in the areas occupied by southern resident killer whales, represents a source of chronic disturbance for this population. Numerous studies of interactions between surface vessels and marine mammals have demonstrated that free-ranging marine mammals engage in avoidance behavior when surface vessels move toward them. It is not clear whether these responses are caused by the physical presence of a surface vessel, the underwater noise generated by the vessel, or an interaction between the two (Goodwin and Cotton. 2004; Lusseau 2006). However, several authors suggest that the noise generated during motion is probably an important factor (Evans et al. 1992; Evans et al. 1994). These studies suggest that the behavioral responses of marine mammals to surface vessels are similar to their behavioral responses to predators.

Several investigators have studied the effects of whale watch vessels on marine mammals (Amaral and Carlson 2005; Au and Green 2000; Corkeron 1995; Erbe 2002b; Felix 2001; Magalhaes et al. 2002; Richter et al. 2006; Scheidat et al. 2004; Simmonds 2005; Watkins 1986; Williams et al. 2002). The whale’s behavioral responses to whale watching vessels depended on the distance of the vessel from the whale, vessel speed, vessel direction, vessel noise, and the number of vessels. The whales’ responses changed with these different variables and, in some circumstances, the whales did not respond to the vessels. In other circumstances, whales changed their vocalizations, surface time, swimming speed, swimming angle or direction, respiration rates, dive times, feeding behavior, and social interactions.

In addition to the disturbance associated with the presence of vessel, the vessel traffic affects the acoustic ecology of southern resident killer whales, which would affect their social ecology. Foote et al. (2004) compared recordings of southern resident killer whales that were made in the presence or absence of boat noise in Puget Sound during three time periods between 1977 and 2003. They concluded that the duration of primary calls in the presence of boats increased by about 15 percent during the last of the three time periods (2001 to 2003). At the same time, Holt et al. (2009) reported that southern resident killer whales in Haro Strait off the San Juan Islands in Puget Sound,
Washington, increased the amplitude of their social calls in the face of increased sounds levels of background noise. Although the costs of these vocal adjustments remains unknown, Foote et al. (2004) suggested that the amount of boat noise may have reached a threshold above which the killer whales needs to increase the duration of their vocalization to avoid masking by the boat noise.

Exposure to contaminants may also harm southern resident killer whales. The presence of high levels of persistent organic pollutants, such as PCB, DDT, and flame –retardants has been documented in southern resident killer whales (Krahn et al. 2007; Ross et al. 2000). Although the consequences of these pollutants on the fitness of individual killer whales and the population itself remain unknown, in other species these pollutants have been reported to suppress immune responses (Wright et al. 2007), impair reproduction, and exacerbate the energetic consequences of physiological stress responses when they interact with other compounds in an animal’s tissues (Martineau 2007). Because of their long life span, position at the top of the food chain, and their blubber stores, killer whales would be capable of accumulating high concentrations of contaminants.

Status

Southern resident killer whales were listed as endangered under the ESA in 2005 (70 FR 69903). In the mid- to late-1800s, southern resident killer whales were estimated to have numbered around 200 individuals. By the mid-1960s, they had declined to about 100 individuals. As discussed in the preceding section, between 1967 and 1973, 43 to 47 killer whales were removed from the population to provide animals for displays in oceanaria and the population declined by about 30 percent as a result of those removals. By 1971, the population had declined to about 67 individuals. Since then, the population has fluctuated between highs of about 90 individuals and lows of about 75 individuals.

At population sizes between 75 and 90 individuals, we would expect southern resident killer whales to have higher probabilities of becoming extinct because of demographic stochasticity, demographic heterogeneity (Coulson et al. 2006; Fox 2007) — including stochastic sex determination (Lande et al. 2003) — and the effects of these phenomena interacting with environmental variability. Demographic stochasticity refers to the randomness in the birth or death of an individual in a population, which results in random variation on how many young that individuals produce during their lifetime and when they die. Demographic heterogeneity refers to variation in lifetime reproductive success of individuals in a population (generally, the number of reproductive adults an individual produces over their reproductive lifespan), such that the deaths of different individuals have different effects on the growth or decline of a population (Coulson et al. 2006). Stochastic sex determination refers to the randomness in the sex of offspring such that sexual ratios in population fluctuate over time (Melbourne and Hastings 2008). For example, the small number of adult male southern resident killer whales might represent a stable condition for this species or it might reflect the effects of stochastic sex determination. Regardless, a high mortality rates among adult males in a population with a smaller percentage of males would increase the imbalance of male-to-female gender ratios in this population and increase the importance of the few adult males that remain.

At these population sizes, populations experience higher extinction probabilities because stochastic sexual determination leaves them with harmful imbalances between the number of male or female animals in the population (which occurred to the heath hen and dusky seaside sparrow just before they became extinct), or because the loss of individuals with high reproductive success has a disproportionate effect on the rate at which the
population declines (Coulson et al. 2006). In general, an individual’s contribution to the growth (or decline) of the population it represents depends, in part, on the number of individuals in the population: the smaller the population, the more the performance of a single individual is likely to affect the population’s growth or decline (Coulson et al. 2006). Given the small size of the southern resident killer whale population, the performance (= “fitness,” measured as the longevity of individuals and their reproductive success over their lifespan) of individual whales would be expected to have appreciable consequences for the growth or decline of the southern resident killer whale population.

These phenomena would increase the extinction probability of southern resident killer whales and amplify the potential consequences of human-related activities on this species. Based on their population size and population ecology (that is, slow-growing mammals that give birth to single calves with several years between births), we assume that southern resident killer whales would have elevated extinction probabilities because of exogenous threats caused by anthropogenic activities that result in the death or injury of individual whales (for example, ship strikes or entanglement) and natural phenomena (such as disease, predation, or changes in the distribution and abundance of their prey in response to changing climate) as well as endogenous threats resulting from the small size of their population. Based on the number of other species in similar circumstances that have become extinct (and the small number of species that have avoided extinction in similar circumstances), the longer southern resident killer whales remain in these circumstances, the greater their extinction probability becomes.

Diving and Social Behavior

Killer whales are highly social animals that occur primarily in groups or pods of up to 40-50 animals (Baird 2000; Dahlheim and Heyning 1999). Larger aggregations of up to several hundred individuals occasionally form, but are usually considered temporary groupings of smaller social units that probably congregate near seasonal concentrations of prey, for social interaction, or breeding (Baird 2000; Dahlheim and Heyning 1999; Ford et al. 2000). The basic social units are matrilines, which usually consist of an adult female, her sons and daughters, the offspring of her daughters, and might extend to include 3 to five generations of killer whales (Baird 2000; Ford 2002; Ford et al. 2000). The members of matrilines maintain such strong social connections that individuals rarely separate from these groups for more than a few hours. Groups of related matrilines are known as pods — for example, L Pod of southern resident killer whales consists of 12 matrilines — which are less cohesive than matrilines (matrilines within a pod might travel separately for weeks or months). Clans are the next level of social structure in resident killer whales and consist of pods with similar vocal dialects and common, but older, maternal heritage.

In terms of gender and age composition, southern and northern resident killer whales social groups consisted of 19 percent adult males, 31 percent adult females, and 50 percent immature whales of either sex in 1987 (Olesiuk et al. 1990). This composition is comparable with the composition of southern Alaska resident killer whales and killer whale populations in the Southern Ocean (Matkin et al. 2003; Miyazaki 1989).

Vocalizations and Hearing

Killer whales produce a wide variety of clicks, whistles, and pulsed calls (Ford 1989; Schevill and Watkins 1966; Thomsen et al. 2001). Their clicks are relatively broadband, short (0.1–25 milliseconds), and range in frequency from 8 to 80 kHz with an average center frequency of 50 kHz and an average bandwidth of 40 kHz (Au et al. 2004).
Killer whales apparently use these signals to sense objects in their environment, such as prey; whales foraging on salmon produce these signals at peak-to-peak source levels ranging from 195 to 225 dB re 1 µPa at 1 m (Au et al. 2004).

Killer whale whistles are tonal signals that have longer duration (0.06–18 seconds) and frequencies ranging from 0.5–10.2 kHz (Thomsen et al. 2001). Killer whales are reported to whistle most often while they have been engaged in social interactions rather than during foraging and traveling (Thomsen et al. 2002). Northern resident killer whales whistles have source levels ranging from 133 to 147 dB re 1 µPa at 1 m (Miller 2006).

Killer whale pulsed calls are the most commonly observed type of signal associated killer whales (Ford 1989). With both northern and southern resident killer whales, these signals are relatively long (600–2,000 ms) and range in frequency between 1 and 10 kHz; but may contain harmonics up to 30 kHz (Ford 1989). The variable calls of killer whales have source levels ranging from 133 to 165 dB while stereotyped calls have source levels ranging from 135 to 168 dB re 1 µPa at 1 m (Miller 2006). Killer whales use these calls when killer foraging and traveling (Ford 1989).

4.3.7 Eastern Population of Steller Sea Lion
The Steller sea lion, also known as the northern sea lion, is the largest member of the Otariid (eared seal) family. Steller sea lions exhibit sexual dimorphism, in which adult males are noticeably larger than females and further distinguished by a thick mane of coarse hair. Adult males may be up to 10-11 ft (3-3.4 m) in length and can weigh up to 2,500 lbs (1,120 kg). Females are smaller than males, at 7.5-9.5 ft (2.5-3.0 m) in length and weigh up to 770 lbs (350 kg). The coats of adult males and females are light blonde to reddish brown and slightly darker on the chest and abdomen. The light coloration is still visible when the body is wet, which is different from many pinniped species. Like other pinnipeds, their coat of fur "molts" every year. Both sexes also have long whitish whiskers, or vibrissae, on their muzzle. The flippers and other hairless parts of the skin are black. The fore-flippers are broader and longer than the hind-flippers and are the primary means of locomotion in water. On land, sea lions, unlike "true" seals, can turn their hind flippers forward for walking.

Steller sea lions "forage" nearshore and pelagic waters. They are capable of traveling long distances in a season and can dive to approximately 1300 ft (400 m) in depth. They also use terrestrial habitat as haul-out sites for periods of rest, molting, and as rookeries for mating and pupping during the breeding season. At sea, they are seen alone or in small groups, but may gather in large "rafts" at the surface near rookeries and haul outs. This species is capable of powerful vocalizations that are accompanied by a vertical head bobbing motion by males. Steller sea lions are opportunistic predators, foraging and feeding primarily at night on a wide variety of fishes (e.g., capelin, cod, herring, mackerel, pollock, rockfish, salmon, sand lance, etc.), bivalves, cephalopods (e.g., squid and octopus) and gastropods. Their diet may vary seasonally depending on the abundance and distribution of prey. They may disperse and range far distances to find prey, but are not known to migrate.

Distribution
Steller sea lions are distributed mainly around the coasts to the outer continental shelf along the North Pacific Ocean rim from northern Hokkaiddo, Japan through the Kuril Islands and Okhotsk Sea, Aleutian Islands and central Bering Sea, southern coast of Alaska and south to California. The population is divided into the Western and the Eastern
distinct population segments (DPSs) at 144° West longitude (Cape Suckling, Alaska). The Western DPS includes Steller sea lions that reside in the central and western Gulf of Alaska, Aleutian Islands, as well as those that inhabit the coastal waters and breed in Asia (e.g., Japan and Russia). The Eastern DPS includes sea lions living in southeast Alaska, British Columbia, California, and Oregon. The boundary between the Western DPS and the Eastern DPS approximately bisects the TMAA, although the TMAA is located offshore of the main habitat/foraging areas. Steller sea lions do not migrate, but they often disperse widely outside of the breeding season (Loughlin 2002).

Population Structure

Steller sea lions are gregarious animals that often travel or haul out in large groups of up to 45 individuals (Kepley 2002). At sea, groups usually consist of females and subadult males; adult males are usually solitary while at sea (Loughlin 2002). An area of high occurrence extends from the shore to the 273-fathom (500-m) depth. For the Gulf of Alaska, foraging habitat is primarily shallow, nearshore, and continental shelf waters 4.3 to 13 nm (8 to 24 km) offshore with a secondary occurrence inshore of the 3,280 ft (1,000 m) isobath, and a rare occurrence seaward of the 3,280 ft (1,000 m) isobath. Steller sea lions have been sighted foraging in the middle of the Gulf of Alaska (Navy 2006).

Eastern Steller sea lions are distributed from California to Alaska and the population includes all rookeries east of Cape Suckling, Alaska south to Año Nuevo Island, which is the southernmost extant rookery. Most adult Steller sea lions occupy rookeries during the pupping and breeding season, which extends from late May to early July (Pitcher and Calkins 1981). During the breeding season some juveniles and non-breeding adults occur at or near the rookeries, but most are on haulouts.

Natural Threats

Reproductive failure and neonate, juvenile, and adult mortality resulting from disease probably occur in both DPSs of Steller sea lions. Antibodies to two types of bacteria (Leptospira and Chlamydia), one marine calicivirus (San lilipel Sea Lion Virus), and seal herpes virus (SeHV), which could produce such effects, were present in blood taken from Steller sea lions in Alaska (Barlough et al. 1987; Calkins and Goodwin 1988; Vedder et al. 1987).

Causes of pup mortality include drowning, starvation caused by separation from the mother, crushing by larger animals, disease, predation, and biting by females other than the mother (Edie 1977; Orr and Poulter 1967). Pup mortality on rookeries has not been thoroughly studied.

Steller sea lions are probably eaten by killer whales and sharks, but the possible impact of these predators is unknown. The occurrence of shark predation on other North Pacific pinnipeds has been documented, but not well quantified (Ainley et al. 1985).

Parasites of Steller sea lions include intestinal cestodes; trematodes in the intestine and bile duct of the liver; nematodes in the stomach, intestine, and lungs; acanthocephalans in the intestine; acarian mites in the nasopharynx and lungs; and an anopluran skin louse (Dailey and Brownell 1972; Dailey and Hill 1970).

Anthropogenic Threats

Historically, the Eastern DPS of Steller sea lions was subjected to substantial mortality by humans, primarily due to commercial exploitation and both sanctioned and unsanctioned predator control (NMFS 2008b). Commercial
exploitation occurred primarily in the 1800s and early 1900s while unsanctioned predator control probably persisted into the 1970s in some locations. State sanctioned commercial harvest of Steller sea lions ended in 1972 with the advent of the MMPA.

Although not well documented, there is little doubt that numbers of Steller sea lions were greatly reduced in many locations by these activities (NMFS 2008b). Commercial hunting and predator control activities have been discontinued and no longer affect this DPS. In contrast to the Western DPS, which is experiencing potential human-related threats from competition with fisheries (potentially high), incidental take by fisheries (low), and toxic substances (medium) no threats to continued recovery were identified for the Eastern DPS. Although several factors affecting the Western DPS also affect the Eastern DPS (e.g., environmental variability, killer whale predation, toxic substances, disturbance, shooting), these threats do not appear to be at a level sufficient to keep the Eastern DPS from continuing to recover, given the long term sustained growth of the population as a whole (NMFS 2008b).

Steller sea lions are also harassed during research targeting sea lions and incidental to research on other marine mammals. NMFS’ Permits Division issued nine permits that authorized the incidental disturbance of 33,050 individuals from the eastern population of Steller sea lions during research on killer whales and other cetaceans in Alaska, California, Washington, California, and Oregon.

Status and Trend

The Steller sea lion was initially listed as a threatened species under the ESA on April 5, 1990 (55 FR 12645). The Eastern DPS includes animals east of Cape Suckling (Angliss and Outlaw 2005; Loughlin 2002; NMFS 2008b) that extend into southeastern Alaska, and Canada.

Rookeries of the eastern population of Steller sea lions occur in British Columbia, Oregon, and northern California; but there are no rookeries in Washington (Angliss and Outlaw 2008). However, Steller sea lion occur regularly throughout the year in the Pacific Northwest and several haul outs for these sea lions occur along the coast from the Columbia River to Cape Flattery and on the southern coast of Vancouver Island near the Strait of Juan de Fuca (Jeffries et al. 2000). When they are not resting on haul outs, Steller sea lions primarily occur from the shore to the 500 meter (1,640 foot) isobath; they occur in waters deeper than this isobath, but their occurrence becomes increasingly rare. Steller sea lions also occur in the Strait of Juan de Fuca, around San Juan and Whidbey islands, and through the Strait of Georgia with some observations in the southern portion of Puget Sound. They are rare in Hood Canal. A final revised species recovery plan addresses both the Western and Eastern DPSs (NMFS 2008b). The Steller sea lion is designated as depleted under MMPA.

On December 13, 2010 NMFS published a 90-day finding on petitions to delist the Eastern DPS of the Steller sea lion. The finding stated that substantial scientific or commercial information is available such that a status review is warranted.

Diving

Steller sea lions tend to make shallow dives of less than 820 ft (250 m) but are capable of deeper dives (NMFS 2008b).
Social Behavior
Steller sea lions are colonial breeders. Adult males, also known as bulls, establish and defend territories on rookeries to mate with females. Bulls become sexually mature between 3 and 8 years of age, but typically are not large enough to hold territory successfully until 9 or 10 years old. Mature males may go without eating for 1-2 months while they are aggressively defending their territory. Females typically reproduce for the first time at 4 to 6 years of age, usually giving birth to a single pup each year. At birth, pups are about 3.3 ft (1 m) in length and weigh 35-50 lbs (16-22.5 kg). Adult females, also known as cows, stay with their pups for a few days after birth before beginning a regular routine of alternating foraging trips at sea with nursing their pups on land. Female Steller sea lions use smell and distinct vocalizations to recognize and create strong social bonds with their newborn pups. Pups have a dark brown to black "lanugo" coat until 4 to 6 months old, when they molt to a lighter brown. By the end of their second year, pups are the same color as adults. Females usually mate again with males within 2 weeks after giving birth. Males can live to be up to 20 years old, while females can live to be 30.

Vocalization and Hearing
On land, territorial male Steller sea lions usually produce low frequency roars (Loughlin et al. 1987; Schusterman et al. 1970). The calls of females range from 30 Hz to 3 kHz, with peak frequencies from 150 Hz to 1 kHz; typical duration is 1.0 to 1.5 sec (Campbell et al. 2002). Pups produce bleating sounds.

Underwater sounds are similar to those produced on land (Loughlin et al. 1987). When the underwater hearing sensitivity of two Steller sea lions was tested, the hearing threshold of the male was significantly different from that of the female. The range of best hearing for the male was from 1 to 16 kHz, with maximum sensitivity (77 dB re 1 μPa - 1 m) at 1 kHz. The range of best hearing for the female was from 16 kHz to above 25 kHz, with maximum sensitivity (73 dB re 1 μPa - 1 m) at 25 kHz. However, because of the small number of animals tested, the findings could not be attributed to individual differences in sensitivity or sexual dimorphism (Kastelein et al. 2005).

Critical Habitat
In 1993, NMFS published a final rule to designate critical habitat for Steller sea lions (58 FR 45269). For the Eastern DPS, the Critical Habitat aquatic zones (located east of 144°W longitude) extend 3,000 ft (0.9 km) seaward in state and federally managed waters from the baseline or basepoint of each major rookery.

4.3.8 Leatherback Sea Turtle
The leatherback sea turtle is the largest turtle and the largest living reptile in the world. Mature turtles can be as long as six and a half feet (2 m) and weigh almost 2000 lbs. (900 kg). The leatherback is the only sea turtle that lacks a hard, bony shell. A leatherback's carapace is approximately 1.5 inches (4 cm) thick and consists of leathery, oil saturated connective tissue overlaying loosely interlocking dermal bones. The carapace has seven longitudinal ridges and tapers to a blunt point. Adult leatherbacks are primarily black with a pinkish white mottled ventral surface and pale white and pink spotting on the top of the head. The front flippers lack claws and scales and are proportionally longer than in other sea turtles; back flippers are paddle-shaped. The ridged carapace and large flippers are characteristics that make the leatherback uniquely equipped for long distance foraging migrations.

Female leatherback sea turtles lay clutches of approximately 100 eggs on sandy, tropical beaches. Females nest several times during a nesting season, typically at 8-12 day intervals. After 60-65 days, leatherback hatchlings with white striping along the ridges of their backs and on the margins of the flippers emerge from the nest. Leatherback
hatchlings are approximately 50-77 cm (2-3 inches) in length, with fore flippers as long as their bodies, and weigh approximately 40-50 grams (1.4-1.8 ounces).

Leatherback sea turtles lack the crushing chewing plates characteristic of sea turtles that feed on hard-bodied prey (Pritchard 1971). Instead, they have pointed tooth-like cusps and sharp edged jaws that are perfectly adapted for a diet of soft-bodied pelagic (open ocean) prey, such as jellyfish and salps. A leatherback's mouth and throat also have backward-pointing spines that help retain such gelatinous prey.

Distribution

Leatherback sea turtles are widely distributed throughout the oceans of the world. The species is found in four main regions of the world: the Pacific, Atlantic, and Indian Oceans, and the Caribbean Sea. Leatherbacks also occur in the Mediterranean Sea, although they are not known to nest there. The four main regional areas may further be divided into nesting aggregations. Leatherback turtles are found on the western and eastern coasts of the Pacific Ocean, with nesting aggregations in Mexico and Costa Rica (eastern Pacific) and Malaysia, Indonesia, Australia, the Solomon Islands, Papua New Guinea, Thailand, and Fiji (western Pacific). In the Atlantic Ocean, leatherback nesting aggregations have been documented in Gabon, Sao Tome and Principe, French Guiana, Suriname, and Florida. In the Caribbean, leatherbacks nest in the U.S. Virgin Islands and Puerto Rico. In the Indian Ocean, leatherback nesting aggregations are reported in India and Sri Lanka and KwaZulu Natal, South Africa.

Leatherback sea turtles have been documented in Alaska waters as far north as approximately 60° latitude (approximately 50 miles north of the northern edge of the TMAA) and as far west in the Gulf of Alaska as the Aleutian Islands (Eckert 1993). In contrast with other sea turtles, leatherback sea turtles have physiological traits that allow for the conservation of body heat which enable them to maintain body core temperatures well above the ambient water temperatures (Eckert 1993; Greer et al. 1973; Pritchard 1971). Shells, or carapaces, of adult leatherbacks are 4 cm (1.5 inches) thick on average, contributing to the leatherback’s thermal tolerance that enables this species to forage in water temperatures far lower than the leatherback’s core body temperature (Bostrom et al. 2010). In an analysis of available sightings (Eckert 2002), researchers found that leatherback turtles with carapace lengths smaller than 100 cm (39 inches) were sighted only in waters 79 °F or warmer, while adults were found in waters as cold as 32°F to 59°F off Newfoundland (Goff and Lien 1988). As a result, they are more capable of surviving for extended periods of time in cooler waters than the hard-shelled sea turtles (Bleakney 1965; Lazell Jr. 1980).

Population Structure

Leatherback turtles are widely distributed throughout the oceans of the world. The species is divided into four main populations in the Pacific, Atlantic, and Indian Oceans, and the Caribbean Sea. Leatherbacks also occur in the Mediterranean Sea, although they are not known to nest there. The four main populations are further divided into nesting aggregations. Leatherback turtles are found on the western and eastern coasts of the Pacific Ocean, with nesting aggregations in Mexico and Costa Rica (eastern Pacific) and Malaysia, Indonesia, Australia, the Solomon Islands, Papua New Guinea, Thailand, and Fiji (western Pacific). In the Atlantic Ocean, leatherback nesting aggregations have been documented in Gabon, Sao Tome and Principe, French Guiana, Suriname, and Florida. In the Caribbean, leatherbacks nest in the U.S. Virgin Islands and Puerto Rico. In the Indian Ocean, leatherback nesting aggregations are reported in India, Sri Lanka, and the Andaman and Nicobar Islands.
Natural Threats
The various habitat types leatherback sea turtles occupy throughout their lives exposes these sea turtles to a wide variety of natural threats. The beaches on which leatherback sea turtles nest and the nests themselves are threatened by hurricanes and tropical storms as well as the storm surges, sand accretion, and rainfall that are associated with hurricanes. Hatchlings are hunted by predators like herons, gulls, dogfish, and sharks. Larger leatherback sea turtles, including adults, are also killed by sharks and other large, marine predators.

Anthropomorphic Threats
Leatherback sea turtles are endangered by several human activities, including fisheries interactions, entanglement in fishing gear (e.g., gillnets, longlines, lobster pots, weirs), direct harvest, egg collection, the destruction and degradation of nesting and coastal habitat, boat collisions, and ingestion of marine debris.

The foremost threat is the number of leatherback turtles killed or injured in fisheries. Spotila (2004) concluded that a conservative estimate of annual leatherback fishery-related mortality (from longlines, trawls and gillnets) in the Pacific Ocean during the 1990s is 1,500 animals. He estimates that this represented about a 23 percent mortality rate (or 33 percent if most mortality was focused on the East Pacific population). Spotila (2000) asserts that most of the mortality associated with the Playa Grande nesting site was fishery related.

Leatherback sea turtles are exposed to commercial fisheries in many areas of the Atlantic Ocean. For example, leatherback entanglements in fishing gear are common in Canadian waters where Goff and Lien (Goff and Lien 1988) reported that 14 of 20 leatherbacks encountered off the coast of Newfoundland and Labrador were entangled in fishing gear including salmon net, herring net, gillnet, trawl line and crab pot line. Leatherbacks are reported taken by the many other nations that participate in Atlantic pelagic longline fisheries (see NMFS 2001b, for a complete description of take records), including Taiwan, Brazil, Trinidad, Morocco, Cyprus, Venezuela, Korea, Mexico, Cuba, U.K., Bermuda, People’s Republic of China, Grenada, Canada, Belize, France, and Ireland.

In the Pacific Ocean, between 1,000 and 1,300 leatherback sea turtles are estimated to have been captured and killed in longline fisheries in 2000 (Lewison et al. 2004). Shallow-set longline fisheries based out of Hawai’i are estimated to have captured and killed several hundred leatherback sea turtles before they were closed in 2001. When they were re-opened in 2004, with substantial modifications to protect sea turtles, these fisheries were estimated to have captured and killed about 1 or 2 leatherback sea turtles each year. Between 2004 and 2008, shallow-set fisheries based out of Hawai’i are estimated to have captured about 19 leatherback sea turtles, killing about 5 of these sea turtles. A recent biological opinion on these fisheries expected this rate of interaction and deaths to continue into the foreseeable future. Leatherback sea turtles have also been and are expected to continue to be captured and killed in the deep-set based longline fisheries based out of Hawai’i and American Samoa.

Shrimp trawls in the Gulf of Mexico capture the largest number of leatherback sea turtles: each year, they have been estimated to capture about 3,000 leatherback sea turtles with 80 of those sea turtles dying as a result. Along the Atlantic coast of the U.S., NMFS estimated that about 800 leatherback sea turtles are captured in pelagic longline fisheries, bottom longline and drift gillnet fisheries for sharks as well as lobster, deep-sea red crab, Jonah crab, dolphin fish and wahoo, and Pamlico Sound gillnet fisheries. Although most of these turtles are released alive, these
fisheries combine to kill about 300 leatherback sea turtles each year; the health effects of being captured on the sea
turtles that survive remain unknown.

Leatherback sea turtles are known to drown in fish nets set in coastal waters of Sao Tome, West Africa (Tomás et al. 2000). Gillnets are one of the suspected causes for the decline in the leatherback turtle population in French Guiana (Chevalier et al. 1999), and gillnets targeting green and hawksbill turtles in the waters of coastal Nicaragua also incidentally catch leatherback turtles (Lagueux 1998). Observers on shrimp trawlers operating in the northeastern region of Venezuela documented the capture of six leatherbacks from 13,600 trawls (Marcano and Alió-M 2000).

An estimated 1,000 mature female leatherback turtles are caught annually off of Trinidad and Tobago with mortality estimated to be between 50-95 percent (Eckert et al. 2007). However, many of the turtles do not die as a result of drowning, but rather because the fishermen butcher them in order to get them out of their nets. There are known to be many sizeable populations of leatherbacks nesting in West Africa, possibly as many as 20,000 females nesting annually (Fretey 2001). In Ghana, nearly two thirds of the leatherback turtles that come up to nest on the beach are killed by local fishermen.

On some beaches, nearly 100 percent of the eggs laid have been harvested. Spotila et al. (1996) and Eckert et al. (2007) note that adult mortality has also increased significantly, particularly as a result of driftnet and longline fisheries. Like green and hawksbill sea turtles, leatherback sea turtles are threatened by domestic or domesticated animals that prey on their nests; artificial lighting that disorients adult female and hatchling sea turtles, which can dramatically increase the mortality rates of hatchling sea turtles; beach replenishment; ingestion and entanglement in marine debris; and environmental contaminants.

Oil spills are a risk for all sea turtles. Several aspects of sea turtles life histories put them at risk, including the lack of avoidance behavior of oiled waters and indiscriminate feeding in convergence zones. Sea turtles are air breathers and all must come to the surface frequently to take a breath of air. In a large oil spill, these animals may be exposed to volatile chemicals during inhalation (NMFS 2010e).

Additionally, sea turtles may experience oiling impacts on nesting beaches when they come ashore to lay their eggs, and their eggs may be exposed during incubation potentially resulting in increased egg mortality and/or possibly developmental defects in hatchlings. Hatchlings emerging from their nests may encounter oil on the beach and in the water as they begin their lives at sea (NMFS 2010e).

External Effects: Oil and other chemicals on skin and body may result in skin and eye irritation, burns to mucous membranes of eyes and mouth, and increased susceptibility to infection (NMFS 2010e).

Internal Effects: Inhalation of volatile organics from oil or dispersants may result in respiratory irritation, tissue injury, and pneumonia. Ingestion of oil or dispersants may result in gastrointestinal inflammation, ulcers, bleeding, diarrhea, and maldigestion. Absorption of inhaled and ingested chemicals may damage organs such as the liver or kidney, result in anemia and immune suppression, or lead to reproductive failure or death (NMFS 2010e).
Status and Trends
The leatherback turtle was listed under the Endangered Species Act as endangered throughout its range in 1970. There is a recovery plan for this species (NMFS and USFWS 1998).

Leatherback turtles are considered critically endangered by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species (IUCN 2010) and are protected by the Convention on International Trade in Endangered Species (CITES).

The Pacific Ocean leatherback population is generally smaller in size than that in the Atlantic Ocean. Because adult female leatherbacks frequently nest on different beaches, nesting population estimates and trends are especially difficult to monitor. In the Pacific, the IUCN notes that most leatherback nesting populations have declined more than 80 percent. In other areas of the leatherback's range, observed declines in nesting populations are not as severe, and some population trends are increasing or stable. In the Atlantic, available information indicates that the largest leatherback nesting population occurs in French Guyana, but the trends are unclear. Some Caribbean nesting populations appear to be increasing, but these populations are very small when compared to those that nested in the Pacific less than 10 years ago. Nesting trends on U.S. beaches have been increasing in recent years.

Diving
The leatherback sea turtle is one of the deepest divers in the ocean, with dives as deep as 3,937 ft (1,200 m), although it spends most of its time feeding at a depth of less than 328 ft (100 m). Leatherback turtles primarily feed on gelatinous zooplankton such as cnidarians (jellyfish and siphonophores) and tunicates (salps and pyrosomas) (Bjorndal 1997; NMFS and USFWS 1998). The leatherback dives continually and spends short periods of time on the surface between dives (Eckert et al. 1989; Southwood et al. 1999). Typical dive durations averaged 6.9 to 14.5 minutes (min) per dive, with a maximum of 42 min (Eckert et al. 1996). Sea turtles typically remain submerged for several minutes to several hours depending upon their activity state (Standora et al. 1984). Long periods of submergence hamper detection and confound census efforts. During migrations or long distance movements, leatherbacks maximize swimming efficiency by traveling within 15 ft (5 m) of the surface (Eckert 2002).

Social Behavior
Male leatherbacks do not return to land after they hatch from their nests whereas mature females return to land only to lay eggs (Spotila 2004). Aside from this brief terrestrial period, which lasts approximately three months during egg incubation and hatching, leatherback turtles are rarely encountered out of the water. Hatchling leatherbacks are pelagic, but nothing is known about their distribution during the first 4 years of life (Musick and Limpus 1997).

The Pacific coast of Mexico is generally regarded as the most important leatherback breeding ground in the world, although nesting on Pacific beaches under U.S. jurisdiction has always been rare (NMFS and USFWS 1998). Based on a single aerial survey in 1980 of Michoacán, Guerrero, and Oaxaca, and on published and anecdotal data, Pritchard (Pritchard 1982) estimated that 30,000 females nested annually in these three Mexican states. Lower-density nesting was (and still is) reported farther north in Jalisco (NMFS and USFWS 1998) and in Baja California, where the northernmost eastern Pacific nesting sites are found (Fritts et al. 1982). Leatherbacks nest along the western coast of Mexico from November to February, although some females arrive as early as August (NMFS and USFWS 1998), and in Central America from October to February (Lux et al. 2003). This species nests primarily on
beaches with little reef or rock offshore. On these types of beaches erosion reduces the probability of nest survival. To compensate, leatherbacks scatter their nests over large geographic areas and lay on average two times as many clutches as other species (Eckert 1987). Females may lay up to nine clutches in a season (although six is more common), and the incubation period is 58–65 days. At Playa Grande, Costa Rica, and in French Guiana, the mean inter-nesting period was 9 days (Lux et al. 2003). Post-nesting adults appear to migrate along bathymetric contours from 656 to 11,483 ft (200 to 3,500 m) (Morreale et al. 1994), and most of the eastern Pacific nesting stocks migrate south (NMFS and USFWS 1998). Other principal nesting sites in the Pacific Ocean indicate that gene flow between eastern and western Pacific nesting populations is restricted (Dutton et al. 2005; Dutton et al. 2006; Dutton et al. 1999; Dutton et al. 1996; Dutton et al. 2003).

Vocalization and Hearing
Sea turtles do not have an external ear pinnae or eardrum. Instead, they have a cutaneous layer and underlying subcutaneous fatty layer that function as a tympanic membrane. The subcutaneous fatty layer receives and transmits sounds to the middle ear and into the cavity of the inner ear (Ridgway et al. 1969). Sound also arrives by bone conduction through the skull. Sound arriving at the inner ear via the columella (homologous to the mammalian stapes or stirrup) is transduced by the bones of the middle ear.

Sea turtle auditory sensitivity is not well studied, though a few preliminary investigations suggest that it is limited to low frequency bandwidths, such as the sounds of waves breaking on a beach. The role of underwater low-frequency hearing in sea turtles is unclear. It has been suggested that sea turtles may use acoustic signals from their environment as guideposts during migration and as a cue to identify their natal beaches (Lenhardt et al. 1983).

Lenhardt et al. (1983) applied audio frequency vibrations at 250 hertz (Hz) and 500 Hz to the heads of loggerheads and Kemp’s ridleys submerged in salt water to observe their behavior, measure the attenuation of the vibrations, and assess any neural-evoked response. These stimuli (250 Hz, 500 Hz) were chosen as representative of the lowest sensitivity area of marine turtle hearing (Wever and Vernon 1956). At the maximum upper limit of the vibratory delivery system, the sea turtles exhibited abrupt movements, slight retraction of the head, and extension of the limbs in the process of swimming. Lenhardt et al. (1983) concluded that bone-conducted hearing appears to be a reception mechanism for at least some of the sea turtle species, with the skull and shell acting as receiving surfaces. Finally, sensitivity even within the optimal hearing range was low as threshold detection levels in water are relatively high at 160 to 200 decibels referenced to one micro Pascal at a distance of one meter (dB re 1 μPa-m), which is the standard reference measure for underwater sound energy in this regard (Lenhardt et al. 1994).

Ridgway et al. (1969) used aerial and mechanical stimulation to measure the cochlea in three specimens of green turtle, and concluded that they have a useful hearing span of perhaps 60 to 1,000 Hz, but hear best from about 200 Hz up to 700 Hz, with their sensitivity falling off considerably below 200 Hz. The maximum sensitivity for one animal was at 300 Hz, and for another was at 400 Hz. At the 400 Hz frequency, the green turtle’s hearing threshold was about 64 dB in air (approximately 126 dB in water). At 70 Hz, it was about 70 dB in air (approximately 132 dB in water). We may be able to extrapolate this data to pertain to all hard-shell sea turtles (i.e., the olive ridley, green, loggerhead, and Kemp’s ridley turtles). No audiometric data are available for the leatherback turtle, but based on other sea turtle hearing capabilities, they probably also hear best in the low frequencies.
For exposures to impulsive sound, a recent study on the effects of air guns on sea turtle behavior also suggests that sea turtles are most likely to respond to low-frequency sounds (McCauley et al. 2000). Loggerhead sea turtles will avoid air-gun arrays at 2 km and at 1 km, with received levels of 166 dB re 1 μPa-m and 175 dB re 1 μPa, respectively (McCauley et al. 2000). The sea turtles’ response was consistent: above a level of about 166 dB re 1 μPa, the sea turtles noticeably increased their swimming activity. Above 175 dB re 1 μPa, their behavior became more erratic, possibly indicating that they were agitated (McCauley et al. 2000).

Currently it is believed that the range of maximum sensitivity for sea turtles is 200 to 800 Hz, with an upper limit of about 2,000 Hz (Lenhardt 1994; Moein et al. 1994). Green turtles are most sensitive to sounds between 200 and 700 Hz, with peak sensitivity at 300 to 400 Hz (Ridgway et al. 1969). They possess an overall hearing range of approximately 60 to 1,000 Hz (Ridgway et al. 1969). Juvenile loggerhead turtles hear sounds between 250 and 1,000 Hz and, therefore, often avoid low-frequency sounds (Bartol et al. 1999). Finally, sensitivity even within the optimal hearing range is apparently low—threshold detection levels in water are relatively high at 160 to 200 dB re 1 μPa-m (Lenhardt 1994). Given the lack of audiometric information for leatherback turtles, the potential for TTS among leatherback turtles must be classified as unknown but would likely follow those of other sea turtles. In terms of sound emission, nesting leatherback turtles produce sounds in the 300 to 500 Hz range (Mrosovsky 1972).

Critical Habitat

Critical habitat was designated in 1998 for leatherback sea turtles in coastal waters adjacent to Sandy Point, St. Croix, U.S. Virgin Islands. In 2007, NMFS received a petition to revise the critical habitat designations. NMFS published a 90-day finding on the petition in December 2007. In 2009, NMFS proposed to revise the critical habitat to include areas off of the U.S. west coast.

4.3.9 Chinook Salmon

Chinook salmon are the largest of any salmon, with adults often exceeding 40 pounds (18 kg); individuals over 120 pounds (54 kg) have been reported. Chinook mature at about 36 inches and 30 pounds. Chinook salmon are blue-green back with silver flanks at sea, with small black spots on both lobes of the tail, and black pigment along the base of the teeth. Adults migrate from a marine environment into the freshwater streams and rivers of their birth in order to mate (called anadromy). They spawn only once and then die (called semelparity).

Juvenile Chinook may spend from 3 months to 2 years in freshwater before migrating to estuarine areas as smolts and then into the ocean to feed and mature. Chinook salmon remain at sea for 1 to 6 years (more commonly 2 to 4 years), with the exception of a small proportion of yearling males (called jack salmon) which mature in freshwater or return after 2 or 3 months in salt water. They feed on terrestrial and aquatic insects, amphipods, and other crustaceans while young, and primarily on other fishes when older.

There are different seasonal (i.e., spring, summer, fall, or winter) "runs" in the migration of Chinook salmon from the ocean to freshwater, even within a single river system. These runs have been identified on the basis of when adult Chinook salmon enter freshwater to begin their spawning migration. However, distinct runs also differ in the degree of maturation at the time of river entry, the temperature and flow characteristics of their spawning site, and their actual time of spawning. Freshwater entry and spawning timing are believed to be related to local temperature and water flow regimes.
Two distinct types or races among Chinook salmon have evolved. One race, described as a "stream-type" Chinook, is found most commonly in headwater streams of large river systems. Stream-type Chinook salmon have a longer freshwater residency, and perform extensive offshore migrations in the central North Pacific before returning to their birth, or natal, streams in the spring or summer months. Stream-type juveniles are much more dependent on freshwater stream ecosystems because of their extended residence in these areas. A stream-type life history may be adapted to areas that are more consistently productive and less susceptible to dramatic changes in water flow. At the time of saltwater entry, stream-type (yearling) smolts are much larger, averaging 3 to 5.25 inches (73-134 mm) depending on the river system, than their ocean-type (subyearling) counterparts, and are therefore able to move offshore relatively quickly.

The second race, called the "ocean-type" Chinook, is commonly found in coastal streams in North America. Ocean-type Chinook typically migrate to sea within the first three months of life, but they may spend up to a year in freshwater prior to emigration to the sea. They also spend their ocean life in coastal waters. Ocean-type Chinook salmon return to their natal streams or rivers as spring, winter, fall, summer, and late-fall runs, but summer and fall runs predominate. Ocean-type Chinook salmon tend to use estuaries and coastal areas more extensively than other pacific salmonids for juvenile rearing. The evolution of the ocean-type life history strategy may have been a response to the limited carrying capacity of smaller stream systems and unproductive watersheds, or a means of avoiding the impact of seasonal floods. Ocean-type Chinook salmon tend to migrate along the coast. Populations of Chinook salmon south of the Columbia River drainage appear to consist predominantly of ocean-type fish.

Distribution

The Chinook salmon’s historical range in North America extended from the Ventura River in California to Point Hope, Alaska. The natural freshwater range for Chinook salmon extends throughout the Pacific Rim of North America. This species has been identified from the San Joaquin River in California to the Mackenzie River in northern Canada ([Healey 1991](#)). The oceanic range encompasses Washington, Oregon, California, throughout the north Pacific Ocean, and as far south as the U.S./Mexico border ([PFMC 2000](#)). Because of similarities in the life history and threats to the survival and recovery of the six Chinook salmon “species” (as that term is defined in section 3 of the ESA) or evolutionary significant units (ESUs) that are included in this Opinion, we summarize the threats to Chinook salmon and their hearing sensitivity generally. Then we separately discuss specific information on their listing status, population status and trends, and impacts that are not shared for each of these species.

Chinook salmon distribute in the North Pacific Ocean north of about 40° North latitude where they may remain for 1 to 6 years, although 2 to 4 years are more common. Although salmon generally occur near the surface (within 8 to 10 meters of the surface), Chinook salmon have been caught at depths up to 110 meters.

Impacts of Human Activity on Chinook Salmon

Over the past few decades, the size and distribution of Chinook salmon populations have declined because of natural phenomena and human activity, including the operation of hydropower systems, harvest, hatcheries, and habitat degradation. Natural variations in freshwater and marine environments have substantial effects on the abundance of salmon populations. Of the various natural phenomena that affect most populations of Pacific salmon, changes in ocean productivity are generally considered most important.
Chinook salmon are exposed to high rates of natural predation, particularly during freshwater rearing and migration stages. Ocean predation probably contributes to significant natural mortality, although the levels of predation are largely unknown. In general, Chinook are prey for pelagic fishes, birds, and marine mammals, including harbor seals, sea lions, and killer whales. There have been recent concerns that the increasing size of tern, seal, and sea lion populations in the Pacific Northwest has dramatically reduced the survival of adult and juvenile salmon.

Hearing

All fish have two sensory systems that are used to detect sound in the water including the inner ear, which functions very much like the inner ear found in other vertebrates, and the lateral line, which consists of a series of receptors along the body of the fish (Popper 2008). The inner ear generally detects higher frequency sounds while the lateral line detects water motion at low frequencies (below a few hundred Hz) (Hastings et al. 1996). A sound source produces both a pressure wave and motion of the medium particles (water molecules in this case), both of which may be important to fish. Fish detect particle motion with the inner ear. Pressure signals are initially detected by the gas-filled swim bladder or other air pockets in the body, which then re-radiate the signal to the inner ear (Popper 2008). Because particle motion attenuates relatively quickly, the pressure component of sound usually dominates as distance from the source increases.

The lateral line system of a fish allows for sensitivity to sound (Hastings and Popper 2005). This system is a series of receptors along the body of the fish that detects water motion relative to the fish that arise from sources within a few body lengths of the animal. The sensitivity of the lateral line system is generally from below 1 Hz to a few hundred Hz (Coombs and Montgomery 1999; Popper and Schilt 2009). The only study on the effect of exposure to sound on the lateral line system (conducted on one freshwater species) suggests no effect on these sensory cells by intense pure tone signals (Hastings et al. 1996).

While studies on the effect of sound on the lateral line are limited, the work of Hasting et al. (1996) showing limited sensitivity to within a few body lengths and to sounds below a few hundred Hz, make the effect of the mid-frequency sonar of the Proposed Action unlikely to affect a fish’s lateral line system. Therefore, further discussion of the lateral line in this analysis is unwarranted. Broadly, fish can be categorized as either hearing specialists or hearing generalists (Scholik and Yan 2002). Fish in the hearing specialist category have a broad frequency range with a low auditory threshold due to a mechanical connection between an air filled cavity, such as a swim bladder, and the inner ear.

Specialists detect both the particle motion and pressure components of sound and can hear at levels above 1 kilohertz (kHz). Generalists are limited to detection of the particle motion component of low-frequency sounds at relatively high sound intensities (Amoser and Ladich 2005). It is possible that a species will exhibit characteristics of generalists and specialists and will sometimes be referred to as an “intermediate” hearing specialist. For example, most damselfish are typically categorized as generalists, but because some larger damselfish have demonstrated the ability to hear higher frequencies expected of specialists, they are sometimes categorized as intermediate. Of the fish species with distributions overlapping the TMAA for which hearing sensitivities are known, most are hearing generalists, including salmonid species. The hearing capability of Atlantic salmon (Salmo salar), a hearing generalist, indicates a rather low sensitivity to sound (Hawkins and Johnstone 1978). Laboratory experiments
yielded responses only to 0.58 kHz and only at high sound levels. The salmon’s poor hearing is likely due to the lack of a link between the swim bladder and inner ear (Jørgensen et al. 2004).

Based on the information available, we assume that the Chinook salmon considered in this consultation have hearing sensitivities ranging from less than 100 Hz to about 580 Hz (Hawkins and Johnstone 1978; Knudsen et al. 1992; Knudsen et al. 1994; Popper 2008).

Status

NMFS identified 17 ESUs of Chinook salmon in Washington, Oregon, Idaho, and California. Each ESU is treated as a separate species under the ESA (NMFS 2005b). Of these ESUs, two are endangered (Sacramento River winter-run and Upper Columbia River spring-run), seven are threatened (Snake River spring/summer-run, Snake River fall-run, Central Valley spring-run, California coastal, Puget Sound, Lower Columbia River, and Upper Willamette River), and one is listed as a species of concern (Central Valley fall-and late fall-run)(70 FR 37160). The remaining seven ESUs were found to not warrant listing under the ESA (NMFS 2005b). The ESUs of concern in this Opinion are summarized below.

4.3.10 Puget Sound Chinook Salmon

Puget Sound Chinook salmon were listed as a threatened species on March 24, 1999 and the threatened status reaffirmed on June 28, 2005. The ESU includes all naturally spawned populations of Chinook salmon from rivers and streams flowing into Puget Sound including the Straits of Juan De Fuca from the Elwha River, eastward, including rivers and streams flowing into Hood Canal, South Sound, North Sound and the Strait of Georgia in Washington, as well as twenty-six artificial propagation programs: the Kendal Creek Hatchery, Marblemount Hatchery (fall, spring yearlings, spring subyearlings, and summer run), Harvey Creek Hatchery, Whitehorse Springs Pond, Wallace River Hatchery (yearlings and subyearlings), Tulalip Bay, Issaquah Hatchery, Soos Creek Hatchery, Icy Creek Hatchery, Keta Creek Hatchery, White River Hatchery, White Acclimation Pond, Hupp Springs Hatchery, Voights Creek Hatchery, Diru Creek, Clear Creek, Kalama Creek, George Adams Hatchery, Rick’s Pond Hatchery, Hamma Hamma Hatchery, Dungeness/Hurd Creek Hatchery, Elwha Channel Hatchery Chinook hatchery programs were listed as threatened under the ESA in 1999. Critical habitat for this species was designated on September 2, 2005.

4.3.11 Lower Columbia River Chinook Salmon

Lower Columbia River Chinook salmon were listed as threatened on March 24, 1999 with the threatened status reaffirmed on June 28, 2005. The ESU includes all naturally spawned populations of Chinook salmon from the Columbia River and its tributaries from its mouth at the Pacific Ocean upstream to a transitional point between Washington and Oregon east of the Hood River and the White Salmon River, and includes the Willamette River to Willamette Falls, Oregon. The eastern boundary for this species occurs at Celilo Falls, which corresponds to the edge of the drier Columbia Basin Ecosystem and historically may have been a barrier to salmon migration at certain times of the year. Stream-type spring-run Chinook salmon found in the Klickitat River are not included in this species (they are considered Mid-Columbia River spring-run Chinook salmon) or the introduced Carson spring-Chinook salmon strain. Seventeen artificial propagation programs are included in the listed ESU: the Sea Resources Tule Chinook Program, Big Creek Tule Chinook Program, Astoria High School (STEP) Tule Chinook Program, Warrenton High School (STEP) Tule Chinook Program, Elochoman River Tule Chinook Program, Cowlitz Tule
Chinook Program, North Fork Toutle Tule Chinook Program, Kalama Tule Chinook Program, Washougal River Tule Chinook Program, Spring Creek NFH Tule Chinook Program, Cowlitz spring Chinook Program in the Upper Cowlitz River and the Cispus River, Friends of the Cowlitz spring Chinook Program, Kalama River spring Chinook Program, Lewis River spring Chinook Program, Fish First spring Chinook Program, and the Sandy River Hatchery (ODFW stock #11) Chinook hatchery programs. Critical habitat for this species was designated on September 2, 2005 (70 FR 2630).

4.3.12 Chum Salmon
Second only to Chinook salmon in adult size, chum salmon (*Oncorhynchus keta*) individuals have been reported up to 3.6 feet (1.1 m) and 46 pounds (20.8 kg). However, average weight is around 8 to 15 pounds (3.6 to 6.8 kg).

Chum salmon are best known for the enormous canine-like fangs and striking body color of spawning males (a calico pattern, with the front two-thirds of the flank marked by a bold, jagged, reddish line and the posterior third by a jagged black line). Females are less flamboyantly colored and lack the extreme dentition of the males. Ocean stage chum salmon are metallic greenish-blue along the back with black speckles. They closely resemble both sockeye and coho salmon at this stage. As chum salmon enter fresh water, their color and appearance changes dramatically. Both sexes develop a "tiger stripe" pattern of bold red and black stripes.

In order to mate, chum salmon adults migrate from a marine environment into the freshwater streams and rivers of their birth (called anadromy). They spawn only once and then die (called semelparity). Unlike most species that rear extensively in fresh water, chum salmon form schools, presumably to reduce predation. Chum salmon feed on insects and marine invertebrates while in rivers. As adults, their diet consists of "copepods", fishes, "mollusks", squid and "tunicates".

Age at maturity appears to follow a latitudinal trend in which a greater number of fish mature at a later age in the northern portion of the species' range. Most chum salmon mature and return to their birth stream to spawn between 3 and 5 years of age, with 60 to 90 percent of the fish maturing at 4 years of age. The species has only a single form (sea-run) and does not reside in fresh water. As the time for migration to the sea approaches, juvenile chum salmon lose their parr marks (vertical bars and spots useful for camouflage). They then gain the dark back and light belly coloration used by fish living in open water. They seek deeper water and avoid light; their gills and kidneys begin to change so that they can process salt water.

Distribution
Historically, chum salmon were distributed throughout the coastal regions of western Canada and the United States, as far south as Monterey Bay, California. Presently, major spawning populations are found only as far south as Tillamook Bay on the northern Oregon coast. Chum salmon are semelparous, spawn primarily in freshwater and, apparently, exhibit obligatory anadromy (there are no recorded landlocked or naturalized freshwater populations).

Chum salmon spend two to five years in feeding areas in the northeast Pacific Ocean, which is a greater proportion of their life history than other Pacific salmonids. Chum salmon distribute throughout the North Pacific Ocean and Bering Sea, although North American chum salmon (as opposed to chum salmon originating in Asia), rarely occur west of 175° E longitude (*Johnson et al., 1997*).
North American chum salmon migrate north along the coast in a narrow coastal band that broadens in southeastern Alaska, although some data suggest that Puget Sound chum, including Hood Canal summer run chum, may not make extended migrations into northern British Columbian and Alaskan waters, but instead may travel directly offshore into the north Pacific Ocean (Johnson et al. 1997).

Chum salmon, like pink salmon, usually spawn in the lower reaches of rivers, with redds usually dug in the mainstem or in side channels of rivers from just above tidal influence to nearly 100 km from the sea. Juveniles outmigrate to seawater almost immediately after emerging from the gravel that covers their redds (Salo 1991). This ocean-type migratory behavior contrasts with the stream-type behavior of some other species in the genus Oncorhynchus (e.g., coastal cutthroat trout, steelhead, coho salmon, and most types of Chinook and sockeye salmon), which usually migrate to sea at a larger size, after months or years of freshwater rearing. This means that survival and growth in juvenile chum salmon depend less on freshwater conditions (unlike stream-type salmonids which depend heavily on freshwater habitats) than on favorable estuarine conditions. Another behavioral difference between chum salmon and species that rear extensively in freshwater is that chum salmon form schools, presumably to reduce predation (Pitcher 1986), especially if their movements are synchronized to swamp predators (Miller and Brannon 1982).

Chum salmon have been threatened by overharvests in commercial and recreational fisheries, adult and juvenile mortalities associated with hydropower systems, habitat degradation from forestry and urban expansion, and shifts in climatic conditions that changed patterns and intensity of precipitation.

Hearing

Although the data available on the hearing sensitivities of Pacific salmon is limited, that information suggests that the species in the family Salmonidae have similar auditory systems and hearing sensitivities (Popper 1977; Popper et al. 2007; Wysocki et al. 2007). Most of the data available resulted from studies of the hearing capability of Atlantic salmon (Salmo salar), which is a “hearing generalist” with a relatively poor sensitivity to sound (Hawkins and Johnstone 1978). Based on the information available, we assume that the chum salmon considered in this consultation have hearing sensitivities ranging from less than 100 Hz to about 580 Hz (Hawkins and Johnstone 1978; Knudsen et al. 1992; Knudsen et al. 1994; Popper 2008).

Status and Trends

There are currently four ESUs of chum, two of which (Columbia River and the Hood Canal Summer-run) have been designated as threatened (70 FR 37161). The Puget Sound/Strait of Georgia and Pacific Coast ESUs have not yet warranted a designation of threatened or endangered (NMFS 2005b). They are not listed on the IUCN Red List of Threatened Species (IUCN 2010) or by CITES.

Chum salmon may historically have been the most abundant of all Pacific salmonids. Seven of 16 historical spawning populations in the Hood River ESU are extinct. Recently some of these populations have shown encouraging increases in numbers, but the 2005 status review report shows that the population trend overall is a 6 percent decline per year. In the Columbia River, historical populations reached hundreds of thousands to a million adults each year. In the past 50 years, the average has been a few thousand a year. Currently, it is thought that 14 of
the 16 spawning populations in the Columbia River ESU are extinct. About 500 spawners occur in the ESU presently, and the long-term trend is flat (NMFS 2005b).

4.3.13 Columbia River Chum Salmon
Columbia River chum salmon were listed as threatened on March 25, 1999 (64 FR 14508) and reaffirmed as threatened on June 28, 2005. Columbia River chum salmon includes all natural-origin chum salmon in the Columbia River and its tributaries in Washington and Oregon, as well as three artificial propagation programs: the Chinook River (Sea Resources Hatchery), Grays River, and Washougal River/Duncan Creek chum hatchery programs. Critical habitat for this species was designated on September 2, 2005.

4.3.14 Hood Canal Summer-run Chum Salmon
Hood Canal summer-run chum salmon were listed as endangered under the ESA on March 25, 1999 and reaffirmed as threatened on June 28, 2005. Hood Canal summer-run chum salmon includes summer-run chum salmon populations in Hood Canal in Puget Sound and in Discovery and Sequim Bays on the Strait of Juan de Fuca. It may also include summer-run fish in the Dungeness River, but the existence of that run is uncertain. Five hatchery populations are considered part of the species including those from the Quilcene National Fish Hatchery, Long Live the Kings Enhancement Project (Lilliwaup Creek), Hamma Hamma River Supplementation Project, Big Beef Creek reintroduction Project, and the Salmon Creek supplementation project in Discovery Bay. Although included as part of the species, none of the hatchery populations were listed. Critical habitat for this species was designated on September 2, 2005.

4.3.15 Coho Salmon
Coho salmon (Oncorhynchus kisutch) have dark metallic blue or greenish backs with silver sides and a light belly and there are small black spots on the back and upper lobe of the tail while in the ocean. The gumline in the lower jaw has lighter pigment than does the Chinook salmon. Spawning fish in inland rivers are dark with reddish-maroon coloration on the sides. Adult coho salmon may measure more than 2 feet (61 cm) in length and can weigh up to 36 pounds (16 kg). However, the average weight of adult coho is 8 pounds (3.6 kg).

Coho salmon adults migrate from a marine environment into freshwater streams and rivers of their birth in order to mate (called anadromy). They spawn only once and then die (called semelparity). Adults return to their stream of origin to spawn and die, usually at around three years old. Some precocious males known as "jacks" return as two-year-old spawners. Spawning males develop a strongly hooked snout and large teeth. Females prepare several redds (nests) where the eggs will remain for six to seven weeks until they hatch.

As the time for migration to the sea approaches, juvenile coho salmon lose their parr marks, a pattern of vertical bars and spots useful for camouflage, and gain the dark back and light belly coloration used by fish living in open water. Their gills and kidneys also begin to change at this time so that they can process salt water. In their freshwater stages, coho feed on plankton and insects, and switch to a diet of small fishes as adults in the ocean.

Distribution
Coho salmon occur naturally in most major river basins around the North Pacific Ocean from central California to northern Japan (Laufle et al. 1986). After entering the ocean, immature coho salmon initially remain in near-shore waters close to the parent stream. Most coho salmon adults are 3-year-olds, having spent approximately 18 months...
in freshwater and 18 months in salt water. Wild female coho return to spawn almost exclusively at age 3. Spawning escapements of coho salmon are dominated by a single year class. The abundance of year classes can fluctuate dramatically with combinations of natural and human-caused environmental variation.

North American coho salmon migrate north along the coast in a narrow coastal band that broadens in southeastern Alaska. During this migration, juvenile coho salmon tend to occur in both coastal and offshore waters. During spring and summer, coho salmon will forage in waters between 46° N, the Gulf of Alaska, and along Alaska’s Aleutian Islands.

The factors threatening naturally reproducing coho salmon throughout its range are numerous and varied. For coho salmon populations in California and Oregon, the present depressed condition is the result of several longstanding, human-induced factors (e.g., habitat degradation, water diversions, harvest, and artificial propagation) that serve to exacerbate the adverse effects of natural environmental variability from such factors as drought, floods, and poor ocean conditions. The major activities responsible for the decline of coho salmon in Oregon and California are logging, road building, grazing, mining activities, urbanization, stream channelization, dams, wetland loss, water withdrawals and unscreened diversions for irrigation.

Hearing

Although the data available on the hearing sensitivities of Pacific salmon is limited, that information suggests that the species in the family Salmonidae have similar auditory systems and hearing sensitivities ([Popper 1977; Popper et al. 2007; Wysocki et al. 2007](#)). Most of the data available resulted from studies of the hearing capability of Atlantic salmon (*Salmo salar*), which is a “hearing generalist” with a relatively poor sensitivity to sound ([Hawkins and Johnstone 1978](#)). Based on the information available, we assume that the coho salmon considered in this consultation have hearing sensitivities ranging from less than 100 Hz to about 580 Hz ([Hawkins and Johnstone 1978](#)) ([Knudsen et al. 1992; Knudsen et al. 1994](#)).

Status and Trends

There are currently seven ESUs of coho salmon in Washington, Oregon, and California ([NMFS 2005b](#)). Of these ESUs, one is endangered (Central California Coast), and three are threatened (Northern California-Southern Oregon Coasts, Lower Columbia River and Oregon Coast) ([NMFS 2005b](#))(70 FR 37160).

Coho salmon are considered to be particularly vulnerable to anthropogenic activities such as timber harvesting, mining, and road building since they have an extended residency in freshwater environments (streams, ponds, and lakes). Catch rates for coho salmon in Alaska are at historically high levels, and most stocks are rated as stable ([Navy 2006](#)). They are not listed on the IUCN Red List of Threatened Species ([IUCN 2010](#)) or by CITES.

The long-term trend for the listed ESUs is still downward, although there was one recent good year with an increasing trend in 2001 ([NMFS 2005b](#)).

4.3.16 Lower Columbia River Coho Salmon

Originally part of a larger Lower Columbia River/Southwest Washington ESU, Lower Columbia coho were identified as a separate ESU and listed as threatened on June 28, 2005. The ESU includes all naturally spawned populations of coho salmon in the Columbia River and its tributaries in Washington and Oregon, from the mouth of...
the Columbia up to and including the Big White Salmon and Hood Rivers, and includes the Willamette River to Willamette Falls, Oregon, as well as twenty-five artificial propagation programs: the Grays River, Sea Resources Hatchery, Peterson Coho Project, Big Creek Hatchery, Astoria High School (STEP) Coho Program, Warrenton High School (STEP) Coho Program, Elochoman Type-S Coho Program, Elochoman Type-N Coho Program, Cathlamet High School FFA Type-N Coho Program, Cowlitz Type-N Coho Program in the Upper and Lower Cowlitz Rivers, Cowlitz Game and Anglers Coho Program, Friends of the Cowlitz Coho Program, North Fork Toutle River Hatchery, Kalama River Type-N Coho Program, Kalama River Type-S Coho Program, Washougal Hatchery Type-N Coho Program, Lewis River Type-N Coho Program, Lewis River Type-S Coho Program, Fish First Wild Coho Program, Fish First Type-N Coho Program, Syverson Project Type-N Coho Program, Eagle Creek National Fish Hatchery, Sandy Hatchery, and the Bonneville/Cascade/Oxbow complex coho hatchery programs.

4.3.17 Sockeye Salmon

Sockeye salmon (*Oncorhynchus nerka*) are the second most abundant of the seven Pacific salmon species. They have silvery sides with a green or blue back and white tips on the ventral and anal fins. Sockeye salmon have no large spots on back or tail, but some may have speckling on the back. They have no silver pigment on the tail, and they have a prominent gold eye color.

Sockeye salmon exhibit a very diverse life history, characteristically using both riverine and lake habitat throughout its range, exhibiting both freshwater resident and anadromous forms. The vast majority of sockeye salmon are anadromous fish that make use of lacustrine habitat for juvenile rearing. These “lake-type” fish typically spawn in the outlet streams of lakes and occasionally in the lakes themselves. Juvenile sockeye salmon will then use the lake environment for rearing for up to 3 years before migrating to sea. After 1 to 4 years at sea, sockeye salmon will return to their natal lake to spawn. Some sockeye, however, spawn in rivers without lake habitat for juvenile rearing. Offspring of these riverine spawners tend to use the lower velocity sections of rivers as the juvenile rearing environment for 1 to 2 years, or may migrate to sea in their first year.

Sockeye salmon also have a wholly freshwater life history form, called kokanee (*Burgner 1991*). In some cases a single population will give rise to both the anadromous and freshwater life history form. While in fresh water juveniles of both life history types prey primarily upon insects. The presence of both life history types may be related to the energetic costs of outmigrating to sea, and the productivity of the lacustrine system they inhabit. In coastal lakes, where the migration to sea is relatively short and energetic costs are minimal, kokanee populations are rare.

Distribution

Sockeye salmon occur in the North Pacific and Arctic oceans and associated freshwater systems. This species ranges south as far as the Sacramento River in California and northern Hokkaido in Japan, to as far north as far as Bathurst Inlet in the Canadian Arctic and the Anadyr River in Siberia (*Burgner 1991*). The largest populations, and hence the most important commercial populations, occur north of the Columbia River.

Status and Trends

An analysis of total annual Ozette Lake sockeye salmon abundance (based on adult run size data presented in Jacobs et al. 1996) indicates a trend in abundance averaging -2 percent per year over the period 1977 through 1998 (*NMFS*)
The current tributary-based hatchery program was planned and initiated in response to the declining population trend identified for the Ozette Lake sockeye salmon population. The most recent (1996 to 2003) run-size estimates range from a low of 1,609 in 1997 to a high of 5,075 in 2003, averaging approximately 3,600 sockeye per year. For return years 2000 to 2003, the 4-year average abundance estimate was slightly over 4,600 sockeye. Because run-size estimates before 1998 are likely to be even more unreliable than recent counts, and new counting technology has resulted in an increase in estimated run sizes, no statistical estimation of trends is reported. The current trends in abundance are unknown for the beach spawning aggregations. Although overall abundance appears to have declined from historical levels, whether this resulted in fewer spawning aggregations, lower abundances at each aggregation, or both, is not known (Good et al. 2005). Based on estimates of habitat carrying capacity, a viable sockeye salmon population in Lake Ozette watershed would range between 35,500 to 121,000 spawners (Rawson et al. 2009).

There has been no harvest of Ozette Lake sockeye salmon for the past four brood-cycle years (since 1982). Prior to that time, ceremonial and subsistence harvests by the Makah Tribe were low, ranging from 0 to 84 fish per year. Harvest has not been an important mortality factor for the population in over 35 years. In addition, due to the early river entry timing of returning Ozette Lake sockeye salmon (beginning in late April, with the peak returns prior to late-May to mid-June), the fish are not intercepted in Canadian and United States marine area fisheries directed at Fraser River sockeye salmon. There are currently no known marine area harvest impacts on Ozette Lake sockeye salmon.

Overall abundance is substantially below historical levels (Good et al. 2005). Declines in abundance have been attributed to a combination of introduced species, predation, loss of tributary populations, a loss of quality of beach spawning habitat, temporarily unfavorable ocean conditions, habitat degradation, and excessive historical harvests (Jacobs et al. 1996). In the last few years the number of returning adults has increased, although some of these individuals are of hatchery origin. This produces uncertainty regarding natural growth rate and productivity of the ESU’s natural component. In addition, genetic integrity has perhaps been compromised due to the artificial supplementation that has occurred in this population, since approximately one million sockeye have been released into the Ozette watershed from the late 1930s to present (Boomer 1995; Kemmerich 1945).

4.3.18 Ozette Lake Sockeye Salmon

This ESU includes all naturally spawned sockeye salmon in Ozette Lake, Ozette River, Coal Creek, and other tributaries flowing into Ozette Lake, Washington. Composed of only one population, the Ozette Lake sockeye salmon ESU consists of five spawning aggregations or subpopulations which are grouped according to their spawning locations. The five spawning locations are Umbrella and Crooked creeks, Big River, and Olsen’s and Allen’s beaches (NMFS 2009).

Adult Ozette Lake sockeye salmon enter Ozette Lake through the Ozette River from mid-April to mid-August, holding three to nine months in Ozette Lake prior to spawning in late October through January. Sockeye salmon spawn primarily in lakeshore upwelling areas in Ozette Lake (particularly at Allen's Bay and Olsen's Beach), and in two tributaries Umbrella Creek and Big River. Minor spawning may occur below Ozette Lake in the Ozette River or in Coal Creek, a tributary of the Ozette River. Beach spawners are almost all age-4 adults, while tributary spawners are ages 3 and 5 (NMFS 2009). Spawning occurs in the fall through early winter, with peak spawning in
tributaries in November and December. Eggs and alevins remain in the gravel until the fish emerge as fry in spring. Fry then migrate immediately to the limnetic zone in Ozette Lake, where the fish rear. After one year of rearing, in late spring, Ozette Lake sockeye salmon emigrate seaward as age-1+ smolts, where they spend between 1 and 3 years in ocean before returning to fresh water.

4.3.19 Steelhead
Steelhead trout (*Oncorhynchus mykiss*) are usually dark-olive in color, shading to silvery-white on the underside with a heavily speckled body and a pink to red stripe running along their sides. Steelhead trout can reach up to 55 pounds (25 kg) in weight and 45 inches (120 cm) in length, though average size is much smaller. They

They are a unique species; individuals develop differently depending on their environment. While all *O. mykiss* hatch in gravel-bottomed, fast-flowing, well-oxygenated rivers and streams, some stay in fresh water all their lives. These fish are called rainbow trout. The steelhead that migrate to the ocean develop a much more pointed head, become more silvery in color, and typically grow much larger than the rainbow trout that remain in fresh water.

Adults migrate from a marine environment into the freshwater streams and rivers of their birth in order to mate (called anadromy). Unlike other Pacific salmonids, they can spawn more than one time (called iteroparity). Migrations can be hundreds of miles. Young animals feed primarily on zooplankton. Adults feed on aquatic and terrestrial insects, mollusks, crustaceans, fish eggs, minnows, and other small fishes (including other trout).

Maximum age is about 11 years. Males mature generally at two years and females at three. Juvenile steelhead may spend up to seven years in freshwater before migrating to estuarine areas as smolts and then into the ocean to feed and mature. They will remain at sea for up to three years before returning to freshwater to spawn. Some populations actually return to freshwater after their first season in the ocean, but do not spawn, and then return to the sea after one winter season in freshwater. Timing of return to the ocean can vary, and even within a stream system there can be different seasonal runs.

Steelhead can be divided into two basic reproductive types, stream-maturing or ocean-maturing, based on the state of sexual maturity at the time of river entry and duration of spawning migration. The stream-maturing type (summer-run steelhead in the Pacific Northwest and northern California) enters freshwater in a sexually immature condition between May and October and requires several months to mature and spawn. The ocean-maturing type (winter-run steelhead in the Pacific Northwest and northern California) enters freshwater between November and April, with well-developed gonads, and spawns shortly thereafter. Coastal streams are dominated by winter-run steelhead, whereas inland steelhead of the Columbia River basin are almost exclusively summer-run steelhead.

Steelhead spawn in cool, clear streams featuring suitable gravel size, depth, and current velocity. Intermittent streams may also be used for spawning (*Barnhart 1986; Everest 1972*). Depending on water temperature, steelhead eggs may incubate for 1.5 to 4 months (August 9, 1996, 61 FR 41542) before hatching. Juveniles rear in fresh water from one to four years before migrating to the ocean as smolts (August 9, 1996, 61 FR 41542). Winter steelhead populations generally smolt after two years in fresh water (*Busby et al. 1996*).
Steelhead typically reside in marine waters for two or three years before migrating to their natal streams to spawn as four- or five-year-olds (August 9, 1996, 61 FR 41542). Populations in Oregon and California have higher frequencies of age-1-ocean steelhead than populations to the north, but age-2-ocean steelhead generally remain dominant (Busby et al. 1996). Age structure appears to be similar to other west coast steelhead, dominated by four-year-old spawners (Busby et al. 1996).

Adult female steelhead will prepare a redd (or nest) in a stream area with suitable gravel type composition, water depth, and velocity. The adult female may deposit eggs in 4 to 5 "nesting pockets" within a single redd. The eggs hatch in 3 to 4 weeks.

Distribution
The ocean distributions for listed steelhead are not known in detail, but steelhead are caught only rarely in ocean salmon fisheries. The total catch of steelhead in Canadian fisheries is low and consideration of the probable population composition suggests that these fewer than 10 of the individual captured in these fisheries represent individuals from the combination of the five endangered or threatened steelhead populations.

Summer steelhead enter freshwater between May and October in the Pacific Northwest (Busby et al. 1996). They require cool, deep holding pools during summer and fall, prior to spawning. They migrate inland toward spawning areas, overwinter in the larger rivers, resume migration in early spring to natal streams, and then spawn (Bjornn and Reiser 1991).

Winter steelheads enter freshwater between November and April in the Pacific Northwest (Busby et al. 1996), migrate to spawning areas, and then spawn in late winter or spring. Some adults, however, do not enter coastal streams until spring, just before spawning. Steelhead typically spawn between December and June, and the timing of spawning overlaps between populations regardless of run type (Busby et al. 1996).

Hearing
Although the data available on the hearing sensitivities of Pacific salmon is limited, that information suggests that the species in the family Salmonidae have similar auditory systems and hearing sensitivities (Popper 1977; Popper et al. 2007; Wysocki et al. 2007). Most of the data available resulted from studies of the hearing capability of Atlantic salmon (Salmo salar), which is a “hearing generalist” with a relatively poor sensitivity to sound (Hawkins and Johnstone 1978). Based on the information available, we assume that the coho salmon considered in this consultation have hearing sensitivities ranging from less than 100 Hz to about 580 Hz (Hawkins and Johnstone 1978) (Knudsen et al. 1992; Knudsen et al. 1994).

4.3.20 Lower Columbia River Steelhead
Lower Columbia River steelhead include naturally-produced steelhead returning to Columbia River tributaries on the Washington side between the Cowlitz and Wind rivers in Washington and on the Oregon side between the Willamette and Hood rivers, inclusive. In the Willamette River, the upstream boundary of this species is at Willamette Falls. This species includes both winter and summer steelhead. Two hatchery populations are included in this species, the Cowlitz Trout Hatchery winter-run stock and the Clackamas River stock (ODFW stock 122) but neither was listed as threatened.
Listing status
Lower Columbia River steelhead were listed as threatened under the ESA on January 5, 2006. Critical habitat for this species was designated on September 5, 2005 (70 FR 52630).

Population status and trends
There are no historical estimates of this species’ abundance. Because of their limited distribution in upper tributaries and urbanization in the lower tributaries (e.g., the lower Willamette, Clackamas, and Sandy Rivers run through Portland or its suburbs), habitat degradation appears to have threatened summer steelhead more than winter steelhead. Steelhead populations in the lower Willamette, Clackamas, and Sandy Rivers appear stable or slightly increasing although sampling error limits the reliability of this trend. Total annual run size data are only available for the Clackamas River (1,300 winter steelhead, 70 percent hatchery; 3,500 wild summer steelhead).

4.3.21 Green Sturgeon
Green sturgeon are long-lived, slow-growing fish and the most marine-oriented of the sturgeon species. Mature males range from 4.5-6.5 feet (1.4-2 m) in "fork length" and do not mature until they are at least 15 years old, while mature females range from 5-7 feet (1.6-2.2 m) fork length and do not mature until they are at least 17 years old. Maximum ages of adult green sturgeon are likely to range from 60-70 years (Moyle 2002). This species is found along the west coast of Mexico, the United States, and Canada.

Although they are members of the class of bony fishes, the skeleton of sturgeons is composed mostly of cartilage. Sturgeon lack scales; however, they have five rows of characteristic bony plates on their body called "scutes". The backbone of the sturgeon curves upward into the caudal fin, forming their shark-like tail. On the ventral, or underside, of their flattened snouts are sensory barbels and a siphon-shaped, protrusible, toothless mouth. Recent genetic information suggests that green sturgeon in North America are taxonomically distinct from morphologically similar forms in Asia.

Green sturgeon are believed to spend the majority of their lives in nearshore oceanic waters, bays, and estuaries. Early life-history stages reside in fresh water, with adults returning to freshwater to spawn when they are more than 15 years of age and more than 4 feet (1.3 m) in size. Spawning is believed to occur every 2-5 years (Moyle 2002). Adults typically migrate into fresh water beginning in late February; spawning occurs from March-July, with peak activity from April-June (Moyle et al. 1995). Females produce 60,000-140,000 eggs (Moyle et al. 1992). Juvenile green sturgeon spend 1-4 years in fresh and estuarine waters before dispersal to saltwater (Beamesderfer and Webb 2002). They disperse widely in the ocean after their out-migration from freshwater (Moyle et al. 1992).

The only feeding data we have on adult green sturgeon shows that they are eating "benthic" invertebrates including shrimp, mollusks, amphipods, and even small fish (Moyle et al. 1992).

Distribution
The green sturgeon, *Acipenser medirostris*, is an anadromous species inhabiting Asian and American shorelines of the northern Pacific Ocean (Moyle 2002). In North America, green sturgeon occur from the Bering Sea to Ensenada, Mexico.
The species is divided into two genetically distinct but physically indistinguishable clades: a Northern DPS whose populations are relatively healthy, and a Southern DPS that has undergone significant decline (Adams et al. 2007). Only the Southern DPS of green sturgeon is listed under the ESA.

Population Structure
Southern green sturgeon currently consist of a single population that occurs in San Francisco Bay and the river systems associated with the bay (Adams et al. 2007). Southern green sturgeon are known to spawn in the Sacramento River and have been reported to spawn in the Feather River (Adams et al. 2007).

Natural Threats
Green sturgeon eggs and larvae are likely preyed upon by a variety of larger fish and animals, while sub-adult and adult sturgeon may occasionally be preyed upon by shark sea lions, or other large body predators. Physical barriers, changes in water flow and temperatures may also affect freshwater survival.

Anthropogenic Threats
Southern green sturgeon are primarily threatened by reductions in the area of spawning habitat associated with the construction of dams in the Sacramento River system (e.g., Oroville, Shasta and Keswick dams). Southern green sturgeon are also threatened by elevated temperatures in freshwater river systems, harvests, entrainment by water projects, exposure to toxic chemicals, and invasive species (Adams et al. 2007; Erickson and Webb 2007).

Climate change has the potential to affect sturgeon in similar, if not more significant ways it affects salmonids. Elevated air temperatures could lead to precipitation falling as rain instead of snow. Additionally, snow would likely melt sooner and more rapidly, potentially leading to greater flooding during melting and lower water levels at other times, as well as warmer river temperatures. Although sturgeon can spawn over varied benthic habitat, they prefer localized depressions in riverbeds (Moyle et al. 1992; Moyle et al. 1995). Increased extremes in river flow (i.e., periods of flooding and low flow) can alternatively disrupt and fill in spawning habitat that sturgeon rely upon (ISAB 2007). If water flow is low during migration events, it is likely that new obstacles can impede or block sturgeon movement. As with other anadromous fishes, sturgeon are uniquely evolved to the environments that they live in. Because of this specificity, broad scale changes in environment can be difficult to adapt to, including changes in water temperature (Cech Jr. et al. 2000). Sturgeon are also sensitive to elevated water temperatures. Temperature triggers spawning behavior. Warmer water temperatures can initial spawning earlier in a season for salmon and the same can be true for sturgeon (ISAB 2007). If river and lake temperatures become anomalously warm, juvenile sturgeon may experience elevated mortality due to lack of cooler water refuges in freshwater habitats. Apart from direct changes to sturgeon survival, altered water temperatures may disrupt habitat, including the availability of prey (ISAB 2007). Warmer temperatures may also have the effect of increasing water use in agriculture, both for existing fields and the establishment of new ones in once unprofitable areas (ISAB 2007). This means that streams, rivers, and lakes will experience additional withdrawal of water for irrigation and increasing contaminant loads from returning effluent. Overall, it is likely that global warming will increase pressures on sturgeon survival and recovery.

Green sturgeon are targeted by a subsistence tribal fishery in the Klamath River as well as a small commercial fishery and some sport fisheries along the Pacific Coast. The majority of harvests since 1985 have taken place in the
lower Columbia River; although this fishery has declined because of increasingly restrictive fishing regulations (Adams et al. 2002). Mixed stock fisheries along the Pacific coast annually harvested an average of approximately 1,350 green sturgeon during 1994–2001 (Adams et al. 2002). We do not know whether or to what degree these fisheries harvested southern green sturgeon, but the distribution of southern green sturgeon would expose them to these fisheries.

Sturgeon species generally accumulate contaminants in their tissues. White sturgeon from the Kootenai River have been found to contain aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, zinc, DDE, DDT, PCBs, and other organochlorines (Kruse and Scarnecchia 2002). Mercury has also been identified from white sturgeon of the lower Columbia River (Webb et al. 2006). Numerous organochlorines, including DDT, DDD, DDE, chlordane, and dieldrin have also been identified in these fish (Foster et al. 2001). Observed concentrations are likely sufficient to influence reproductive physiology.

Status and Trend

The southern population of green sturgeon was listed as threatened on April 7, 2006 (70 FR 17757). Critical habitat for this species was designated on October 9, 2009 (74 FR 52300). Data on the demographic status and trend of southern green sturgeon are very limited. Available information comes from two predominant sources, fisheries and tagging. Only three data sets were considered useful for the population time series analyses by NMFS’ biological review team: the Klamath Yurok Tribal fishery catch, a San Pablo sport fishery tag returns, and Columbia River commercial landings (BRT 2005). Using San Pablo sport fishery tag recovery data, the California Department of Fish and Game produced a population time series estimate for the southern DPS. San Pablo data suggest that green sturgeon abundance may be increasing, but the data showed no significant trend. The data set is not particularly convincing, however, as it suffers from inconsistent effort and since it is unclear whether summer concentrations of green sturgeon provide a strong indicator of population performance (BRT 2005). Although there is not sufficient information available to estimate the current population size of southern green sturgeon, catch of juveniles during state and federal salvage operations in the Sacramento delta are low in comparison to catch levels before the mid-1980s.

Vocalizations and Hearing

We do not have specific information on hearing in green sturgeon. However, Meyer and Popper (2002) recorded auditory evoked potentials to pure tone stimuli of varying frequency and intensity in lake sturgeon and reported that lake sturgeon detect pure tones from 100 to 2000 Hz, with best sensitivity from 100 to 400 Hz. They also compared these sturgeon data with comparable data for oscar (Astronotus ocellatus) and goldfish (Carassius auratus) and reported that the auditory brainstem responses for the lake sturgeon are more similar to the goldfish (which is considered a hearing specialist that can hear up to 5000 Hz) than to the oscar (which is a non-specialist that can only detect sound up to 400 Hz); these authors, however, felt additional data were necessary before lake sturgeon could be considered specialized for hearing.

Lovell et al. (2005) also studied sound reception in and the hearing abilities of paddlefish (Polyodon spathula) and lake sturgeon (Acipenser fulvescens). They concluded that both species were responsive to sounds ranging in frequency from 100 to 500 Hz with lowest hearing thresholds from frequencies in bandwidths between 200 and 300
Hz and higher thresholds at 100 and 500 Hz. We assume that the hearing sensitivities reported for these other species of sturgeon are representative of the hearing sensitivities of southern green sturgeon.

4.3.22 Southern Population of Pacific Eulachon

Eulachon, *Thaleichthys pacificus*, (commonly called smelt, candlefish, or hooligan) are a small, anadromous fish from the eastern Pacific Ocean. They are distinguished by the large canine teeth on the vomer, a bone in the roof of the mouth, and 18 to 23 rays in the anal fin. Like Pacific salmon they have an adipose fin; it is sickle-shaped. The paired fins are longer in males than in females. All fins have well-developed breeding tubercles (raised tissue "bumps") in ripe males, but these are poorly developed or absent in females. Adult coloration is brown to blue on the back and top of the head, lighter to silvery white on the sides, and white on the ventral surface; speckling is fine, sparse, and restricted to the back. They feed on plankton but only while at sea.

Eulachon typically spend 3 to 5 years in saltwater before returning to freshwater to spawn from late winter through mid spring. During spawning, males have a distinctly raised ridge along the middle of their bodies. Eggs are fertilized in the water column. After fertilization, the eggs sink and adhere to the river bottom, typically in areas of gravel and coarse sand. Most eulachon adults die after spawning. Eulachon eggs hatch in 20 to 40 days. The larvae are then carried downstream and are dispersed by estuarine and ocean currents shortly after hatching. Juvenile eulachon move from shallow nearshore areas to mid-depth areas. Within the Columbia River Basin, the major and most consistent spawning runs occur in the mainstem of the Columbia River as far upstream as the Bonneville Dam, and in the Cowlitz River.

Distribution

Eulachon is an anadromous species that spawns in the lower portions of certain rivers draining into the northeastern Pacific Ocean ranging from Northern California to the southeastern Bering Sea in Bristol Bay, Alaska (NMFS 2010a; Schultz and DeLacy 1935). Eulachon have been described as “common” in Grays Harbor and Willapa Bay on the Washington coast, “abundant” in the Columbia River, “common” in Oregon’s Umpqua River, and “abundant” in the Klamath River in northern California. They have been described as “rare” in Puget Sound and Skagit Bay in Washington; Siuslaw River, Coos Bay, and Rogue River in Oregon; and Humboldt Bay in California (Emmett et al. 1991). However, Hay and McCarter (2000) and Hay (2002) identified 33 eulachon spawning rivers in British Columbia and 14 of these were classified as supporting regular yearly spawning runs.

The southern population of Pacific eulachon consists of populations spawning in rivers south of the Nass River in British Columbia, Canada, to, and including, the Mad River in California (75 FR 13012).

Population Structure

The southern population of Pacific eulachon consists of several “core populations” that include populations in the Columbia and Fraser Rivers with smaller populations in several other river systems in Canada, including the Nass and Skeena Rivers. Within the Columbia River Basin, the major and most consistent spawning runs return to the mainstem of the Columbia River (from just upstream of the estuary, river mile 25, to immediately downstream of Bonneville Dam, river mile 146) and in the Cowlitz River. Periodic spawning also occurs in the Grays, Skamokawa, Elochoman, Kalama, Lewis, and Sandy rivers (tributaries to the Columbia River). Historically, there may have been a population in the Klamath River (75 FR 13012).
Natural Threats
Eulachon have numerous avian predators including harlequin ducks, pigeon guillemots, common murres, mergansers, cormorants, gulls, and eagles. Marine mammals such as humpback whales, orcas, dolphins, Steller sea lions, California sea lions, northern fur seals, harbor seals, and beluga whales are known to feed on eulachon. During spawning runs, bears and wolves have been observed consuming eulachon. Fishes that prey on eulachon include white sturgeon, spiny dogfish, sablefish, salmon sharks, arrowtooth flounder, salmon, Dolly Varden charr, Pacific halibut, and Pacific cod. In particular, eulachon and their eggs seem to provide a significant food source for white sturgeon in the Columbia and Fraser Rivers (75 FR 13012).

Anthropogenic Threats
Southern eulachon are primarily threatened by increasing temperatures in the marine, coastal, estuarine, and freshwater environments of the Pacific Northwest that are at least causally related to climate change; dams and water diversions, water quality degradation, dredging operations in the Columbia and Fraser Rivers; commercial, recreational, and subsistence fisheries in Oregon and Washington that target eulachon; and bycatch in commercial fisheries.

Eulachon are particularly vulnerable to capture in shrimp fisheries in the United States and Canada as the marine areas occupied by shrimp and eulachon often overlap. In Oregon, the bycatch of various species of smelt (including eulachon) has been as high as 28 percent of the total catch of shrimp by weight (Hannah and Jones 2007). There are directed fisheries in Alaska state waters for eulachon in Upper Cook Inlet, the Copper River area, and in southeast Alaska. There has been little commercial activity in recent years, due to either lack of interest or closures resulting from concerns over diminished spawning runs, but there is potential for substantial amounts of harvest (Ormseth and Vollenweider 2007).

Status
The southern population of eulachon was listed as threatened on 18 March 2010 (75 FR 13012).

Vocalizations and Hearing
We do not have specific information on hearing in eulachon, but we assume that they are hearing generalists whose hearing sensitivities would be similar to salmon. Species in the family Salmonidae have similar auditory systems and hearing sensitivities (Popper 1977; Popper et al. 2007; Wysocki et al. 2007). Most of the data available on this group resulted from studies of the hearing capability of Atlantic salmon (Salmo salar), which is a “hearing generalist” with a relatively poor sensitivity to sound (Hawkins and Johnstone 1978). Based on the information available, we assume that the eulachon considered in this consultation have hearing sensitivities ranging from less than 100 Hz to about 580 Hz (Hawkins and Johnstone 1978; Knudsen et al. 1992; Knudsen et al. 1994; Popper 2008).

Critical Habitat
Critical habitat has been proposed for this species (76 FR 515).

4.4 Environmental Baseline
By regulation, environmental baselines for biological opinions include the past and present impacts of all state, Federal or private actions and other human activities in the action area, the anticipated impacts of all proposed
Federal projects in the action area that have already undergone formal or early section 7 consultation, and the impact of State or private actions which are contemporaneous with the consultation in process (50 CFR §402.02). The environmental baseline for this Opinion includes the effects of several activities that affect the survival and recovery of listed species.

Some of those activities, most notably commercial whaling, occurred extensively in the past, ended, and no longer appear to affect the whale populations, although the effects of these reductions likely persist today. Similarly harvest of salmon and other listed marine fishes have been reduced or eliminated to protect listed species. Other human activities are ongoing and appear to continue to affect listed species. The following discussion summarizes the principal phenomena that are known to affect the likelihood that these endangered and threatened species will survive and recover in the wild.

4.4.1 The Environmental Setting
The action area includes Puget Sound, the Georgia Basin, and waters off the Pacific coast of the states of Washington. Puget Sound is a system of marine waterways and basins that connect to the Strait of Juan de Fuca and the Pacific Ocean. Puget Sound proper encompasses all waters south of a line connecting Point Wilson on the Olympic Peninsula and Partridge on Whidbey Island; West Point on Whidbey Island, Deception Island, and Rosario Head on Fidalgo Island; and the southern end of Swinomish Channel between Fidalgo Island and McGlinn Island. The sound extends about 144 kilometers (90 miles) from Deception Pass in the north to Olympia, Washington, in the south.

However, the term “Puget Sound” also refers to the Puget Sound Basin, which includes the waters around the San Juan Islands; Bellingham, Padilla, and Samish Bays, and Hale Passage. This basin encompasses a 13,700-square-mile area that drains into Puget Sound and adjacent marine waters; the basin includes all or part of 13 counties in western Washington, as well as the headwaters of the Skagit River and part of the Nooksack River in British Columbia, Canada. Streams and rivers that flow into the Sound drain three physiographic provinces — the Olympic Mountains on the west, the Cascade Range on the east, and the Puget Lowlands in the center of the basin. More than 10,000 streams and rivers drain into the Puget Sound basin, with almost 85 percent of the basin's annual surface water runoff coming from 10 rivers: the Nooksack, Skagit, Snohomish, Stillaguamish, Cedar/Lake Washington Canal, Green/Duwamish, Puyallup, Nisqually, Skokomish and Elwha Rivers.

The Strait of Georgia, or Gulf of Georgia, is a strait between Vancouver Island, the Gulf Islands, and the mainland coast of British Columbia. The Strait is about 240 kilometers (150 mi) long and varies in width from 18.5 to 55 km (11.5 to 34 mi). The Gulf Islands and San Juan Islands mark the southern boundary of the strait while the Discovery Islands mark the northern boundary of the strait. On the southern boundary, the Strait of Georgia is connected to the Strait of Juan de Fuca through Haro Strait and Rosario Strait. On the northern boundary, Discovery Passage is the primary channel that connects the Strait to Johnstone Strait. The Strait has a mean depth of about 156 meters (510 ft), with a maximum depth of 420 meters (1,400 ft). Its surface area is approximately 6,800 square kilometers (2,600 sq mi). The Fraser River contributes about 80 percent of the freshwater entering the Strait of Georgia.

In 2000, nearly seven million people were living in the Georgia Basin-Puget Sound Region (a region that is also known as the Salish Sea). Of this total, about four million (57 percent) people lived in the United States and three
million (43 percent) lived in Canada. These totals represented a 17 percent increase for the Puget Sound region and a 21 percent increase in the Georgia Basin from 1991 population estimates. By 2020 the population is projected to exceed five million people (29 percent increase) in the Puget Sound basin and exceed four million people (35 percent increase) in the Georgia Basin.

In 2000, the greater Vancouver (British Columbia, Canada) Regional District and King County (Washington State) accounted for 29 percent and 25 percent of the total population in the two basins; as a result, more than half of the population in the Georgia Basin-Puget Sound Basin lived in those two metropolitan areas. Urban growth is rapid; by 2020, the population is expected to increase by 1.1 million people, with most of that increase occurring in urban and suburban areas of the sound. Urban and agricultural land uses, which cover about 9 and 6 percent of the basin, respectively, are concentrated in the lowlands. Forest dominates land use and cover in the basin and is concentrated in the foothills and mountains.

Puget Sound, the Georgia Basin, and waters off the Pacific coast of Washington State are critically important to several endangered and threatened species under NMFS’ jurisdiction, including southern resident killer whales, Puget Sound Chinook salmon, Hood canal summer-run chum salmon, and Puget Sound steelhead. Waters off the southwest coast of Vancouver Island are a foraging destination for blue whales and fin whales and might support a resident population of blue whales (Burtenshaw et al. 2004), and are important for the continued persistence and recovery of blue whales.

4.4.2 Natural Mortality
Natural mortality rates in cetaceans, especially large whale species, are largely unknown. Although factors contributing to natural mortality cannot be quantified at this time, there are a number of suspected causes, including parasites, predation, red tide toxins and ice entrapment. For example, the giant spirurid nematode (Crassicauda boopis) has been attributed to congestive kidney failure and death in some large whale species (Lambertsen 1986). A well-documented observation of killer whales attacking a blue whale off Baja, California proves that blue whales are at least occasionally vulnerable to these predators (Tarpy 1979). Other stochastic events, such as fluctuations in weather and ocean temperature affecting prey availability, may also contribute to large whale natural mortality.

Sea turtles are also affected by disease and environmental factors. Turtles can be injured by predators such as birds, fish, and sharks (George 1997). Hypothermic or cold stunning occurs when a turtle is exposed to cold water for a period of time. Cold stunned turtles often have decreased salt gland function which may lead to plasma electrolyte imbalance and a lowered immune response (George 1997).

Changes in the abundance of salmonid populations are substantially affected by changes in the freshwater and marine environments. Evidence suggests that marine survival of salmonids fluctuates in response to 20- to 30-year cycles of climatic conditions and ocean productivity (Hollowed et al. 2001; Lehodey et al. 2006; Mantua and Hare 2002). This phenomenon has been referred to as the Pacific Decadal Oscillation. Also, large-scale climatic regimes, such as El Niño, appear to affect changes in ocean productivity and influence local environmental rainfall patterns that can result in drought and fluctuating flows. During the first part of the 1990s, much of the Pacific Coast was subject to a series of very dry years and very low stream flows. In more recent years, severe flooding has adversely affected some stocks. The listed salmon species included in this Opinion are affected by this broad environmental
cycle; thus, the survival and recovery of these species will depend on their ability to persist through periods of low natural survival rates.

Natural predators include birds, killer whales, and sea lions. Researchers estimated that Caspian terns nesting on Crescent Island, Washington, located below the confluence of the Snake and Columbia Rivers, consumed several hundred thousand juvenile salmonids each year of the study (679,000 smolts in 2001; 95 percent confidence interval (CI): 533,000-825,000 smolts) than in 2000 (465,000 smolts in 2000; 95 percent CI: 382,000-547,000 smolts) (Antolos et al. 2005) and 7 to 15 million outmigrating smolts during 1998 (Collis et al. 2002; Maranto et al. 2010). Field observations of predation and stomach contents of stranded killer whales collected over a 20-year period documented 22 species of fish and 1 species of squid in the diet of resident-type killer whales; 12 of these are previously unrecorded as prey of O. orca. Despite the diversity of fish species taken, resident whales have a clear preference for salmon prey. In field observations of feeding, 96 percent of fish taken were salmonids. Six species of salmonids were identified from prey fragments, with Chinook salmon being the most common (Ford et al. 1998).

Steller sea lions shift diet composition in response to changes in prey availability of pollock (Theragra chalcogramma), hake (Merluccius productus), herring (Clupea pallasi) and salmon (Oncorhynchus spp.) (Sigler et al. 2009).

4.4.3 Human-Induced Mortality

Large whale population numbers in the proposed action areas have historically been impacted by commercial exploitation, mainly in the form of whaling. Prior to current prohibitions on whaling, such as the International Whaling Commission’s 1966 moratorium, most large whale species had been depleted to the extent it was necessary to list them as endangered under the Endangered Species Act of 1966. For example, from 1900 to 1965 nearly 30,000 humpback whales were captured and killed in the Pacific Ocean with an unknown number of additional animals captured and killed before 1900 (Perry et al. 1999a). Sei whales are estimated to have been reduced to 20 percent (8,600 out of 42,000) of their pre-whaling abundance in the North Pacific (Tillman 1977). In addition, 9,500 blue whales were reported killed by commercial whalers in the North Pacific between 1910-1965 (Ohsumi and Wada, 1972); 46,000 fin whales between 1947-1987 (Rice 1984); and 25,800 sperm whales (Barlow et al. 1997). North Pacific right whales once numbered 11,000 animals but commercial whaling has now reduced their population to 29-100 animals (Wada 1973).

Entrapment and entanglement in commercial fishing gear is one of the most frequently documented sources of human-caused mortality in large whale species and sea turtles. For example, in 1978, Nishimura and Nakahigashi (1990) estimated that 21,200 turtles, including greens, leatherback turtles, loggerheads, olive ridleys and hawksbills, were captured annually by Japanese tuna longliners in the Western Pacific and South China Sea, with a reported mortality of approximately 12,300 turtles per year. Using commercial tuna longline logbooks, research vessel data and questionnaires, Nishimura and Nakahigashi (1990) estimated that for every 10,000 hooks in the Western Pacific and South China Sea, one turtle is captured, with a mortality rate of 42 percent.

NMFS has observed 3,251 sets, representing approximately 3,874,635 hooks (data from February 1994 through December 31, 1999). The observed entanglement rate for sperm whales would equal about 0.31 whales per 1,000 sets or 0.0002 per 1,000 hooks. At those rates, we would expect about 200 sperm whales entanglements per 1,000
sets. However, only one sperm whale has been entangled in this gear; as a result, NMFS believes that the estimated entanglement rate substantially overestimates a sperm whale’s actual probability of becoming entangled in this gear and the potential hazards longline gear poses to sperm whales.

Collisions with commercial ships are an increasing threat to many large whale species, particularly as shipping lanes cross important large whale breeding and feeding habitats or migratory routes. The number of observed physical injuries to humpback whales as a result of ship collisions has increased in Hawaiian waters (Glockner-Ferrari et al. 1987). On the Pacific coast, a humpback whale is probably killed about every other year by ship strikes (Barlow et al. 1997). From 1996-2002, eight humpback whales were reported struck by vessels in Alaskan waters. In 1996, a humpback whale calf was found stranded on Oahu with evidence of vessel collision (propeller cuts; NMFS unpublished data). From 1994 to 1998, two fin whales were presumed to have been killed in ship strikes.

Chronic exposure to the neurotoxins associated with paralytic shellfish poisoning (PSP) via zooplankton prey has been shown to have detrimental effects on marine mammals. Estimated ingestion rates are sufficiently high to suggest that the PSP toxins are affecting marine mammals, possibly resulting in lower respiratory function, changes in feeding behavior and lower reproduction fitness (Durbin et al. 2002). Other human activities, including discharges from wastewater systems, dredging, ocean dumping and disposal, aquaculture and additional impacts from coastal development are also known to impact marine mammals and their habitat. In the North Pacific, undersea exploitation and development of mineral deposits, as well as dredging of major shipping channels pose a continued threat to the coastal habitat of right whales. Point-source pollutants from coastal runoff, offshore mineral and gravel mining, at-sea disposal of dredged materials and sewage effluent, potential oil spills, as well as substantial commercial vessel traffic, and the impact of trawling and other fishing gear on the ocean floor are continued threats to marine mammals in the proposed action area.

The impacts from these activities are difficult to measure. However, some researchers have correlated contaminant exposure to possible adverse health effects in marine mammals. Studies of captive harbor seals have demonstrated a link between exposure to organochlorines (e.g., DDT, PCBs, and polyaromatic hydrocarbons) and immunosuppression (De Swart et al. 1996; Harder et al. 1992; Ross et al. 1995). Organochlorines are chemicals that tend to bioaccumulate through the food chain, thereby increasing the potential of indirect exposure to a marine mammal via its food source. During pregnancy and nursing, some of these contaminants can be passed from the mother to developing offspring. Contaminants like organochlorines do not tend to accumulate in significant amounts in invertebrates, but do accumulate in fish and fish-eating animals. Thus, contaminant levels in planktivorous mysticetes have been reported to be one to two orders of magnitude lower compared to piscivorous odontocetes (O'Hara and Rice 1996; O'Hara et al. 1999; O'Shea and Brownell Jr. 1994).

The marine mammals that occur in the action area are regularly exposed to several sources of natural and anthropogenic sounds. Anthropogenic noises that could affect ambient noise arise from the following general types of activities in and near the sea, any combination of which can contribute to the total noise at any one place and time. These noises include transportation, dredging, construction; oil, gas, and mineral exploration in offshore areas; geophysical (seismic) surveys; sonars; explosions; and ocean research activities (Richardson et al. 1995).
Ambient Noise

Noise in the marine environment has received a lot of attention in recent years and is likely to continue to receive attention in the foreseeable future. Several investigators have argued that anthropogenic sources of noise have increased ambient noise levels in the ocean over the last 50 years (Jasny et al. 2005; NRC 1994a; NRC 2000; NRC 2003; Richardson et al. 1995). Much of this increase is due to increased shipping as ships become more numerous and of larger tonnage (NRC 2003). Commercial fishing vessels, cruise ships, transport boats, airplanes, helicopters and recreational boats all contribute sound into the ocean (NRC 2003). The military uses sound to test the construction of new vessels as well as for naval operations. In some areas where oil and gas production takes place, noise originates from the drilling and production platforms, tankers, vessel and aircraft support, seismic surveys, and the explosive removal of platforms (NRC 2003). Many researchers have described behavioral responses of marine mammals to the sounds produced by helicopters and fixed-wing aircraft, boats and ships, as well as dredging, construction, geological explorations, etc. (Richardson et al. 1995). Most observations have been limited to short-term behavioral responses, which included cessation of feeding, resting, or social interactions. Several studies have demonstrated short-term effects of disturbance on humpback whale behavior (Baker et al. 1983; Bauer and Herman 1986; Hall 1982; Krieger and Wing 1984), but the long-term effects, if any, are unclear or not detectable. Carretta et al. (2001) and Jasny et al. (2005) identified the increasing levels of anthropogenic noise as a habitat concern for whales and other cetaceans because of its potential effect on their ability to communicate.

Surface shipping is the most widespread source of anthropogenic, low frequency (0 to 1,000 Hz) noise in the oceans (Simmonds and Hutchinson. 1996). The radiated noise spectrum of merchant ships ranges from 20 to 500 Hz and peaks at approximately 60 Hz. Ross (1976) has estimated that between 1950 and 1975 shipping had caused a rise in ambient ocean noise levels of 10 dB. He predicted that this would increase by another 5 dB by the beginning of the 21st century.

Urick (1983) provided a discussion of the ambient noise spectrum expected in the deep ocean. Shipping, seismic activity, and weather are primary causes of deep-water ambient noise. Noise levels between 20 and 500 Hz appear to be dominated by distant shipping noise that usually exceeds wind-related noise. Above 300 Hz, the level of wind-related noise might exceed shipping noise. Wind, wave, and precipitation noise originating close to the point of measurement dominate frequencies from 500 to 50,000 Hz. The ambient noise frequency spectrum and level can be predicted fairly accurately for most deep-water areas based primarily on known shipping traffic density and wind state (wind speed, Beaufort wind force, or sea state) (Urick 1983). For frequencies between 100 and 500 Hz, Urick (1983) has estimated the average deep water ambient noise spectra to be 73 to 80 dB for areas of heavy shipping traffic and high sea states, and 46 to 58 dB for light shipping and calm seas.

In contrast to deep water, ambient noise levels in shallow waters (i.e., coastal areas, bays, harbors, etc.) are subject to wide variations in level and frequency depending on time and location. The primary sources of noise include distant shipping and industrial activities, wind and waves, and marine animals (Urick 1983). At any given time and place, the ambient noise level is a mixture of these noise types. In addition, sound propagation is also affected by the variable shallow water conditions, including the depth, bottom slope, and type of bottom. Where the bottom is reflective, the sound levels tend to be higher than when the bottom is absorptive.
McDonald et al. (2006) reported that wind-driven wave noise was an important contributor to ocean ambient noise in the 200–500 Hz band. Ross (Ross 1976) and Wenz (1969) compared wind data for five northeast Pacific sites and concluded wind was the primary cause for differences in average ambient noise levels above 200 Hz. Assuming the observed increases in ambient noise these authors reported are representative of the larger coast, McDonald et al. (2006) concluded that the breakpoint between shipping and wind dominated noise has probably now moved well above 200 Hz.

Measurements taken at San Nicholas Island, which were considered representative of patterns that would occur across the Pacific Coast of Washington, identified seasonal differences in ocean ambient levels due to seasonal changes in wind driven waves, biological sound production, and shipping route changes (McDonald et al. 2006). The strongest seasonal signal at the San Nicolas South site was attributed to blue whale singing (Burtenshaw et al. 2004) which had a broad peak near 20 Hz in the spectral data (because fin whales occur in the area throughout the year, the seasonal difference was attributed to blue whales, which only occur in the areas seasonally). When the band of fin whale calls were excluded, the average February 2004 ambient pressure spectrum level was 10–14 dB higher than the February 1965 and 1966 levels over the 10–50 Hz band. Above 100 Hz, there was a 1–2 dB difference between the two sets of February noise data (McDonald et al. 2006).

Ship Strikes

Collisions with commercial ships are an increasing threat to many large whale species, particularly because shipping lanes cross important large whale breeding and feeding habitats or migratory routes. Based on the data available from Douglas et al. (2008), Jensen and Silber (2004), and Laist et al. (2001), there have been at least 25 incidents in which marine mammals are known to have been struck by ships in the Puget Sound region and southwestern British Columbia. The marine mammals that were involved in almost half of these incidents died as a result of the strike and they suffered serious injuries in four of those strikes.

Fin whales were struck most frequently, accounting for almost 30 percent of the total number of incidents and two-thirds of the incidents in which the whale died as a result of the collision. Northern resident killer whales were struck slightly less frequently, although a cluster of ship strikes in 2006 accounted for four of the six ship strikes involving this population of killer whales. Humpback whales were third in frequency, followed by southern resident killer whales, offshore killer whales, and blue whales. About two-thirds (17 out of the 25) of the incidents occurred in waters off British Columbia, although the locations were variable.

The adult male southern resident killer whale (L98) that was killed in a collision with a tug boat in 2006 may have reduced the demographic health of this killer whale population. At population sizes between 75 and 90 individuals, we would expect southern resident killer whales to have higher probabilities of becoming extinct because of demographic stochasticity, demographic heterogeneity (Coulson et al. 2006; Fox 2007) — including stochastic sex determination (Lande et al. 2003) — and the effects of phenomena interacting with environmental variability. Although the small number of adult male southern resident killer whales might represent a stable condition for this species, it might also reflect the effects of stochastic sex determination. If the latter is the case, the death of L98 in a population with a smaller percentage of males would increase the imbalance of male-to-female gender ratios in this population and increase the population’s probability of further declines in the future.
Fishery Harvests
Listed salmon are incidentally caught in several fisheries that operate in the action area, including groundfish fisheries that operate off the coasts of Washington; fisheries for Pacific salmon that operate under the Pacific Salmon Treaty; salmon fisheries that are managed by the U.S. Pacific Fisheries Management Council under the Pacific Coast Management Plan; salmon fisheries managed by the U.S. Fraser River Panel; commercial ocean salmon troll fisheries that operate off the coasts of Oregon and Washington; and subsistence, commercial, and recreational fisheries for Pacific salmon that operate in the Columbia River. These fisheries incidentally capture endangered and threatened salmon.

The whiting fishery, which is a component of the groundfish fisheries, were expected to incidentally capture not more than 11,000 Chinook salmon per year and have been estimated to have caught an average of 7,281 each year from 1991 to 2005 (NMFS 2006b). The bottom trawl component of the groundfish fishery was expected to capture between 6,000 and 9,000 Chinook salmon each year, with 5,000 to 8,000 of these salmon captured in the Vancouver and Columbia catch areas. On average, the bottom trawl groundfish fisheries captured 11,320 Chinook salmon, 40 coho salmon, and 13 chum salmon from 2002-2004 (NMFS 2006b).

Biological opinions that NMFS has issued on these fisheries concluded that the fisheries were not likely to jeopardize the continued existence of endangered or threatened salmon that were likely to be captured in the fisheries. Biological opinions on the effects of these fisheries on southern resident killer whales, which rely on salmon for food, concluded that fishery-related removals of salmon were not likely to jeopardize the continued existence of southern resident killer whales.

Water Quality Degradation
Between 2000 and 2006, counties in Puget Sound increased by 315,965 people or by more than 50,000 people per year, with associated increases in the area of impervious surface and population density per square mile of impervious surface in the Puget Sound region (PSAT 2007). Between 1991 and 2001, the area of impervious surface in the Puget Sound basin increased 10.4 percent (PSAT 2007). By 2001, impervious surface covered 7.3 percent of the Puget Sound region below 1,000 feet elevation; in some counties and watersheds in the region, this area was substantially higher.

Over the same time interval, about 190 square miles of forest (about 2.3 percent of the total forested area of the Puget Sound basin) was converted to other uses. In areas below 1,000 feet elevation, the change was more dramatic: 3.9 percent of total forest area was converted to other uses. By 2004, about 1,474 fresh and marine waters in Puget Sound were listed as “impaired waters” in Puget Sound. Fifty-nine percent of these waters tested were impaired because of toxic contamination, pathogens, low dissolved oxygen or high temperatures. Less than one-third of these impaired waters have cleanup plans in place. Chinook salmon from Puget Sound have 2-to-6 times the concentrations of PCBs in their bodies as other Chinook salmon populations on the Pacific Coast. Because of this contamination, the Washington State Department of Health issued consumption advisories for Puget Sound Chinook (PSAT 2007).

The quality of water in the Puget Sound Basin and aquatic biota those water support have been affected by a range of forestry, agricultural, and urban development practices. The chemical quality of surface water in the foothills and
mountains is generally suitable for most uses. However, the physical hydrology, water temperature, and biologic integrity of streams have been influenced to varying degrees by logging (Ebbert et al. 2000).

Because of development, many streams in the Puget Lowlands have undergone changes in structure and function with a trend toward simplification of stream channels and loss of habitat (Ebbert et al. 2000). Sources of contaminants to lowland streams and lower reaches of large rivers are largely nonpoint because most major point sources discharge directly to Puget Sound. Compared with that in small streams in the Puget Lowlands, the quality of water in the lower reaches of large rivers is better because much of the flow is derived from the forested headwaters.

More than half of the agricultural acreage in the basin is located in Whatcom, Skagit, and Snohomish Counties. Agricultural land use consists of about 60 percent cropland and 40 percent pasture. Livestock produce a large amount of manure that is applied as fertilizer to cropland, some- times in excess amounts, resulting in runoff of nitrogen and phosphorus to surface water and leaching of nitrate to ground water. Runoff from agricultural areas also carries sediment, pesticides, and bacteria to streams (Ebbert et al. 2000). Pesticides and fumigant-related compounds are present, usually at low concentrations, in shallow ground water in agricultural areas.

Heavy industry is generally located on the shores of the urban bays and along the lower reaches of their influent tributaries, such as Commencement Bay and the Puyallup River in Tacoma and Elliott Bay and the Duwamish Waterway in Seattle. High-density commercial and residential development occurs primarily within and adjacent to the major cities. Development in recent years has continued around the periphery of these urban areas but has trended toward lower density. This trend has resulted in increasing urban sprawl in the central Puget Sound Basin.

Urban land-use activities have significantly reduced the quality of streams in the Puget Sound Basin (Ebbert et al. 2000). Water-quality concerns related to urban development include providing adequate sewage treatment and disposal, transport of contaminants to streams by storm runoff, and preservation of stream corridors.

Water availability has been and will continue to be a major, long- term issue in the Puget Sound Basin. It is now widely recognized that ground-water withdrawals can deplete streamflows (Ebbert et al. 2000), and one of the increasing demands for surface water is the need to maintain instream flows for fish and other aquatic biota.

Pollutants founds in Puget Sound Chinook salmon have found their way into the food chain of the Sound. Harbor seals in southern Puget Sound, which feed on Chinook salmon, have PCB levels that are seven times greater than those found in harbor seals from the Georgia Basin. Concentrations of polybrominated diphenyl ether (also known as PBDE, a product of flame retardants that are used in household products like fabrics, furniture, and electronics) in seals have increased from less than 50 parts per billion in fatty tissue to more than 1,000 ppb over the past 20 years (PSAT 2007).

Water quality appears poised to have larger-scale effects on the marine ecosystem of the Puget Sound – Georgia Basin as evidenced by the intensity and persistence of water stratification in the basin. Historically, Puget Sound was thought to have an unlimited ability to assimilate waste from cities, farms and industries in the region and decisions about human occupation of the landscape were based on that belief. More recent data suggests that the marine
ecosystems of the basin have a much more limited ability to assimilate pollution, particularly in areas such as Hood Canal, south Puget Sound, inner Whidbey basin and the central Georgia Basin. In these areas, as strong stratification has developed and persisted, the respective water quality has steadily decreased. As waters become more stratified, through weather, climate or circulation changes, they become even more limited in their ability to assimilate pollution.

The presence of high levels of persistent organic pollutants, such as PCBs, DDT, and flame-retardents have also been documented in southern resident killer whales (Herman et al. 2005; Ross et al. 2000; Ylitalo et al. 2001). Although the consequences of these pollutants on the fitness of individual killer whales and the population itself remain unknown, in other species these pollutants have been reported to suppress immune responses (Kakuschke and Prange, 2007), impair reproduction, and exacerbate the energetic consequences of physiological stress responses when they interact with other compounds in an animal’s tissues (Martineau 2007). Because of their long life span, position at the top of the food chain, and their blubber stores, killer whales would be capable of accumulating high concentrations of contaminants.

Anthropogenic Noise

The marine mammals that occur in the action area are regularly exposed to several sources of natural and anthropogenic sounds. Anthropogenic noises that could affect ambient noise arise from the following general types of activities in and near the sea, any combination of which can contribute to the total noise at any one place and time. These noises include transportation, dredging, construction; oil, gas, and mineral exploration in offshore areas; geophysical (seismic) surveys; sonars; explosions; and ocean research activities (Richardson et al. 1995).

Noise in the marine environment has received a lot of attention in recent years and is likely to continue to receive attention in the foreseeable future. Several investigators have argued that anthropogenic sources of noise have increased ambient noise levels in the ocean over the last 50 years (Jasny et al. 2005; NRC 1994b; NRC 2000; NRC 2003; NRC 2005; Richardson et al. 1995). As discussed in the preceding section, much of this increase is due to increased shipping as ships become more numerous and of larger tonnage (NRC 2003). Commercial fishing vessels, cruise ships, transport boats, airplanes, helicopters and recreational boats all contribute sound into the ocean (NRC 2003). The military uses sound to test the construction of new vessels as well as for naval operations. In some areas where oil and gas production takes place, noise originates from the drilling and production platforms, tankers, vessel and aircraft support, seismic surveys, and the explosive removal of platforms (NRC 2003). Many researchers have described behavioral responses of marine mammals to the sounds produced by helicopters and fixed-wing aircraft, boats and ships, as well as dredging, construction, geological explorations, etc. (Richardson et al. 1995). Most observations have been limited to short-term behavioral responses, which included cessation of feeding, resting, or social interactions. Several studies have demonstrated short-term effects of disturbance on humpback whale behavior (Baker et al. 1983; Bauer and Herman 1986; Hall 1982; Krieger and Wing 1984) 1984), but the long-term effects, if any, are unclear or not detectable. Carretta et al. (2001) and Jasny et al. (2005) identified the increasing levels of anthropogenic noise as a habitat concern for whales and other cetaceans because of its potential effect on their ability to communicate.
Commercial Shipping

Commercial shipping traffic is a major source of low frequency (5 to 500 Hz) human generated sound in the world’s oceans (NRC 2003; Simmonds and Hutchinson, 1996). The radiated noise spectrum of merchant ships ranges from 20 to 500 Hz and peaks at approximately 60 Hz. Ross (Ross 1976) has estimated that between 1950 and 1975 shipping had caused a rise in ambient ocean noise levels of 10 dB. Within the action area identified in this Opinion, the vessel sound inside the western half of the Strait of Juan de Fuca and off the Washington coast comes from cargo ships (86 percent), tankers (6 percent), and tugs (5 percent) (NMFS 2008a citing Mintz and Filadelfo 2004a, 2004b).

The U.S. Navy has conducted RDT&E activities on the Keyport Range Complex since the mid-1950s. Historically, the number of days each range site has been used an averaged about 60 days for the Keyport Range site, 130 days for the Dabob Bay site, and 20 days for the Quinault Underwater Tracking Range site. Currently, the U.S. Navy uses the Keyport Range site for an average annual of 55 days, the Dabob Bay site for an annual average of 200 days, and the Quinault Underwater Tracking Range site for an annual average of 14 days. At the Quinault Underwater Tracking Range, the U.S. Navy proposes to increase the average annual use from 14 days to 16 days.

Thus far, the impacts of these training activities on endangered or threatened species in the action area have not been apparent. Nevertheless, on May 5, 2003, the U.S. Navy guided missile destroyer USS Shoup passed through the strait while operating its mid-frequency sonar during a training exercise. Members of the J pod of southern resident killer whales were in the strait at the same time and exhibited unusual behavior in response to being exposed to sonar at received levels of about 169 dB (Fromme 2004). Based on the duration and received levels, and the levels known to cause behavioral reactions in other cetaceans, NMFS concluded that J pod had been exposed to the sonar at received levels that were likely to cause behavioral disturbance, but not temporary or permanent hearing loss (NMFS 2004). These findings were consistent with the reports generated from the eyewitness accounts of the event.

Erbé (2002b) recorded underwater noise of whale-watching boats in the popular killer whale-watching region of southern British Columbia and northwestern Washington State. Source levels ranged from 145 to 169 dB re 1 Pa ¥ 1 m and increased as the vessel’s speed increased. Based on sound propagation models, she concluded that the noise of fast boats would be audible to killer whales over 16 km, would mask killer whale calls over 14 km, would elicit behavioral response over 200 m, and would cause a temporary threshold shifts of 5 dB within 450 meters after 30-50 minutes of exposure. She concluded that boats cruising at slow speeds would be audible and would cause masking at 1 km, would elicit behavioral responses at 50 m, and would result in temporary threshold shifts at 20 m.

Galli et al. (2003) measured ambient noise levels and source levels of whale-watch boats in Haro Strait. They measured ambient noise levels of 91 dB (at frequencies between 50-20,000 Hz) on extremely calm days (corresponding to sea states of zero) and 116 dB on the roughest day on which they took measures (corresponding to a sea state of ~5). Mean sound spectra from acoustic moorings set off Cape Flattery, Washington, showed that close ships dominated the sound field below 10 kHz while rain and drizzle were the dominant sound sources above 20 kHz. At these sites, shipping noise dominated the sound field about 10 to 30 percent of the time but the amount of shipping noise declined as weather conditions deteriorated. The large ships they measured produced source levels that averaged 184 dB at 1 m ¥- 4 dB, which was similar to the 187 dB at 1 m reported by Greene (1995).
The engines associated with the boats in their study produced sounds in the 0.5 – 8.0 KHz range at source levels comparable to those of killer whale vocalizations. They concluded that those boats in their study that travelled at their highest speeds proximate to killer whales could make enough noise to make hearing difficult for the whales.

In addition to the disturbance associated with the presence of vessel, the vessel traffic affects the acoustic ecology of southern resident killer whales, which would affect their social ecology. Foote et al. (2004) compared recordings of southern resident killer whales that were made in the presence or absence of boat noise in Puget Sound during three time periods between 1977 and 2003. They concluded that the duration of primary calls in the presence of boats increased by about 15 percent during the last of the three time periods (2001 to 2003). At the same time, Holt et al. (2009) reported that southern resident killer whales in Haro Strait off the San Juan Islands in Puget Sound, Washington, increased the amplitude of their social calls in the face of increased sounds levels of background noise. Although the costs of these vocal adjustments remains unknown, Foote et al. (2004) suggested that the amount of boat noise may have reached a threshold above which the killer whales needs to increase the duration of their vocalization to avoid masking by the boat noise.

Commercial and Private Marine Mammal Watching

In addition to the federal vessel operations, private and commercial shipping vessels, vessels (both commercial and private) engaged in marine mammal watching also have the potential to impact whales in the proposed action area. A recent study of whale watch activities worldwide has found that the business of viewing whales and dolphins in their natural habitat has grown rapidly over the past decade into a billion dollar ($US) industry involving over 80 countries and territories and over 9 million participants (Hoyt 2001). In 1988, the Center for Marine Conservation and the NMFS sponsored a workshop to review and evaluate whale watching programs and management needs (CMC and NMFS 1988). That workshop produced several recommendations for addressing potential harassment of marine mammals during wildlife viewing activities that include developing regulations to restrict operating thrill craft near cetaceans, swimming and diving with the animals, and feeding cetaceans in the wild.

Since then, NMFS has promulgated regulations at 50 CFR §224.103 that specifically prohibit: (1) the negligent or intentional operation of an aircraft or vessel, or the doing of any other negligent or intentional act which results in disturbing or molesting a marine mammal; (2) feeding or attempting to feed a marine mammal in the wild; and (3) approaching humpback whales in Hawai‘i and Alaska waters closer than 100 yards (91.4 m). In addition, NMFS launched an education and outreach campaign to provide commercial operators and the general public with responsible marine mammal viewing guidelines which in part state that viewers should: (1) remain at least 50 yards from dolphins, porpoise, seals, sea lions and sea turtles and 100 yards from large whales; (2) limit observation time to 30 minutes; (3) never encircle, chase or entrap animals with boats; (4) place boat engine in neutral if approached by a wild marine mammal; (5) leave the water if approached while swimming; and (6) never feed wild marine mammals. In January 2002, NMFS also published an official policy on human interactions with wild marine mammals which states that: “NOAA Fisheries cannot support, condone, approve or authorize activities that involve closely approaching, interacting or attempting to interact with whales, dolphins, porpoises, seals or sea lions in the wild. This includes attempting to swim with, pet, touch or elicit a reaction from the animals.”

Although considered by many to be a non-consumptive use of marine mammals with economic, recreational, educational and scientific benefits, marine mammal watching is not without potential negative impacts. One concern
is that animals may become more vulnerable to vessel strikes once they habituate to vessel traffic. Another concern is that preferred habitats may be abandoned if disturbance levels are too high.

The number and proximity of vessels, particularly whale-watch vessels in the areas occupied by southern resident killer whales, represents a source of chronic disturbance for this population. Numerous studies of interactions between surface vessels and marine mammals have demonstrated that free-ranging marine mammals engage in avoidance behavior when surface vessels move toward them. It is not clear whether these responses are caused by the physical presence of a surface vessel, the underwater noise generated by the vessel, or an interaction between the two (Goodwin and Cotton, 2004; Lusseau 2006). However, several authors suggest that the noise generated during motion is probably an important factor (Blane and Jaakson, 1994; Evans et al., 1992; Evans et al., 1994). These studies suggest that the behavioral responses of marine mammals to surface vessels are similar to their behavioral responses to predators.

Several investigators have studied the effects of whale watch vessels on marine mammals (Amaral and Carlson 2005; Au and Green 2000; Corkeron 1995; Erbe 2002b; Felix 2001; Magalhaes et al. 2002; Richter et al. 2006; Scheidat et al. 2004; Simmonds 2005; Watkins 1986; Williams et al. 2002). The whale’s behavioral responses to whale watching vessels depended on the distance of the vessel from the whale, vessel speed, vessel direction, vessel noise, and the number of vessels. The whales’ responses changed with these different variables and, in some circumstances, the whales did not respond to the vessels, but in other circumstances, whales changed their vocalizations, surface time, swimming speed, swimming angle or direction, respiration rates, dive times, feeding behavior, and social interactions.

4.4.4 The Impact of the Baseline on Listed Resources

The action area includes Puget Sound, the Georgia Basin, and waters off the Pacific coast of the states of Washington, Oregon, and California. Because all of the military readiness activities associated with the Keyport Range Complex occurs in Puget Sound and waters off the Pacific coast of Washington State, this section of this Opinion focuses on Puget Sound, the adjacent Georgia Basin, and waters off the Pacific coast of Washington.

Loss of natural habitat as a result of population growth and urbanization is a constant threat to the birds, mammals, fish, reptiles, amphibians and invertebrates in the Georgia Basin-Puget Sound region. Although killer whales in British Columbia are assessed as vulnerable by the Conservation Data Centre in British Columbia, there is great concern about the status of the southern resident killer whale population that resides in the Georgia Basin-Puget Sound region. Recent studies have revealed high persistent organic pollution levels in the tissues of this population. There is also concern about recent mortalities in the population, a reduction in food (prey) availability and increasing stress from whale watchers and boaters.

Sixty-four of the vertebrate species that are native to Puget Sound are considered at some risk of extinction within the Sound, including one out of four native reptile species, 18 percent of the freshwater fish species, 15 percent of all native amphibian species, 12 percent of all native mammal species, and 12 percent of the native breeding bird species. Forty-one of the 298 vertebrates that are native to the Georgia Basin are either threatened, endangered, or candidates for these designations, including white sturgeon, marbled murrelet, Vancouver Island marmot, Oregon spotted frog, and sharp-tailed snake. Fourteen of the 41 species of freshwater fish that are native to the Georgia
Basin and 10 mammal species are considered at risk of population collapses, declines, or extinction within the Georgia Basin. The Canadian government is examining 30 other species that are native to the Georgia Basin for potential as endangered species.

As discussed in the Status of the Species section of this Opinion, southern resident killer whales were listed as endangered because of their exposure to the various stressors that occur in the action area for this consultation. Exposure to those stressors resulted in the species’ decline from around 200 individuals to about 67 individuals in the 1970s and the species’ apparent inability to increase in abundance above the 75 to 90 individuals that currently comprise this species. These phenomena would increase the extinction probability of southern resident killer whales and amplify the potential consequences of human-related activities on this species. Based on their population size and population ecology (that is, slow-growing mammals that give birth to single calves with several years between births), we assume that southern resident killer whales would have elevated extinction probabilities because of exogenous threats caused by anthropogenic activities that result in the death or injury of individual whales (for example, ship strikes or entanglement) and natural phenomena (such as disease, predation, or changes in the distribution and abundance of their prey in response to changing climate) as well as endogenous threats resulting from the small size of their population. Based on the number of other species in similar circumstances that have become extinct (and the small number of species that have avoided extinction in similar circumstances), the longer southern resident killer whales remain in these circumstances, the greater their extinction probability becomes.

NMFS has consistently concluded that the various fisheries that incidentally capture endangered or threatened salmon or steelhead in the action area are not likely to jeopardize the continued existence of those species. However, the effects of the fisheries combined with the effects of water quality degradation in the Puget Sound – Georgia Basin region on Puget Sound Chinook salmon, Hood canal summer-run chum salmon, and Puget Sound steelhead are not known but have increased the extinction risks of other endangered or threatened anadromous fish species (for example, delta smelt in the San Francisco estuary).

5 Effects of the Proposed Action

‘Effects of the action’ means the direct and indirect effects of an action on the species or critical habitat, together with the effects of other activities that are interrelated or interdependent with that action, that will be added to the environmental baseline (50 CFR §402.02). Indirect effects are those that are caused by the proposed action and are later in time, but still are reasonably certain to occur. This effects’ analyses section is organized as stressor – exposure – response – risk assessment framework.

The ESA does not define “harassment” nor has NMFS defined this term, pursuant to the ESA, through regulation. However, the MMPA defines “harassment” as “any act of pursuit, torment, or annoyance which has the potential to injure a marine mammal or marine mammal stock in the wild or has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering” [16 U.S.C. 1362(18)(A)]. For military readiness activities, this definition of “harassment” has been amended to mean, in part, “any act that disturbs or is likely to disturb a marine mammal or marine mammal stock in the wild by causing disruption of natural behavioral patterns
including, but not limited to, migration, surfacing, nursing, breeding, feeding, or sheltering, to a point where such behaviors are abandoned or significantly altered” (Public Law 106-136, 2004).

For the purposes of this consultation, “harassment” is defined such that it corresponds to the MMPA and U.S. Fish and Wildlife Service’s definitions: “an intentional or unintentional human act or omission that creates the probability of injury to an individual animal by disrupting one or more behavioral patterns that are essential to the animal’s life history or its contribution to the population the animal represents.” NMFS is particularly concerned about changes in animal behavior that are likely to result in animals that fail to feed, fail to breed successfully, or fail to complete their life history because those changes may have adverse consequences for populations of those species.

Each potential stressor associated with the activities the Navy proposes is discussed in greater detail below, followed by the results of NMFS’ exposure analyses, which are designed to determine whether endangered or threatened individuals or designated critical habitat are likely to be exposed to the potential stressor. Those analyses are followed by the results of the response analyses.

This section concludes with an Integration and Synthesis of Effects that integrates information presented in the Status of the Species and Environmental Baseline sections of this opinion with the results of the exposure and response analyses to estimate the probable risks the proposed action poses to endangered and threatened species.

5.1 Stressors Associated with the Proposed Action

The potential stressors we expect to result from the RDT&E activities the U.S. Navy plans to conduct at the Keyport Range Complex are:

1. The risk of collisions or disturbance between surface vessels, unmanned underwater vehicles, torpedoes, and targets;
2. Sound fields produced by the active sonar acoustic devices; and
3. Expendable materials.

Several RDT&E activities the U.S. Navy plans to conduct at the Keyport Range Complex are not likely to produce stressors for endangered and threatened species under the jurisdiction of the National Marine Fisheries Service, although they might represent stressors for species under the jurisdiction of the U.S. Fish and Wildlife Service.

Light Detection and Ranging (LIDAR)

Light Detection and Ranging (LIDAR) is used to measure distance, speed, rotation, and chemical composition and concentration of remote solid objects such as a ship, or diffuse objects such as a smoke plume or cloud using the same principle as radar. The LIDAR instrument transmits short pulses of laser light towards the target. The transmitted light interacts with and is changed by the target. Some of this light is reflected back to the instrument where it is analyzed. The change in the properties of the light enables some property of the target to be determined. The time it takes the light to travel to the target and back to the LIDAR can be used to determine the distance to the target. Since light attenuates rapidly in water, LIDAR that is designed to penetrate water uses light in the blue-green part of the spectrum as it attenuates the least. LIDAR is used commercially to map the ocean floor and detect fish.
during migration. The best information available leads us to conclude that endangered and threatened species are not likely to be exposed to this technology and, if exposed, they are not likely to respond to that exposure.

Inert Mine Shapes

Associated with testing, a series of target inert mine shapes are set out in a uniform or random pattern to test the detection, classification and localization capability of the system under test. They are made from plastic, metal, and concrete and vary in shape. An inert-mine shape can measure about 10 by 1.75 ft (3.0 by 0.5 m) and weigh about 800 lbs (362.0 kg). Inert-mine shapes either sit on the bottom or are tethered by an anchor to the bottom at various depths. Inert-mine shapes can be placed approximately 200 – 300 yards (183 – 274 m) apart using a support craft and remain on the bottom until they need to be removed. For example a concrete clump can be put on the bottom. It may be initially identified as a possible inert mine, but as the sensor becomes more sophisticated it will mark the clump as a false target and move on to locate other more probable inert-mine shapes. All major components of all inert-mine systems used as “targets” for inert mine hunting systems are removed within two years after use.

The potential for direct physical contact between a marine mammal and an inert-mine shape is extremely low given the low probability of occurrence of a marine mammal in the area and the negligible probability that a marine mammal would collide with an inert mine shape. It is expected that any marine mammal encountering an inert-mine shape would simply avoid it much as it would avoid a rocky outcrop along the sea floor. Listed turtles and fishes are also be expected to avoid an inert mine shape. The best information available leads us to conclude that endangered and threatened species are not likely to be exposed to this technology and, if exposed, they are not likely to respond to that exposure.

5.1.1 Risk of Disturbance or Collisions

The presence and movement of vessels represent a source of acute and chronic disturbance for marine mammals. The underwater noise generated by vessels may disturb animals when the animal perceives that an approach has started and during the course of the interaction. Free-ranging cetaceans may engage in avoidance behavior when surface vessels move toward them. The combination of the physical presence of a surface vessel and the underwater noise generated by the vessel, or an interaction between the two may result in behavioral modifications of animals in the vicinity of the vessel or submarine (Goodwin and Cotton, 2004; Lusseau 2006). Several authors suggest that the noise generated by the vessels is probably an important contributing factor to the responses of cetaceans to the vessels (Blane and Jaakson, 1994; Evans et al. 1992; Evans et al. 1994), such that we may not be able to treat the effects of vessel traffic as independent of engine and other sounds associated with the vessels.

The movement of surface and subsurface vessels in waters that also might be occupied by endangered or threatened marine species pose collision or ship strike hazards to those species.

The U.S. Navy proposes to employ two types of unmanned underwater vehicles within the Dabob Bay: “swimmers” and “crawlers.” “Swimmer” unmanned underwater vehicles are self-powered, submersible vehicles 2 – 32 ft (0.6-9.8 m) long, controlled by an onboard navigation system. “Swimmers” are typically placed into and retrieved from the water with a crane located at the Keyport pier.
“Crawler” unmanned underwater vehicles are self-powered underwater vehicles designed to operate on land, in the surf zone, or in very shallow water. They can measure about 2.5 ft (0.8 m) long and weigh about 90 pounds (40.8 kg). They move along the bottom on tracks. “Crawlers” have many of the same capabilities as “swimmers,” but operate along the bottom or in waters too shallow for “swimmers.”

Some unmanned underwater vehicles communicate with a surface vessel, shore-based, or pier-based facility with a 0.01 inch (254-micron) diameter fiber-optic cable. The cable is made of very fine glass and is very brittle. Due to the extremely small diameter of the fiber-optic cable, if a marine mammal or leatherback sea turtles encountered the cable it would probably break immediately which would eliminate the animal’s probability of becoming entangled in the cable. As a result, these cables are not likely to adversely affect marine mammals or leatherback sea turtles; this cable would not represent a potential stressor for endangered or threatened species of fish.

It is possible, but highly unlikely, that a marine mammal could be struck by a submarine while it is under water. When traveling on the surface, the chances of a strike are probably much the same as for any vessel of the same size moving at the same speed. Smaller animals like pinnipeds and porpoises are expected to be able to detect and avoid boats and ships. The greatest risk is from baleen whales (e.g., blue, fin, and humpback) which generally do not occur within the vicinity of the Keyport Range Complex.

Targets are used to simulate potential threat platforms (i.e., something that simulates a real-world threat) or to stimulate the system under test. They are often equipped with one or a combination of the following devices: shapes that reflect acoustic energy, acoustic projectors, and magnetic sources to trigger magnetic detectors.

There is a negligible risk of a collision between an unmanned underwater vehicle, torpedo, or a target and a marine mammal. Large and/or slow-moving species would be more at risk of being struck than smaller, faster swimmers. Upon review of the Navy’s use of torpedoes in training and testing exercises over the past 30 years, there have been no recorded or reported cases of a marine mammal being struck (Navy 2008d). Historically there has not been a reported torpedo strike of a marine mammal within the within the vicinity of the NUWC Keyport Range Complex. The implementation of Keyport Range Operating Policies and Procedures when cetaceans are present make the possibility of a collision between a marine mammal and a torpedo even more unlikely.

5.1.2 Sound Fields from Active Sonar

The U.S. Navy uses a wide variety of acoustic and non-acoustic systems on the Keyport Range Complex (see Table 2). These include general range tracking on the instrumented ranges and portable range sites have active output in narrow frequency bands. Operating frequencies are 10 to 100 kHz. At the Keyport Range site, the sound pressure level (spl) of the source (source level) is a maximum of 195 decibels reference 1 micro Pascal at 1 meter (dB re 1 μPa - 1 m). At the Dabob Bay and Quinault Underwater Tracking Range sites, the source level for general range tracking is a maximum of 203 dB re 1 μPa - 1 m.

Unmanned undersea vehicle tracking systems operate at frequencies of 10 to 100 kHz with maximum source levels of 195 dB re 1 μPa - 1 m at all range sites. Torpedo sonars are used for several purposes including detection, classification, and location and vary in frequency from 10 to 100 kHz. The maximum source level of torpedo sonar is 233 dB re 1 μPa - 1 m. Range targets and special test systems are within the 5 to 100 kHz frequency range at the
Keyport Range site with a maximum source level of 195 dB re 1 μPa - 1 m. At the Dabob Bay and Quinault Underwater Tracking Range sites, the maximum source level is 238 dB re 1 μPa - 1 m. Special sonars can be carried as a payload on an unmanned undersea vehicle, suspended from a range craft, or set on or above the sea floor. These can vary widely from 100 kHz to a very high frequency of 2,500 kHz. The maximum source level of these acoustic sources is 235 dB re 1 μPa - 1 m. Sonobuoys and helicopter dipping sonars are deployed from Fleet aircraft and operate at frequencies of 2 to 20 kHz with maximum source levels of 225 dB re 1 μPa - 1 m. Dipping sonars are active or passive devices that are lowered on cable by helicopters or surface vessels to detect or maintain contact with underwater targets. Side-scan sonar is used for mapping, detection, classification, and localization of items on the sea floor such as cabling, shipwrecks, and mine shapes. It is high frequency typically 100 to 700 kHz using multiple frequencies at one time with a very directional focus. The maximum source level is 235 dB re 1 μPa - 1 m. Side-scan and multibeam sonar systems are towed or mounted on a test vehicle or ship.

Most of the active sonar the U.S. Navy proposes to employ during the RDT&E activities the Navy plans to conduct in Keyport Range Complex would consist of mid-frequency active sonar that are represented by the sources identified in Table 5. Center frequencies for these acoustic systems range from 4.5 to 150 kHz with sound pressure levels ranging from below 186 dB to 233 dB.

In the future, the U.S. Navy would employ a variety of other acoustic sources including unmanned underwater vehicle payload and side-scan sonars that produce transmissions with frequencies higher than 100 kHz; range tracking, torpedoes, and range targets in the 5 to 100 kHz range; and target simulators and sub-bottom profilers at approximately 5 kHz.

Table 5. Acoustic sources that are representative of sources the U.S. Navy proposes to use at the Keyport Range Complex.

<table>
<thead>
<tr>
<th>Acoustic Source</th>
<th>Frequency (kHz)</th>
<th>Source Level (dB re 1 μPa - 1 m)</th>
<th>Typical Duration of Transmissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-bottom Profiler</td>
<td>4.5</td>
<td>207</td>
<td>4 hours</td>
</tr>
<tr>
<td>UUV 1</td>
<td>15.0</td>
<td>205</td>
<td>2 hours</td>
</tr>
<tr>
<td>UUV Acoustic Modem</td>
<td>10.0</td>
<td>186</td>
<td>2 hours</td>
</tr>
<tr>
<td>UUV 2</td>
<td>150.0</td>
<td>220</td>
<td>2 hours</td>
</tr>
<tr>
<td>Range Target</td>
<td>5.0</td>
<td>233</td>
<td>20 minutes</td>
</tr>
<tr>
<td>Test Vehicle 1</td>
<td>20.0</td>
<td>233</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Test Vehicle 2</td>
<td>25.0</td>
<td>230</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Test Vehicle 3</td>
<td>30.0</td>
<td>233</td>
<td>10 minutes</td>
</tr>
</tbody>
</table>

During transmissions, these acoustic sources would be detectable at various distances, with the lower-frequency sources generally being detectable at greater distances and the higher-frequency sources being detectable at shorter distances. For example, the U.S. Navy estimated that signals produced by Test Vehicle 1 would be detectable at received levels greater than 200 dB within 45 meters of the source; at received levels between 190 and 200 dB between 45 and 140 meters of the source; at received levels between 180 and 190 dB between 140 and 400 meters of the source; and at received levels between 170 and 180 dB between 400 and 1 kilometer of the source. Received levels would drop below 150 dB at distances between 4 and 12 kilometers of the source.
5.1.3 Expendable Materials

Potential expendable materials include sonobuoys, countermeasures, targets, torpedoes, and accessories to the launching of each of those items. Sonobuoys, flares, some types of torpedoes, countermeasures and targets deploy nylon parachutes of varying sizes. The parachute assembly is expended and sinks, as all of the material is negatively buoyant. Some components are metallic and will sink rapidly. Entanglement and the eventual drowning of a marine mammal in a parachute assembly would be unlikely, since such an event would require the parachute to land directly on an animal, or the animal would have to swim into it before it sinks.

The expended material will accumulate on the ocean floor and will be covered by sediments over time, remaining on the ocean floor and reducing the potential for entanglement. If bottom currents are present, the canopy may billow (bulge) and pose an entanglement threat to marine animals with bottom feeding habits.

The plastic-jacketed copper guidance wire used for torpedo communication to the launch platform MK 46 Torpedo air launch accessories may consist of a nose cap, suspension bands, air stabilizer (parachute), release wire, and propeller baffle. There may be some parts of targets, torpedo launching accessories, sonobuoys, markers, target parts and components that are not recovered and may be encountered by marine mammals.

Associated with the units being tested, a series of about 20 target shapes are set out in a uniform or random pattern. They can be made of plastic, metal, and concrete. Varying in shape, they measure about 1.8 by 10 ft (0.5 by 3 m) and weigh about 800 lbs (363 kg). Targets either sit on the bottom or are tethered by an anchor to the bottom at various depths. Targets are placed approximately 200 to 300 yards (183 to 274 m) apart using a support craft and remain on the bottom until they need to be replaced.

During testing activities a variety of liquid and solid materials could potentially be released into the marine environment (e.g., targets, anchors, battery components from sonobuoys). The Navy has strict requirements and guidelines at sea regarding the use of petroleum products or other potential contaminants. The potential impacts from accidental spills of petroleum products and other harmful fluids from UUVs or support craft during proposed activities would be minimized through implementing NUWC Keyport’s Oil and Hazardous Substance Release Contingency and Response Plan (NUWC Keyport 2002).

Various markers, sensors, and other materials are expended during test activities. There is also a potential for loss of normally recoverable equipment. Potential effects include degradation of water and sediment quality from contaminants introduced to the ocean. The materials involved are diverse including lead, copper, aluminum, steel, nylon, various plastics, lithium, zinc, fiberglass, tungsten and iron.

Keyport is known for being able to recover test and other components, providing assistance to the Federal Aviation Administration to locate and recover downed planes, etc. Most marine mammal species feed at the surface or in the water column. Consequently, it is unlikely that marine mammals would ingest expendable materials because most large materials are recovered and other materials would sink to the bottom. Species that feed on or near the bottom may encounter expended materials; however, it is unlikely they would ingest the materials as they are dissimilar from natural prey items.
Activities within the vicinity of the Dabob Bay Range Complex would produce few expendable materials and the likelihood of a marine mammal encountering, much less ingesting, expended material is negligible. All packaging, food wastes, and trash that are generated by the range craft during the course of an exercise are required to be retained on board until return to port where they are properly disposed of in a landfill or recycled.

Hazardous materials may potentially be released from vessels, sonobuoys, targets, and torpedoes. Hydrocarbon spills and material released into the marine environment have the potential to impact fish and their habitats. Based upon a previous Biological Assessment (BA) an informal ESA consultation (NMFS 2001a) was conducted on the existing non-acoustic activities and operations conducted within the Dabob Range Complex. In that informal consultation NMFS examined the potential impacts from expended materials, including any hazardous materials potentially harmful to fish populations, particularly listed salmonid species that reside in the Dabob Range Complex area during some portion of their life cycles. NMFS in their resulting Concurrence Letter (NMFS 2001a) concurred with the findings that the Navy operations conducted in the DBRC Site may affect, but are not likely to adversely affect either the listed species or designated critical habitat based on the analysis in the BA and the following conclusions:

1) Studies have documented that past activities of a similar nature have not detectably contributed to the contamination of the deepwater sediment,

2) other studies have shown that propellant from the torpedoes cannot be detected in the water column,

3) based on these studies there should not be any detectable impact to critical salmon habitat, and

4) the chances of detecting impacts to the nearshore environment (where juvenile salmon can be found) is insignificant and discountable (NMFS 2001a).

5.2 Exposure Estimates

As discussed previously, our exposure analyses are designed to determine whether listed resources are likely to co-occur with the direct and indirect beneficial and adverse effects of actions and the nature of that co-occurrence. In this step of our analyses, we try to identify the number, age (or life stage), and gender of the individuals that are likely to be exposed to one or more of the stressors produced by or associated with an Action and the populations or subpopulations those individuals represent. In the case of the Keyport Range Complex, we relied entirely on the exposure analyses the U.S. Navy conducted because, as we discussed in the Approach to the Assessment section of this Opinion, the sole or primary stressor is not hull-mounted mid-frequency active sonar.

5.2.1 Collision with/Exposure to Vessel Traffic

We assume that any individuals of the endangered or threatened species that occur in the Action Area during the RDT&E activities may be exposed to visual and acoustic stimuli associated with vessel traffic and related activities. Nevertheless, because RDT&E activities involve few vessels, are of short duration, and are localized, few endangered and threatened species would be exposed to vessel traffic during these activities.

The NUWC Keyport Range Complex has established “range operating policies and procedures” to reduce the potential for collisions with marine mammals at the surface or underwater. Observations for marine mammals are conducted prior to each test, and tests are postponed if a cetacean is observed within established exclusion zones.
For cetaceans the exclusion zones must be as least as large as the area in which the test vehicle may operate in and must extend at least 1,000 yards (914 m) from the intended track of the test vehicle. For pinnipeds, the exclusion zone extends out 100 yards (91 m) from the intended track of the test vehicle. The exclusion zones for cetaceans and pinnipeds would be established prior to an in-water exercise (Navy 2008a).

Due to the ability to conduct shore-to-shore and ship-to-shore surveillance and daily boat traffic in the area, it is highly unlikely that a cetacean could enter the Dabob Bay Range Complex site without being detected. In addition to the 100-yd (91.4-m) exclusion zone for pinnipeds, pinnipeds are smaller and more maneuverable than cetaceans and are not expected to be susceptible to a collision with unmanned underwater vehicles.

In addition, NMFS’ Permits Division asked the U.S. Navy to adopt measures that would prevent vessels intentionally approaching within 91 meters (100 yards) of marine mammals. In response to that request, the U.S. Navy will require all naval vessels and aircraft, including all helicopters, under the control of the NUWC Keyport Range Complex to comply with this recommendation. Vessels are expected to implement actions, where feasible, to avoid interactions with marine mammals, including maneuvering away from the marine mammal or slowing the vessel. Due to the ability to conduct shore-to-shore and ship-to-shore surveillance and daily boat traffic in the area, it is unlikely that a whale could enter the within the vicinity of the Dabob Bay Range Complex without being detected. However, during reduced visibility conditions (i.e., fog, high sea state, and darkness) detecting marine mammals requires more diligence. Historically there has not been a reported vessel strike of a marine mammal within the vicinity of the Keyport Bay Range Complex, including periods of reduced visibility. A collision between a vessel and a marine mammal is considered extremely unlikely.

The rarity of ship strikes involving pinnipeds and sea turtles combined with the Navy’s established operating policies and procedure intended to reduce interactions of Navy assets and listed species, leads NMFS to assume that the exposure risk of collision from surface vessels or submarines is small enough to be discountable.

NMFS could not find any reports regarding collisions with surface vessels or submarines and any species of fish of similar size or characteristics of the ESA-listed species being considered in this Opinion. Therefore we conclude that the risk of collision between surface vessels and submarines and leatherback sea turtles, Steller sea lions, and ESA-listed fish (Chinook, coho, chum, and sockeye salmon, steelhead trout, and Pacific eulachon) is so small as to be discountable. Therefore, the risk of collision with surface vessels and submarines with these species will not be discussed further in this Opinion.

5.2.2 Exposure to Active Sonar

General range tracking, special sonar equipped unmanned undersea vehicles, torpedo sonars, range targets, special test systems, sonobuoys, helicopter dipping sonars, and side-scan sonars may all be used during RDT&E activities in the Keyport Range Complex. Surface vessel hull mounted sonars will not be used.

The empirical information available does not allow us to independently estimate the number of marine mammals that might be exposed to mid- or high-frequency active sonar during military readiness activities the U.S. Navy plans to conduct in Keyport Range Complex from April 2011 through April 2012. NMFS is relying on results of the method the U.S. Navy and NMFS’ Permits Division used to estimate the number of marine mammals that might be
“taken” (as that term is defined pursuant to the MMPA) in the U.S. Navy’s Draft Environmental Impact Statement/Overseas Environmental Impact Statement, on the Keyport Range Complex (Navy 2008a). The “take” the Permits Division proposes to authorize using the Letters of Authorization would reflect these “take” estimates.

The Navy proposes to implement a suite of protocols on the Keyport Range Complex that are designed to prevent marine mammals from being exposed to active sonar at any received level or at high received levels. The most important of these protocols would require operators to (1) halt or delay acoustic activities if cetaceans are observed on a range site and (2) terminate transmissions produced by an acoustic source when cetaceans are detected within at least 914 meters (1,000 yards) of the intended track of a test vehicle (sources are either on or off; so the Navy does not have the ability to reduce source levels). If effective, the first of these measures would prevent endangered or threatened cetaceans from being exposed to acoustic stimuli produced by the RDT&E activities the U.S. Navy proposes to conduct on the Keyport Range Complex. If that measure is not effective, the second of these measures is designed to prevent endangered or threatened cetaceans from being exposed to acoustic stimuli at received levels greater than 170 dB.

The U.S. Navy proposes to use visual and passive acoustic monitoring to detect marine mammals that occur on the Keyport Range Complex, including the Quinault Underwater Tracking Range, and that combination is considered the most effective method of detection currently available. However, the U.S. Navy assumed these protective measures would be completely effective for some marine mammals—100 percent of all detections with no false negatives (that is, animals occur on the range, but the range operating protocols would never fail to detect them)—but not other marine mammals. Specifically, the U.S. Navy assumed these protective measures would prevent any endangered or threatened marine mammals (blue, fin, humpback, sei, southern resident killer whales, sperm whales, and Steller sea lions) from being exposed to acoustic stimuli, but would not prevent species such as harbor porpoises, northern fur seal, California sea lions, or elephant seals from being exposed.

Although the protocols the U.S. Navy proposes to employ are the best methods currently available, the evidence available does not allow us to assume that the visual and acoustic detection protocols the U.S. Navy plans to use would always be 100 percent effective, particularly on the Quinault Underwater Tracking Range. Visual monitoring has limited effectiveness because it requires species to occur at the ocean’s surface, it is only effective during daylight hours, and because many whales, dolphins, and pinnipeds are difficult to sight at sea in the best conditions and become more difficult to sight when conditions deteriorate. Passive acoustic monitoring avoids many of the problems associated with visual detections, as long as the animals vocalize.

For example, Barlow and Forney (2007) estimated trackline detection probabilities (the probability of detecting a group of animals that is located directly on a transect line) based on shipboard surveys they had conducted off the coasts of Washington, Oregon, and California. For blue, fin, humpback, and killer whales, they reported trackline detection probabilities of 0.921 (coefficient of variation = 0.023); for sperm whales, they reported trackline detection probabilities of 0.870 (coefficient of variation = 0.090). Using those estimates, an observer would have about a 92 percent probability of detecting a group of blue, fin, humpback, or killer whales that occurred directly on a transect line, or about an 8 percent probability of not detecting such a group; an observer would have about an 87 percent probability of detecting a group of sperm whales or a 13 percent probability of failing to detect such a group.
Passive acoustic monitoring would be ineffective for animals that do not vocalize and its effectiveness will vary with the kind of vocalization, sea surface conditions, and distance. Assuming that the target animals are vocalizing, passive acoustic monitoring still does not appear to be 100 percent effective. For example, the U.S. Navy developed and employs a high-frequency active acoustic monitoring system that was specifically designed to detect marine mammals within 1,000 meters of the Navy’s SURTASS LFA sonar system to prevent marine mammals from being exposed during sonar transmissions. This high-frequency sonar system, called HF/m3 (for High Frequency/Marine Mammal Monitoring), has detection probabilities that exceed 95 percent for small dolphins at about 750 m [0.4 nm], whale calves at 1,000 m [0.56 nm] and large whales at more than 1,500 m [0.81 nm]. Ward et al. (2011) used passive acoustic monitoring to detect and localize Blainville’s beaked whales. They concluded that the matched filter detectors were more effective than the Fast Fourier Transform detectors (92 percent probability of correct detections versus 49 percent probability) and that the maximum detection range for either method was about 6,500 meters. The passive acoustic system employed by Wang et al. (2005) correctly detected the presence of free-ranging finless porpoises (Neophocaena phocaenoides) 77.6 percent of the time within an effective distance of 150 m while the passive acoustic system employed by Akamatsu et al. (2002) detected finless porpoises 82 percent of the time within 300 m of a hydrophone.

Barlow and Taylor (2005) concluded that the probability of detecting sperm whales using acoustic methods depended on the kind of vocalizations. At distances up to 12 kilometers from the whales, they detected between 70 and 80 percent of slow clicks; at distances between 12 and 18 kilometers, they detected all slow clicks; and beyond 18 kilometers, they detection rate declined to less than 20 percent.

Given the performance of these other passive acoustic systems, the passive acoustic system the U.S. Navy plans to employ at the Keyport Range Complex does not seem likely to detect species like Steller sea lions 100 percent of the time. More importantly, it is not likely to perfectly detect endangered and threatened marine mammals and completely fail to detect other pinnipeds with body sizes similar to or larger than Steller sea lions (such as elephant seals or California sea lions). As a result, we assume that any visual and acoustic monitoring systems the U.S. Navy would employ at the Keyport Range Complex could have a combined effectiveness between 49 and 95 percent, but they would not detect 100 percent of the endangered or threatened marine mammals that occur on the range. Consequently, we cannot assume that the Navy’s protocols would completely prevent endangered or threatened marine mammals from being exposed to active sonar produced on the Keyport Range Complex.

Our analyses of the effects of the military readiness activities relied on the updated approach the U.S. Navy used to estimate the number of marine mammals that might be “taken” during military readiness activities the U.S. Navy plans to conduct in waters on and adjacent to the Keyport Range Complex from April 2011 through April 2012 as described in the draft EIS/OEIS (Navy 2008c) and the Navy’s biological evaluation (Navy 2008b). The approach is also summarized in the programmatic ESA consultation on the Keyport Range Complex and Northwest Training Range biological opinion (NMFS 2010b) and reiterated below.

The Navy’s updated approach focuses on a suite of representative provinces based on sound velocity profiles, bathymetries, and bottom types. Within each of these provinces, the Navy modeled transmission losses in 5 meter increments and used the results to build sound fields (based on maximum sound pressure levels). The Navy then calculates an impact volume, which is the volume of water in which an acoustic metric exceeds a specified
threshold; in this case, the metric would be energy flux density (in a limited band or across a full band), peak pressure, or positive impulse. By multiplying impact volumes with estimates of animal densities in three dimensions (densities distributed by area and depth), the U.S. Navy estimated the expected number of animals that might be exposed to an acoustic metric (energy flux density, peak pressure, or positive impulse) at levels that exceed specified thresholds. Specifically, they calculated impact volumes for sonar operations (using energy flux density to estimate the probability of injury), peak pressure, and a Goertner modified positive impulse (for onset of slight lung injury associated with explosions).

To calculate the number of marine mammals that might be “taken” in the form of behavioral harassment, the U.S. Navy used a “risk continuum” (a curve that related the probability of a behavioral response given exposure to a received level that is generally represented by sound pressure level, but included sound exposure level to deal with threshold shifts) that the Navy and NMFS developed to this area then multiplied that area by a vector that represented the densities of the different species of marine animals that are expected to occur on the Naval Surface Warfare. The risk continuum, which the U.S. Navy adapted from a mathematical equation presented in Feller (1968), was estimated using three data sources: data from controlled experiments conducted at the U.S. Navy’s Space and Naval Warfare Systems Center in San Diego, California (Finneran et al. 2003; Finneran et al. 2001; Finneran et al. 2005; Finneran and Schlundt. 2004; Schlundt et al. 2000), data from a reconstruction of an incident in which killer whales were probably exposed to mid-frequency active sonar (Fromme 2004), and a suite of studies of the response of baleen whales to low-frequency sound sources (Nowacek et al. 2007).

However, little is known about the effect of short-term disruptions of a marine animal’s normal behavior (Richardson et al. 1995). Most of the evidence available suggests that most sources of disturbance do not directly kill or injure marine animals. The evidence available also does not lead us to expect endangered or threatened species to strand or suffer resonance effects from the active sonar associated with the RDT&E activities proposed to be conduct on the Keyport Range Complex (specifically, at the Dabob Bay Range Complex and Quinault Underwater Tracking Range). The Navy concluded that the protective measures it proposed would be 100 percent effective at preventing endangered or threatened species from being exposed to military readiness activities on portions of the Keyport Range Complex. However, we cannot make the same assumption without more empirical evidence of the effectiveness of those measures. As a result, we assume that the U.S. Navy’s original estimates represent the best estimate of the number of endangered or threatened marine mammals that might be exposed to acoustic stimuli associated with the proposed RDT&E activities on the Keyport Range Complex.

Blue Whale

Blue whales appear to migrate to waters offshore of Washington, Oregon, and northern California to forage. Thus far, blue whales are associated with deeper, pelagic waters in the action area; they have not been reported to occur proximate to the coast or in Puget Sound itself. Although a resident population of blue whales might occur off the coast of Vancouver Island throughout the year (Burtenshaw et al. 2004), most blue whales that occur in the action area for this consultation appear to migrate between summer, foraging areas and winter rearing areas along the Pacific Coast of the United States. That seasonal migration brings them to waters off the Keyport Range Complex (with some individuals continuing north to the Gulf of Alaska) during the warm, summer season with a southward migration to waters off California, south to Central America, during the winter season (Gregr et al. 2000; Mate et al.
Because of this migratory habit, we assumed that blue whales might be exposed to stressors on the Keyport Range Complex only during the summer season.

The Navy’s models estimated that one blue whale might occur close enough to active acoustic sources on the Quinault Underwater Tracking Range to experience behavioral responses that would constitute “behavioral harassment” (as that term is defined pursuant to the MMPA) each year. However, the U.S. Navy concluded that the monitoring protocols it proposes to employ on the Quinault Underwater Tracking Range would allow the U.S. Navy to detect that blue whale and prevent the whale from being exposed to acoustic sources on the tracking range. Despite this conclusion, and for the reasons we discussed in greater detail in our evaluation of the mitigation measures the U.S. Navy proposes to employ on the Keyport Range Complex, we do not expect the U.S. Navy’s monitoring protocols to detect 100 percent of the blue whales that might occur on the Quinault Underwater Tracking Range.

Nevertheless, we conclude that blue whales are not likely to be exposed to active acoustic sources on the Quinault Underwater Tracking Range because of their relatively low density in waters off Washington and the short duration of those events (on the order of three to four hours per event with several events in a single day for about 16 days of the year in the offshore portion of the tracking range). With this combination of factors, the probability of a single blue whale being exposed to the sound field associated with a RDT&E event is less than one tenth of one percent (which we would consider discountable).

Fin Whale

Fin whales are not known to occur in Puget Sound proper, but one or two fin whales are observed in most years in Georgia Strait (Osborne et al. 1988). However, their frequency and density in Puget Sound is sufficiently low to lead us to conclude that fin whales are not likely to be exposed to RDT&E events on the Keyport Range site or the Dabob Bay Range Complex site. Fin whales are likely to occur in waters on or proximate to the Quinault Underwater Tracking Range, however, and they might occur during any month of the year.

The Navy’s models estimated that one fin whale might occur close enough to active acoustic sources on the Quinault Underwater Tracking Range to experience behavioral responses that would constitute “behavioral harassment” (as that term is defined pursuant to the MMPA) each year. However, the U.S. Navy concluded that the monitoring protocols it proposes to employ on the Quinault Underwater Tracking Range would allow the U.S. Navy to detect that fin whale and prevent the whale from being exposed to acoustic sources on the tracking range. Despite this conclusion, and for the reasons we discussed in greater detail in our evaluation of the mitigation measures the U.S. Navy proposes to employ on the Keyport Range Complex, we do not expect the U.S. Navy’s monitoring protocols to detect 100 percent of the fin whales that might occur on the Quinault Underwater Tracking Range.

Nevertheless, we conclude that fin whales are not likely to be exposed to active acoustic sources on the Quinault Underwater Tracking Range because of their relatively low density in waters off Washington and the short duration of those events (on the order of three to four hours per event with several events in a single day for about 16 days of the year in the offshore portion of the tracking range). With this combination of factors, the probability of a single fin whale being exposed to the sound field associated with a RDT&E event is less than one tenth of one percent (which we would consider discountable).
Humpback Whale

Until 2003, only three humpback whales had been identified in Puget Sound and Georgia Strait (Falcone et al., 2005). In 2003 and 2004, 13 individual humpback whales were identified in the Sound based on 30 observations. Two of these whales were juveniles observed in the spring of 2004, one in the San Juan Islands and the other in southern Puget Sound between south Vashon Island and Point Defiance. The remaining humpback whales were observed from September through November (Falcone et al. 2005). Despite these recent observations, humpback whales have not been reported from the Hood Canal area and are not likely to be exposed to RDT&E events on the Keyport Range site or the Dabob Bay Range Complex site. Humpback whales are likely to occur in waters on or proximate to the Quinault Underwater Tracking Range, however, where they might occur during any month of the year with substantially higher densities during the summer months.

Based on the Navy’s models estimated there might be three instances in which humpback whales might occur close enough to active acoustic sources on the Quinault Underwater Tracking Range to experience behavioral responses that would constitute “behavioral harassment” (as that term is defined pursuant to the MMPA) each year. However, the U.S. Navy concluded that the monitoring protocols it proposes to employ on the Quinault Underwater Tracking Range would allow the U.S. Navy to detect that humpback whale and prevent the whale from being exposed to acoustic sources on the tracking range. Despite this conclusion, we do not expect the U.S. Navy’s monitoring protocols to detect 100 percent of the humpback whales that might occur on the Quinault Underwater Tracking Range.

Nevertheless, we conclude that humpback whales are not likely to be exposed to active acoustic sources on the Quinault Underwater Tracking Range because of their relatively low density in waters off Washington and the short duration of those events (on the order of three to four hours per event with several events in a single day for about 16 days of the year (in the offshore portion of the tracking range). With this combination of factors, the probability of a single humpback whale being exposed to the sound field associated with a RDT&E event is also less than one tenth of one percent (which we would consider discountable).

Sei Whale

Because they do not occur in Puget Sound, sei whales are not likely to be exposed to RDT&E events on the Keyport Range site or the Dabob Bay Range Complex site. Sei whales are likely to occur in waters on or proximate to the Quinault Underwater Tracking Range, however, where they might occur during any month of the year.

Based on the Navy’s model estimates there might be one instance in which sei whales might occur close enough to active acoustic sources on the Quinault Underwater Tracking Range to experience behavioral responses that would constitute “behavioral harassment” (as that term is defined pursuant to the MMPA) each year. However, the Navy concluded that the monitoring protocols it proposes to employ on the Quinault Underwater Tracking Range would allow the Navy to detect that sei whale and prevent the whale from being exposed to acoustic sources on the tracking range. Despite this conclusion, and for the reasons we discussed in greater detail in our evaluation of the mitigation measures the U.S. Navy proposes to employ on the Keyport Range Complex, we do not expect the U.S. Navy’s monitoring protocols to detect 100 percent of the sei whales that might occur on the Quinault Underwater Tracking Range.
Nevertheless, we conclude that sei whales are not likely to be exposed to active acoustic sources on the Quinault Underwater Tracking Range because of their relatively low density in waters off Washington and the short duration of those events (on the order of three to four hours per event with several events in a single day for about 16 days of the year (in the offshore portion of the tracking range). With this combination of factors, the probability of a single sei whale being exposed to the sound field associated with a RDT&E event is also less than one tenth of one percent (which we would consider discountable).

Southern Resident Killer Whale

Southern resident killer whales are the only marine mammals considered in this Opinion that begin and end their lives almost entirely within Puget Sound, Georgia Strait, the Strait of Juan de Fuca, and the outer coasts of Washington and southern Vancouver Island (Ford et al. 2000). Although southern resident killer whales occur in Puget Sound, NMFS argued that the Keyport Range site and the Dabob Bay Range Complex site do not overlap with their current distribution (this issue was addressed in substantial detail in the final rule to designate critical habitat for southern resident killer whales, 71 FR 69054). Therefore, southern resident killer whales are not likely to be exposed to RDT&E events on those components of the Keyport Range Complex.

Based on sighting information and stranding data collected from 1975 through 2007, we know that southern resident killer whales periodically travel to Vancouver Island and the Queen Charlotte Islands, coastal Washington, coastal Oregon, and California (NMFS 2008a). Those movements would bring southern resident killer whales onto or though the Quinault Underwater Tracking Range.

Based on the Navy’s models estimates there might be one instance in which southern resident killer whales might occur close enough to active acoustic sources on the Quinault Underwater Tracking Range to experience behavioral responses that would constitute “behavioral harassment” (as that term is defined pursuant to the MMPA) each year. However, the Navy also concluded that the monitoring protocols it proposes to employ on the Quinault Underwater Tracking Range would allow the Navy to detect southern resident killer whale and prevent the whale from being exposed to acoustic sources on the tracking range. As we have discussed in the preceding narratives, despite this conclusion, we do not expect the U.S. Navy’s monitoring protocols to detect 100 percent of the southern resident killer whales that might occur on the Quinault Underwater Tracking Range. However, southern resident killer whales generally occur in large stable pods typically comprised of 10 to about 60 individuals (NMFS 2008a). This increases the likelihood that Navy monitoring activities would see southern resident killer whales if they entered the range complex area.

Therefore, we conclude that southern resident killer whales are not likely to be exposed to active acoustic sources on the Quinault Underwater Tracking Range because they are likely to be seen during pre-training monitoring activities. Additionally, the short duration of those events the Navy plans to conduct on the tracking range further reduces the exposure potential. With this combination of factors, the probability of a southern resident killer whale being exposed to the sound field associated with a RDT&E event is also less than one tenth of one percent (which we would consider discountable).
Sperm Whale

Because they do not occur in Puget Sound, sperm whales are not likely to be exposed to RDT&E events on the Keyport Range site or the Dabob Bay Range Complex site. Sperm whales are likely to occur in waters on or proximate to the deeper portions of the Quinault Underwater Tracking Range, however, where they might occur during the summer months.

Based on the Navy’s model estimates there might be one instance in which sperm whales might occur close enough to active acoustic sources on the Quinault Underwater Tracking Range to experience behavioral responses that would constitute “behavioral harassment” (as that term is defined pursuant to the MMPA) each year. However, the Navy concluded that the monitoring protocols it proposes to employ on the Quinault Underwater Tracking Range would allow the U.S. Navy to detect that sperm whale and prevent the whale from being exposed to acoustic sources on the tracking range. Despite this conclusion, and for the reasons we discussed in greater detail in our evaluation of the mitigation measures the U.S. Navy proposes to employ on the Keyport Range Complex, we do not expect the U.S. Navy’s monitoring protocols to detect 100 percent of the sperm whales that might occur on the Quinault Underwater Tracking Range.

Nevertheless, we conclude that sperm whales are not likely to be exposed to active acoustic sources on the Quinault Underwater Tracking Range because of their relatively low density in waters off Washington, their tendency to occur in waters greater than 2,000 meters in depth, and the short duration of the events the U.S. Navy plans to conduct on the tracking range. With this combination of factors, the probability of a sperm whale being exposed to a sound field associated with a RDT&E event on the tracking range is also less than one tenth of one percent (which we would consider discountable).

Steller Sea Lion (Eastern Population)

Rookeries of the eastern population of Steller sea lions occur in British Columbia, Oregon, and northern California; but there are no rookeries in Washington (Angliss and Outlaw 2008). However, Steller sea lion occur regularly throughout the year in the Pacific Northwest and several haul outs for these sea lions occur along the coast from the Columbia River to Cape Flattery and on the southern coast of Vancouver Island near the Strait of Juan de Fuca (Jeffries et al. 2000). When they are not resting on haul outs, Steller sea lions primarily occur from the shore to the 500 meter (1,640 foot) isobath; they occur in waters deeper than this isobath, but their occurrence becomes increasingly rare. Steller sea lions also occur in the Strait of Juan de Fuca, around San Juan and Whidbey islands, and through the Strait of Georgia with some observations in the southern portion of Puget Sound. They are rare in Hood Canal.

Because of that rarity, Steller sea lions are not likely to be exposed to RDT&E events on the Keyport Range site or the Dabob Bay Range Complex site. However, we would expect Steller sea lions to occur on the Quinault Underwater Tracking Range.

Based on the Navy’s model estimates there might be three instances in which Steller sea lions might occur close enough to active acoustic sources on the Quinault Underwater Tracking Range to experience behavioral responses that would constitute “behavioral harassment” (as that term is defined pursuant to the MMPA) each year. However, the U.S. Navy also concluded that the monitoring protocols it proposes to employ on the Quinault Underwater
Tracking Range would allow the U.S. Navy to detect Steller sea lions and prevent the Steller sea lion from being exposed to acoustic sources on the tracking range.

As we have discussed in the preceding narratives, although the U.S. Navy concluded that the monitoring protocols it planned to employ would prevent these potential exposure events from occurring, we do not expect the U.S. Navy’s monitoring protocols to detect 100 percent of the Steller sea lions that might occur on the Quinault Underwater Tracking Range. More importantly, the U.S. Navy expected these monitoring protocols to completely fail to detect northern fur seals (*Callorhinus ursinus*), California sea lions (*Zalophus californianus*), and northern elephant seals (*Mirounga angustirostris*) that occur in the Quinault Underwater Tracking Range (see Table 6-25 in Navy 2008a). Given similarities in their body size and shape or, in the case of elephant seals, their larger body size, it seems unlikely that monitoring protocols that would fail to detect northern fur seals, California sea lions, and northern elephant seals that occur on the tracking range, would detect every Steller sea lion that occurs on the tracking range. Because it seems more likely that the detection probabilities associated with those other pinnipeds would apply to Steller sea lions, we would expect at least three instances in which Steller sea lions might be exposed to active acoustic sources on the Quinault Underwater Tracking Range.

Leatherback Sea Turtles

During the summer and fall, leatherback sea turtles occupy the California Current where they forage on dense aggregations of brown sea nettle (*Chrysaora fuscescens*) and other scyphomedusae in this area (particularly moon jellyfish *Aurelia labiata*) that occur in waters off the central California coast, north through Washington (Benson et al. 2006; Benson et al. 2007; Peterson et al. 2006). In our proposal to designate critical habitat for leatherback sea turtles, NMFS identified the nearshore area from the Umpqua River (Winchester Bay), Oregon, north to Cape Flattery, Washington, and offshore to the 2000 meter isobath as a principal foraging area for leatherback sea turtles. This area overlaps with the Quinault Underwater Tracking Range in its current configuration and with the expansion the U.S. Navy proposes. Therefore, we assume that leatherback sea turtles are likely to be exposed to RDT&E activities on the Quinault Underwater Tracking Range portion of the Keyport Range Complex. Nevertheless, the information available did not allow us to estimate the number of times leatherback sea turtles might be exposed to the activities the U.S. Navy plans to conduct on the Keyport Range Complex each year.

Southern Green Sturgeon

As discussed in the *Status of the Species* section of this Opinion, green sturgeon are distributed from the Bering Sea, Alaska, to Ensenada, Mexico, although this may or may not encompass the actual distribution of southern green sturgeon. Nevertheless, we assume that southern green sturgeon may occur in those areas that NMFS has designated as critical habitat for the species: coastal bays and estuaries include estuaries from Elkhorn Slough, California, to Puget Sound, Washington. Specifically, they might occur in coastal areas within depths of 60 fathoms where green sturgeon might forage or migrate. Because this distribution overlaps with the action area for this consultation and we do not have evidence that would lead us to conclude that southern green sturgeon are not likely to occur on the Keyport Range Complex (particularly the Quinault Undersea Training Range), we assume that green sturgeon are likely to be exposed to training activities that occur in those areas of the complex.
Pacific Salmon, Steelhead, and Southern Eulachon
Endangered and threatened species of Pacific salmon, steelhead, and southern eulachon distribute in coastal waters from northern California, Oregon, Washington, and in waters further north. As a result, we assume that endangered and threatened species of Pacific salmon, steelhead, and southern eulachon occur in those areas that NMFS has designated as critical habitat for the species. Because this distribution overlaps with the action area for this consultation and we do not have evidence that would lead us to conclude that endangered and threatened species of Pacific salmon and steelhead are not likely to occur on the Keyport Range Complex, we assume that endangered and threatened species of Pacific salmon, steelhead, and southern eulachon are likely to be exposed to training activities that occur in those areas of the Keyport Range Complex.

5.2.3 Exposure to Expended Materials
The potential for marine mammals to encounter expended material is low given the density of marine mammals in the Keyport Range Complex. The probability is further reduced by Navy mitigation measures, which require the area be clear of marine mammals before most of the equipment would be deployed. The potential for leatherback sea turtles, salmonids or Pacific eulachon to encounter expected material is sufficiently low that it can be considered discountable.

Based on the above information, NMFS does not consider this category of potential stressors further in the analyses.

5.3 Response Analysis
The response analyses are designed to identify how endangered or threatened species (or designated critical habitat, when it is applicable) are likely to respond given their exposure to one or more of the stressors produced by different components of a proposed action. These analyses consider and weigh all of the evidence available, including the best scientific and commercial data available, to identify the probable responses of endangered and threatened species upon being exposed to stressors associated with proposed actions.

5.3.1 Responses to Collision with Disturbance from Vessel Traffic
If behavioral disruptions of whales result from the presence of vessels or submarines, it is expected to be temporary. Animals are expected to resume their migration, feeding, or other behaviors without any threat to their survival or reproduction. Marine mammals react to vessels in a variety of ways and seem to be generally influenced by the activity the marine mammal is engaged in when a vessel approaches (Richardson et al. 1995). Some respond negatively by retreating or engaging in antagonistic responses while other animals ignore the stimulus altogether (Terhune and Verboom 1999; Watkins 1986).

The predominant reaction is likely to be neutral or avoidance behavior, rather than attraction behavior. Additional information regarding each listed species is provided below. We did not estimate the number of endangered or threatened species that are likely to be exposed to vessel traffic independent of the number of individuals that might be exposed to active sonar associated with those exercises (primarily because the data we would have needed to support those analyses were not available). Nevertheless, we assume that any individuals of the endangered or threatened species that occur in the Action Area during the activities in the Keyport Range Complex are likely to be exposed to visual and acoustic stimuli associated with vessel traffic and related activities. Because RDT&E
activities involve few vessels, are of short duration, and occur on a local scale, few endangered and threatened species would be exposed to vessel traffic during these small activities.

5.3.2 Responses to Active Sonar

Our exposure analyses concluded that blue whales, fin whales, humpback whales, sei whales, southern resident killer whales, and sperm whales were not likely to be exposed to active acoustic sources on the Quinault Underwater Tracking Range because the relatively low density of these species in waters off Washington and the short duration of RDT&E events reduced their probability of being exposed to sound fields associated with those events to levels that we would consider discountable. Endangered or threatened animals that are not directly or indirectly exposed to a potential stressor cannot respond to that stressor. Because blue fin, humpback, sei, southern resident, and sperm whales are not likely to be directly or indirectly exposed to the acoustic stimuli that would occur on the Quinault Underwater Tracking Range, they are not likely to respond to that exposure or experience reductions in their current or expected future reproductive success as a result of those responses. We do not consider these species further in this section of our Opinion.

Steller Sea Lion (Eastern Population)

Our exposure analyses concluded that we would expect at least three instances in which Steller sea lions might be exposed to active acoustic sources on the Quinault Underwater Tracking Range.

As with every other species we consider in this Opinion, the critical question is how Steller sea lions are likely to respond upon being exposed to mid-frequency active sonar on the Keyport Range Complex. Sea lions appear to vocalize as part of their social behavior and are able to hear well in and out of water; however, there are few studies of the response of pinnipeds that are exposed to sounds in water. Frost and Lowry (1988) reported that ringed seal densities around islands on which drilling was occurring declined over the period of observation; they concluded that the acoustic exposure was at least a contributing factor in that reduced density. Richardson et al. (1991), however, reported that ringed and bearded seals appeared to tolerate playbacks of underwater drilling sounds.

Norberg (2000) measured the responses of California sea lions to acoustic harassment devices (10-kHz fundamental frequency; 195 dB re: 1 μPa-m source level; short train of 2.5-ms signals repeated every 17 s) that were deployed in Puget Sound to reduce the effect of these predators on “wild” salmon in aquaculture facilities. He concluded that exposing California sea lions to this harassment device did not reduce the rate at which the sea lions fed on the steelhead.

Jacobs and Terhune (2002) observed the behavioral responses of harbor seal exposed to acoustic harassment devices with source levels of 172 dB re:1 μPa-m deployed around aquaculture sites. The seals in their study generally did not respond to sounds from the harassment devices and in two trials, seals approached to within 43 and 44 m of active harassment devices and did not appear to exhibit any measurable behavioral responses to the exposure.

Costa et al. (2003) placed acoustic data loggers placed on translocated elephant seals and exposed them to an active Acoustic Thermometry of the Ocean Climate (ATOC) source off northern California (source was located at a depth of 939 meters with the following source characteristics: 75-Hz signal with 37.5-Hz bandwidth; 195 dB re: 1 μPa-m max. source level, ramped up from 165 dB re: 1 μPa-m over 20 min). Seven control seals were instrumented
similarly and released when the ATOC source was not active. Received exposure levels of the ATOC source for
experimental subjects averaged 128 dB re: 1 μPa (range 118 to 137 dB) in the 60- to 90-Hz band. None of the
animals in the study terminated dives or radically altered behavior when they were exposed to the ATOC source, but
nine individuals exhibited changes in their dive patterns that were statistically significant.

Koschinski et al. (2003) studied the behavioral responses of harbor seals exposed to playbacks of simulated wind
turbine noise while underwater (maximum energy between 30 and 800 Hz; spectral density source levels of 128 dB
re: 1 μPa/Hz at 80 and 160 Hz). Moulton et al. (2005; 2003) studied ringed seals before and during the construction
and operation of an oil production facility and reported that the ringed seals did not avoid the area around the
various industrial sources. Studies of the effects of low frequency sounds on elephant seals (Mirounga spp.), which
are considered more sensitive to low frequency sounds than other pinnipeds (Croll et al. 1999b; Kastak and
Schusterman 1996; LeBoeuf and Peterson 1969), suggest that elephant seals did not experience even short-term
changes in behavior given their exposure to low frequency sounds.

Leatherback Sea Turtles

Although the information available did not allow us to estimate the number of times leatherback sea turtles might be
exposed to the activities the U.S. Navy plans to conduct on the Quinault Underwater Tracking Range, we assume
that some leatherback sea turtles are likely to be exposed to low-, mid- and high-frequency sounds produced by
research, development, test and evaluation activities the U.S. Navy proposes to conduct on the Quinault Underwater
Tracking Range portion of the Keyport Range Complex.

The information on the hearing capabilities of sea turtles is also limited, but the information available suggests that
the auditory capabilities of sea turtles are centered in the low-frequency range (<1 kHz) (Bartol et al. 1999; Lenhardt
1994; Lenhardt et al. 1983; Ridgway et al. 1969). Ridgway et al. (1969) studied the auditory evoked potentials of
three green sea turtles (in air and through mechanical stimulation of the ear) and concluded that their maximum
sensitivity occurred from 300 to 400 Hz with rapid declines for tones at lower and higher frequencies. They reported
an upper limit for cochlear potentials without injury of 2000 Hz and a practical limit of about 1000 Hz. This is
similar to estimates for loggerhead sea turtles, which had most sensitive hearing between 250 and 1000 Hz, with
rapid decline above 1000 Hz (Bartol et al. 1999). These hearing sensitivities are similar to the hearing sensitivities
reported for two terrestrial species: pond turtles (Pseudemys scripta) and wood turtles (Chrysemys insculpta). Pond
turtles are reported to have best hearing responsiveness between 200 and 700 Hz, with slow declines below 100 Hz
and rapid declines above 700 Hz and almost no sensitivity above 3000 Hz (Wever and Vernon 1956). Wood turtles
are reported to have sensitivities up to about 500 Hz, followed by a rapid decline above 1000 Hz and almost no
responses beyond 3000 or 4000 Hz (Patterson 1966).

No audiometric data are available for leatherback sea turtles, but we assume that they have hearing ranges similar to
those of other sea turtles (or at least, their hearing is likely to be closer to that of other sea turtles than to the hearing
sensitivities of marine mammals). Based on this information sea turtles exposed to received levels of active mid-
frequency sonar are not likely to hear mid-frequency sounds (sounds between 1 kHz and 10 kHz); therefore, they are
not likely to respond physiologically or behaviorally to those received levels.
Because the acoustic sources the U.S. Navy proposes to employ during RDT&E activities at the Keyport Range Complex transmit at frequencies that are substantially higher than hearing thresholds for sea turtles, leatherback sea turtles that are exposed to those transmissions are not likely to respond to that exposure.

Southern Green Sturgeon

Although the information available did not allow us to estimate the number of times southern green sturgeon might be exposed to the activities the U.S. Navy plans to conduct on the Quinault Underwater Tracking Range, we assume that some southern green sturgeon are likely to be exposed to low-, mid- and high-frequency sounds produced by research, development, test and evaluation activities the U.S. Navy proposes to conduct on the Quinault Underwater Tracking Range portion of the Keyport Range Complex.

We would not expect southern green sturgeon to respond to that exposure. We do not have specific information on hearing in southern green sturgeon. However, Meyer and Popper (2002) recorded auditory evoked potentials to pure tone stimuli of varying frequency and intensity in lake sturgeon and reported that lake sturgeon detect pure tones from 100 to 2000 Hz, with best sensitivity from 100 to 400 Hz. They also compared these sturgeon data with comparable data for oscar (*Astronotus ocellatus*) and goldfish (*Carassius auratus*) and reported that the auditory brainstem responses for the lake sturgeon are more similar to the goldfish (which is considered a hearing specialist that can hear up to 5000 Hz) than to the oscar (which is a non-specialist that can only detect sound up to 400 Hz); these authors, however, felt additional data were necessary before lake sturgeon could be considered specialized for hearing.

Lovell et al. (2005) also studied sound reception in and the hearing abilities of paddlefish (*Polyodon spathula*) and lake sturgeon (*Acipenser fulvescens*). They concluded that both species were responsive to sounds ranging in frequency from 100 to 500 Hz with lowest hearing thresholds from frequencies in bandwidths between 200 and 300 Hz and higher thresholds at 100 and 500 Hz. Because of their hearing sensitivity, we would not expect southern green sturgeon to respond to high- or mid-frequency active sonar and are not likely to be adversely affected by the activities the U.S. Navy plans to conduct in waters on the Keyport Range Complex.

Pacific Salmon, Steelhead, and Southern Eulachon

Although the information available did not allow us to estimate the number of times endangered and threatened species of Pacific salmon, steelhead, and eulachon might be exposed to the activities the U.S. Navy plans to conduct on the Quinault Underwater Tracking Range, we assume that some endangered and threatened species of Pacific salmon, steelhead, and eulachon are likely to be exposed to low-, mid- and high-frequency sounds produced by research, development, test and evaluation activities the U.S. Navy proposes to conduct on the Quinault Underwater Tracking Range and the Keyport Range Complex.

Popper (2003) and Hastings and Popper (2005) presented evidence that establishes that most fish only detect sounds within the 1-3 kHz range, which would make them sensitive to the lower end of the frequency range of mid-frequency active sonar. The U.S. Navy’s Biological Evaluation for the Northwest Training Range Complex (Navy 2008d; Navy 2009) provided a thorough review of the information available on the probable responses of endangered and threatened fish to active sonar. We have extracted most of the narratives that follow from that
Gearin et al. (2000) and Culik et al. (2001) studied the effects of exposing fish to sounds produced by acoustic deterrent devices, which produce sounds in the mid frequency range. Adult sockeye salmon exhibited an initial startle response to the placement of inactive acoustic alarms but resumed their normal swimming pattern within 10 to 15 seconds. After 30 seconds, the fish approached the inactive alarm to within 30 cm (1 foot). When the experiment was conducted with an alarm active, the fish exhibited the same initial startle response from the insertion of the alarm into the tank; but were swimming within 30 cm of the active alarm within 30 seconds. After five minutes, the fish did not show any reaction or behavior change except for the initial startle response.

Jørgensen et al. (2005) exposed fish larvae and juveniles representing three different species to sounds that were designed to simulate mid-frequency sonar transmissions (1 to 6.5 kHz) to study the effects of the exposure on the survival, development, and behavior of the larvae and juveniles (the study used larvae and juveniles of Atlantic herring, Atlantic cod, saithe (Pollachius virens), and spotted wolfish (Anarhichas minor). Their experiments have often been reported to have concluded that the sonar exposures produced mortalities of 20 to 30 percent, but those reports appear to have been in error. Jørgensen and his co-workers conducted a total of 42 trials for six different experiments with each trial consisting of a control group and an experimental group with the experimental group exposed to active sonar at a specific received level over a specific time interval. They reported the size of the fish, source frequency (in kHz), received level (Sound Pressure Level in dB rms), number of pulses the fish were exposed to, total energy (SEL in Pascals squared per second), and outcome of the trial: number of animals alive versus number of animals dead.

Fish died in 11 of the 42 trials they conducted with Atlantic herring, but some of the fish that died were from the control group that was not exposed to active sonar. In the two trials that resulted in 20 to 30 percent mortalities, the fish died in both control and experimental groups, so it would be incorrect to conclude that the mortalities were caused by exposure to active sonar.

More importantly, Jørgensen and his co-workers did not report the frequency, received level, duration, or total energy associated with the four trials that resulted in the 20 to 30 percent mortality (they only report that the fish died 10 or 11 days after the trial), so these data do not support a conclusion that the deaths were caused by exposure to active sonar. Because Jørgensen and his co-workers did not report the frequency, received level, duration, or total energy associated with the four trials that resulted in the 20 to 30 percent mortality, those trials could not establish a causal relationship between sonar exposures and the death of the fish so the trials should have been censored from subsequent study.

An examination of the data from all of the trials (censored to eliminate the four trials without exposure data), still showed that mortalities associated with the experimental group were substantially greater than those of the control group (27 out of 1189 or 0.0227 percent versus 7 out of 881 or 0.0079 percent), which is a fraction of the 20 to 30 percent mortality that has been reported based on that study. Further, correlation coefficients between the percent of dead animals in the experimental group and (1) sound pressure level (r-squared = 0.0658), (2) total energy received (r-squared = 0.1721), (3) source frequency (r-squared = 0.0052), and (4) number of pulses (r-squared = 0.0145) were
too small to establish any coherent relationship between any of these variables, which limits the applicability of the study results.

Hastings et al. (1996) studied the effects of low frequency underwater sound on fish hearing. More recently, Popper et al. (2005; 2007; Popper and Hastings 2009) investigated the potential effects of exposing several fish species to the U.S. Navy’s SURTASS LFA sonar, focusing on both hearing and non-auditory tissues. Their study exposed the fish to LFA sonar pulses for time intervals that would be substantially longer than what would occur in nature, but the fish did not experience mortalities or damage to body tissues at the gross or histological level. Some fish experienced temporary losses in their hearing sensitivity but they recovered within several days of exposure.

Based on the evidence available, if they were exposed to transmissions associated with mid frequency active sonar training activities on the Keyport Range Complex, we would expect the endangered and threatened fish we consider in this Opinion to be able to detect those sounds. If juvenile fish, larvae, or eggs occurred close to the sound source, we would expect some of those life-stages to be killed or injured (which, in those life stages, would probably result in individuals being eaten by predators); however, because these species are anadromous, the juveniles, larvae, and eggs of southern green sturgeon, Pacific salmon, steelhead, and southern eulachon are not likely to occur in the Keyport Range Complex so such exposure is highly improbable. In the case of southern eulachon, this spatial separation between sensitive life stages and active sonar probably protects them from the small, but potentially-significant mortality rates reported by Jørgensen and his co-workers (Jørgensen et al. 2005).

If Pacific salmon and steelhead are exposed to mid-frequency active sonar associated with the military readiness activities the U.S. Navy proposes to conduct on the Keyport Range Complex, they might experience startle responses or change in their behavioral state, but those responses are likely to be brief and have no immediate or cumulative consequence for the reproductive success of the fish that might be exposed.

5.4 Cumulative Effects

Cumulative effects include the effects of future State, tribal, local, or private actions that are reasonably certain to occur in the action area considered in this biological opinion. Future Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the ESA.

During this consultation, NMFS searched for information on future State, tribal, local, or private actions that were reasonably certain to occur in the action area. Most of the action area includes federal military reserves or is outside of territorial waters of the United States of America, which would preclude the possibility of future state, tribal, or local action that would not require some form of federal funding or authorization. NMFS conducted electronic searches of business journals, trade journals, and newspapers using First Search, Google, and other electronic search engines. Those searches produced no evidence of future private action in the action area that would not require federal authorization or funding and is reasonably certain to occur. As a result, NMFS is not aware of any actions of this kind that are likely to occur in the action area during the foreseeable future.
6 INTEGRATION AND SYNTHESIS OF EFFECTS

In the Assessment Approach section of this Opinion, our risk analyses begin by identifying the probable risks actions pose to listed individuals that are likely to be exposed to an action’s effects. We measure risks to individuals of endangered or threatened species using changes in the individuals’ “fitness” or the individual’s growth, survival, annual reproductive success, and lifetime reproductive success. When we do not expect listed plants or animals exposed to an action’s effects to experience reductions in fitness, we would not expect the action to have adverse consequences on the viability of the populations those individuals represent or the species those populations comprise (Anderson 2000; Brandon 1978; Mills and Beatty 1979; Stearns 1977; Stearns 1992). As a result, if we conclude that listed plants or animals are not likely to experience reductions in their fitness, we would conclude our assessment. If, however, we conclude that listed plants or animals are likely to experience reductions in their fitness, we would assess the potential consequences of those fitness reductions for the population or populations the individuals in an action area represent.

As part of our risk analyses, we consider the consequences of exposing endangered or threatened species to the stressors associated with the proposed actions, individually and cumulatively, given that the individuals in the action areas for this consultation are also exposed to other stressors in the action area and elsewhere in their geographic range. These stressors or the response of individual animals to those stressors can produce consequences — or “cumulative impacts” (in the NEPA sense of the term) — that would not occur if animals were only exposed to a single stressor.

As we summarize in the narratives that follow, our analyses led us to conclude that endangered or threatened individuals that are likely to be exposed to the RDT&E activities the U.S. Navy proposes to conduct at the Keyport Range Complex are not likely to experience reductions in the fitness of the individual animals that are likely to be exposed to those activities.

6.1 Blue Whale

Our exposure analyses concluded that blue whales were not likely to be exposed to active acoustic sources on the Keyport Range Complex because relatively low density of these species in waters off Washington and the short duration of RDT&E events reduced their probability of being exposed to sound fields associated with those events to levels that we would consider discountable. As we discussed previously, endangered or threatened animals that are not directly or indirectly exposed to a potential stressor cannot respond to that stressor. Because blue whales are not likely to be exposed to the acoustic stimuli that would occur on the Quinault Underwater Tracking Range, they are not likely to respond to that exposure or experience reductions in their current or expected future reproductive success as a result of those responses. As we also discussed previously, an action that is not likely to reduce the fitness of individual whales would not be likely to reduce the viability of the populations those individual whales represent (that is, we would not expect reductions in the reproduction, numbers, or distribution of those populations). As a result, the activities the U.S. Navy plans to conduct in the Keyport Range Complex from April 2011 through April 2012 would not appreciably reduce the blue whales’ likelihood of surviving and recovering in the wild.
6.2 Fin Whale
Our exposure analyses concluded that fin whales were not likely to be exposed to active acoustic sources on the Keyport Range Complex because relatively low density of these species in waters off Washington and the short duration of RDT&E events reduced their probability of being exposed to sound fields associated with those events to levels that we would consider discountable. Endangered or threatened animals that are not directly or indirectly exposed to a potential stressor cannot respond to that stressor. Because fin whales are not likely to be directly or indirectly exposed to the acoustic stimuli that would occur on the Keyport Range Complex, they are not likely to respond to that exposure or experience reductions in their current or expected future reproductive success as a result of those responses. An action that is not likely to reduce the fitness of individual whales would not be likely to reduce the viability of the populations those individual whales represent (that is, we would not expect reductions in the reproduction, numbers, or distribution of those populations). As a result, the activities the U.S. Navy plans to conduct in the Keyport Range Complex each year from April 2011 through April 2012 would not appreciably reduce the fin whales’ likelihood of surviving and recovering in the wild.

6.3 Humpback Whale
Our exposure analyses concluded that humpback whales were not likely to be exposed to active acoustic sources on the Keyport Range Complex because relatively low density of these species in waters off Washington and the short duration of RDT&E events reduced their probability of being exposed to sound fields associated with those events to levels that we would consider discountable. Endangered or threatened animals that are not directly or indirectly exposed to a potential stressor cannot respond to that stressor. Because humpback whales are not likely to be directly or indirectly exposed to the acoustic stimuli that would occur on the Keyport Range Complex, they are not likely to respond to that exposure or experience reductions in their current or expected future reproductive success as a result of those responses. An action that is not likely to reduce the fitness of individual whales would not be likely to reduce the viability of the populations those individual whales represent. As a result, the activities the U.S. Navy plans to conduct in the Keyport Range Complex each year from April 2011 through April 2012 would not appreciably reduce the humpback whales’ likelihood of surviving and recovering in the wild.

6.4 Sei Whale
Our exposure analyses concluded that sei whales were not likely to be exposed to active acoustic sources on the Keyport Range Complex because relatively low density of these species in waters off Washington and the short duration of RDT&E events reduced their probability of being exposed to sound fields associated with those events to levels that we would consider discountable. Endangered or threatened animals that are not directly or indirectly exposed to a potential stressor cannot respond to that stressor. Because sei whales are not likely to be directly or indirectly exposed to the acoustic stimuli that would occur on the Keyport Range Complex, they are not likely to respond to that exposure or experience reductions in their current or expected future reproductive success as a result of those responses. An action that is not likely to reduce the fitness of individual whales would not be likely to reduce the viability of the populations those individual whales represent. As a result, the activities the U.S. Navy plans to conduct in the Keyport Range Complex each year from April 2011 through April 2012 would not appreciably reduce the sei whales’ likelihood of surviving and recovering in the wild.
6.5 Southern Resident Killer Whale
Our exposure analyses concluded that southern resident killer whales were not likely to be exposed to active acoustic sources on the Keyport Range Complex because relatively low density of these species in waters off Washington and the short duration of RDT&E events reduced their probability of being exposed to sound fields associated with those events to levels that we would consider discountable. As we discussed in the Approach to the Assessment chapter of this Opinion, endangered or threatened animals (and plants) that are not directly or indirectly exposed to a potential stressor cannot respond to that stressor. Because southern resident killer whales are not likely to be directly or indirectly exposed to the acoustic stimuli that would occur on the Keyport Range Complex, they are not likely to respond to that exposure or experience reductions in their current or expected future reproductive success as a result of those responses. As we also discussed in the Approach to the Assessment section of this opinion, an action that is not likely to reduce the fitness of individual whales would not be likely to reduce the viability of the populations those individual whales represent (that is, we would not expect reductions in the reproduction, numbers, or distribution of those populations). As a result, the activities the U.S. Navy plans to conduct in the Keyport Range Complex each year from April 2011 through April 2012 would not appreciably reduce the southern resident killer whales’ likelihood of surviving and recovering in the wild.

6.6 Sperm Whale
Our exposure analyses concluded that sperm whales were not likely to be exposed to active acoustic sources on the Quinault Underwater Tracking Range because relatively low density of these species in waters off Washington and the short duration of RDT&E events reduced their probability of being exposed to sound fields associated with those events to levels that we would consider discountable. As we discussed in the Approach to the Assessment chapter of this Opinion, endangered or threatened animals (and plants) that are not directly or indirectly exposed to a potential stressor cannot respond to that stressor. Because sperm whales are not likely to be directly or indirectly exposed to the acoustic stimuli that would occur on the Quinault Underwater Tracking Range, they are not likely to respond to that exposure or experience reductions in their current or expected future reproductive success as a result of those responses. As we also discussed in the Approach to the Assessment section of this opinion, an action that is not likely to reduce the fitness of individual whales would not be likely to reduce the viability of the populations those individual whales represent (that is, we would not expect reductions in the reproduction, numbers, or distribution of those populations). As a result, the activities the U.S. Navy plans to conduct in the Keyport Range Complex each year from April 2011 through April 2012 would not appreciably reduce the sperm whales’ likelihood of surviving and recovering in the wild.

6.7 Eastern Population of Steller Sea Lion
Our exposure analyses concluded that we would expect at least three instances in which Steller sea lions might be exposed to active acoustic sources on the Quinault Underwater Tracking Range. As with every other species we consider in this Opinion, the critical question is how Steller sea lions are likely to respond upon being exposed to mid-frequency active sonar on the Keyport Range Complex. Sea lions appear to vocalize as part of their social behavior and are able to hear well in and out of water; however, there are few studies of the response of pinnipeds that are exposed to sounds in water. Frost and Lowry (1988) reported that ringed seal densities around islands on which drilling was occurring declined over the period of observation; they concluded that the acoustic exposure was
at least a contributing factor in that reduced density. Richardson et al. (1991), however, reported that ringed and bearded seals appeared to tolerate playbacks of underwater drilling sounds.

Norberg (2000) measured the responses of California sea lions to acoustic harassment devices (10-kHz fundamental frequency; 195 dB re: 1 μPa-m source level; short train of 2.5-ms signals repeated every 17 s) that were deployed in Puget Sound to reduce the effect of these predators on “wild” salmon in aquaculture facilities. He concluded that exposing California sea lions to this harassment device did not reduce the rate at which the sea lions fed on the steelhead.

Jacobs and Terhune (2002) observed the behavioral responses of harbor seal exposed to acoustic harassment devices with source levels of 172 dB re:1 μPa-m deployed around aquaculture sites. The seals in their study generally did not respond to sounds from the harassment devices and in two trials, seals approached to within 43 and 44 m of active harassment devices and did not appear to exhibit any measurable behavioral responses to the exposure.

Costa et al. (2003) placed acoustic data loggers placed on translocated elephant seals and exposed them to an active Acoustic Thermometry of the Ocean Climate (ATOC) source off northern California (source was located at a depth of 939 meters with the following source characteristics: 75-Hz signal with 37.5-Hz bandwidth; 195 dB re: 1 μPa-m max. source level, ramped up from 165 dB re: 1 μPa-m over 20 min). Seven control seals were instrumented similarly and released when the ATOC source was not active. Received exposure levels of the ATOC source for experimental subjects averaged 128 dB re: 1 μPa (range 118 to 137 dB) in the 60- to 90-Hz band. None of the animals in the study terminated dives or radically altered behavior when they were exposed to the ATOC source, but nine individuals exhibited changes in their dive patterns that were statistically significant.

Koschinski et al. (2003) studied the behavioral responses of harbor seals exposed to playbacks of simulated wind turbine noise while underwater (maximum energy between 30 and 800 Hz; spectral density source levels of 128 dB re: 1 μPa/Hz at 80 and 160 Hz). Moulton et al. (2005; 2003) studied ringed seals before and during the construction and operation of an oil production facility and reported that the ringed seals did not avoid the area around the various industrial sources. Studies of the effects of low frequency sounds on elephant seals (Mirounga spp.), which are considered more sensitive to low frequency sounds than other pinnipeds (Croll et al. 1999b; Kastak and Schusterman 1996; LeBoeuf and Peterson 1969), suggest that elephant seals did not experience even short-term changes in behavior given their exposure to low frequency sounds. As a result, mid-frequency active sonar associated with the proposed exercises “may affect, but is not likely to adversely affect” Steller sea lions.

6.8 Leatherback Sea Turtles

Although the information available did not allow us to estimate the number of times leatherback sea turtles might be exposed to the activities the U.S. Navy plans to conduct on the Quinault Underwater Tracking Range, we assume that some leatherback sea turtles are likely to be exposed to low-, mid- and high-frequency sounds produced by research, development, test and evaluation activities the U.S. Navy proposes to conduct on the Quinault Underwater Tracking Range portion of the Keyport Range Complex.

The information on the hearing capabilities of sea turtles is also limited, but the information available suggests that the auditory capabilities of sea turtles are centered in the low-frequency range (<1 kHz) (Bartol et al. 1999; Lenhardt
1994; Lenhardt et al. 1983; Ridgway et al. 1969). Ridgway et al. (1969) studied the auditory evoked potentials of three green sea turtles (in air and through mechanical stimulation of the ear) and concluded that their maximum sensitivity occurred from 300 to 400 Hz with rapid declines for tones at lower and higher frequencies. They reported an upper limit for cochlear potentials without injury of 2000 Hz and a practical limit of about 1000 Hz. This is similar to estimates for loggerhead sea turtles, which had most sensitive hearing between 250 and 1000 Hz, with rapid decline above 1000 Hz (Bartol et al. 1999). These hearing sensitivities are similar to the hearing sensitivities reported for two terrestrial species: pond turtles (Pseudemys scripta) and wood turtles (Chrysemys insculpta). Pond turtles are reported to have best hearing responsiveness between 200 and 700 Hz, with slow declines below 100 Hz and rapid declines above 700 Hz and almost no sensitivity above 3000 Hz (Wever and Vernon 1956). Wood turtles are reported to have sensitivities up to about 500 Hz, followed by a rapid decline above 1000 Hz and almost no responses beyond 3000 or 4000 Hz (Patterson 1966).

No audiometric data are available for leatherback sea turtles, but we assume that they have hearing ranges similar to those of other sea turtles (or at least, their hearing is likely to be closer to that of other sea turtles than to the hearing sensitivities of marine mammals). Based on this information sea turtles exposed to received levels of active mid-frequency sonar are not likely to hear mid-frequency sounds (sounds between 1 kHz and 10 kHz); therefore, they are not likely to respond physiologically or behaviorally to those received levels.

A recent study on the effects of airguns on sea turtle behavior also suggests that sea turtles are most likely to respond to low-frequency sounds. McCauley et al. (2000) reported that green and loggerhead sea turtles will avoid air-gun arrays at 2 km and at 1 km with received levels of 166 dB re 1 μPa and 175 dB re 1 μPa, respectively. The sea turtles responded consistently: above a level of approximately 166 dB re 1 μPa, the turtles noticeably increased their swimming activity compared to non-airgun operation periods. Above 175 dB re 1 μPa mean squared pressure their behavior became more erratic possibly indicating the turtles were in an agitated state. Because the acoustic sources the U.S. Navy proposes to employ during RDT&E activities at the Keyport Range Complex transmit at frequencies that are substantially higher than hearing thresholds for sea turtles, leatherback sea turtles that are exposed to those transmissions are not likely to respond to that exposure. As a result, mid-frequency active sonar associated with the proposed exercises “may affect, but is not likely to adversely affect” leatherback sea turtles.

6.9 Southern Green Sturgeon

Although the information available did not allow us to estimate the number of times southern green sturgeon might be exposed to the activities the U.S. Navy plans to conduct on the Keyport Range Complex, we assume that some southern green sturgeon are likely to be exposed to low-, mid- and high-frequency sounds produced by RDT&E activities the Navy proposes to conduct on the Quinault Underwater Tracking Range portion of the Keyport Range Complex.

We would not expect southern green sturgeon to respond to that exposure. We do not have specific information on hearing in southern green sturgeon. However, Meyer and Popper (2002) recorded auditory evoked potentials to pure tone stimuli of varying frequency and intensity in lake sturgeon and reported that lake sturgeon detect pure tones from 100 to 2000 Hz, with best sensitivity from 100 to 400 Hz. They also compared these sturgeon data with comparable data for oscar (Astronotus ocellatus) and goldfish (Carassius auratus) and reported that the auditory brainstem responses for the lake sturgeon are more similar to the goldfish (which is considered a hearing specialist
that can hear up to 5000 Hz) than to the oscar (which is a non-specialist that can only detect sound up to 400 Hz); these authors, however, felt additional data were necessary before lake sturgeon could be considered specialized for hearing.

Lovell et al. (2005) also studied sound reception in and the hearing abilities of paddlefish (*Polyodon spathula*) and lake sturgeon (*Acipenser fulvescens*). They concluded that both species were responsive to sounds ranging in frequency from 100 to 500 Hz with lowest hearing thresholds from frequencies in bandwidths between 200 and 300 Hz and higher thresholds at 100 and 500 Hz. Because of their hearing sensitivity, we would not expect southern green sturgeon to respond to high- or mid-frequency active sonar and they are not likely to be adversely affected by the activities the U.S. Navy plans to conduct in waters on the Keyport Range Complex.

6.10 Pacific Salmon, Steelhead, and Southern Eulachon

Although the information available did not allow us to estimate the number of times endangered and threatened species of Pacific salmon, steelhead, and eulachon might be exposed to the activities the U.S. Navy plans to conduct on the Quinault Underwater Tracking Range, we assume that some endangered and threatened species of Pacific salmon, steelhead, and eulachon are likely to be exposed to low-, mid- and high-frequency sounds produced by research, development, test and evaluation activities the U.S. Navy proposes to conduct on the Quinault Underwater Tracking Range and the Keyport Range Complex.

Popper (2003) and Hastings and Popper (2005) presented evidence that establishes that most fish only detect sounds within the 1-3 kHz range, which would make them sensitive to the lower end of the frequency range of mid-frequency active sonar. The U.S. Navy’s Biological Evaluation for the Northwest Training Range Complex (Navy 2008b; Navy 2008d) provided a thorough review of the information available on the probable responses of endangered and threatened fish to active sonar. We have extracted most of the narratives that follow from that review, although we have made a few corrections and clarifications and supplemented the analyses with a few additional studies.

Gearin et al. (2000) and Culik et al. (2001) studied the effects of exposing fish to sounds produced by acoustic deterrent devices, which produce sounds in the mid frequency range. Adult sockeye salmon exhibited an initial startle response to the placement of inactive acoustic alarms but resumed their normal swimming pattern within 10 to 15 seconds. After 30 seconds, the fish approached the inactive alarm to within 30 cm (1 foot). When the experiment was conducted with an alarm active, the fish exhibited the same initial startle response from the insertion of the alarm into the tank; but were swimming within 30 cm of the active alarm within 30 seconds. After five minutes, the fish did not show any reaction or behavior change except for the initial startle response.

Jørgensen et al. (2005) exposed fish larvae and juveniles representing three different species to sounds that were designed to simulate mid-frequency sonar transmissions (1 to 6.5 kHz) to study the effects of the exposure on the survival, development, and behavior of the larvae and juveniles (the study used larvae and juveniles of Atlantic herring, Atlantic cod, saithe (*Pollachius virens*), and spotted wolfish (*Anarhichas minor*). Their experiments have often been reported to have concluded that the sonar exposures produced mortalities of 20 to 30 percent, but those reports appear to have been in error. Jørgensen and his co-workers conducted a total of 42 trials for six different experiments with each trial consisting of a control group and an experimental group with the experimental group
exposed to active sonar at a specific received level over a specific time interval. They reported the size of the fish, source frequency (in kHz), received level (Sound Pressure Level in dB rms), number of pulses the fish were exposed to, total energy (SEL in Pascals squared per second), and outcome of the trial: number of animals alive versus number of animals dead.

Fish died in 11 of the 42 trials they conducted with Atlantic herring, but some of the fish that died were from the control group that was not exposed to active sonar. In the two trials that resulted in 20 to 30 percent mortalities, the fish died in both control and experimental groups, so it would be incorrect to conclude that the mortalities were caused by exposure to active sonar.

More importantly, Jørgensen and his co-workers did not report the frequency, received level, duration, or total energy associated with the four trials that resulted in the 20 to 30 percent mortality (they only report that the fish died 10 or 11 days after the trial), so these data do not support a conclusion that the deaths were caused by exposure to active sonar. Because Jørgensen and his co-workers did not report the frequency, received level, duration, or total energy associated with the four trials that resulted in the 20 to 30 percent mortality, those trials could not establish a causal relationship between sonar exposures and the death of the fish so the trials should have been censored from subsequent study.

An examination of the data from all of the trials (censored to eliminate the four trials without exposure data), still showed that mortalities associated with the experimental group were substantially greater than those of the control group (27 out of 1189 or 0.0227 percent versus 7 out of 881 or 0.0079 percent), which is a fraction of the 20 to 30 percent mortality that has been reported based on that study. Further, correlation coefficients between the percent of dead animals in the experimental group and (1) sound pressure level (r-squared = 0.0658), (2) total energy received (r-squared = 0.1721), (3) source frequency (r-squared = 0.0052), and (4) number of pulses (r-squared = 0.0145) were too small to establish any coherent relationship between any of these variables, which limits the applicability of the study results.

Hastings et al. (1996) studied the effects of low frequency underwater sound on fish hearing. More recently, Popper et al. (2008; 2007; Popper and Hastings 2009) investigated the potential effects of exposing several fish species to the U.S. Navy’s SURTASS LFA sonar, focusing on the hearing and on non-auditory tissues. Their study exposed the fish to LFA sonar pulses for time intervals that would be substantially longer than what would occur in nature, but the fish did not experience mortalities or damage to body tissues at the gross or histological level. Some fish experienced temporary losses in their hearing sensitivity but they recovered within several days of exposure.

Based on the evidence available, if they were exposed to transmissions associated with mid frequency active sonar training activities on the Keyport Range Complex, we would expect the endangered and threatened fish we consider in this Opinion to be able to detect those sounds. If juvenile fish, larvae, or eggs occurred close to the sound source, we would expect some of those life-stages to be killed or injured (which, in those life stages, would probably result in individuals being eaten by predators); however, because these species are anadromous, the juveniles, larvae, and eggs of southern green sturgeon, Pacific salmon, steelhead, and southern eulachon are not likely to occur in the Keyport Range Complex so such exposure is highly improbable. In the case of southern eulachon, this spatial

140
separation between sensitive life stages and active sonar probably protects them from the small, but potentially-significant mortality rates reported by Jørgensen and his co-workers (2005).

If Pacific salmon and steelhead are exposed to disturbance from vessels or mid-frequency active sonar associated with the military readiness activities the U.S. Navy proposes to conduct on the Keyport Range Complex, they might experience a startle response or change in their behavioral state, but those responses are likely to be brief and have no immediate or cumulative consequence for the reproductive success of the fish that might be exposed.

7 CONCLUSION

After reviewing the current status of blue whales, fin whales, humpback whales, sei whales, sperm whales, southern resident killer whales, Steller sea lion (eastern population), leatherback sea turtles, southern green sturgeon, Pacific eulachon, lower Columbia river Chinook salmon, Puget Sound Chinook salmon, Columbia River chum salmon, Hood Canal chum salmon, lower Columbia River coho salmon, Ozette Lake sockeye salmon, lower Columbia River steelhead, and Puget Sound steelhead, the environmental baseline for the action area, the effects of the RDT&E activities the Navy plans to conduct on the Keyport Range Complex and the cumulative effects, it is NMFS’ biological opinion that the Navy’s proposal to conduct RDT&E activities on the Keyport Range Complex, from April 2011 through April 2012 are not likely to jeopardize the continued existence of these threatened and endangered species under NMFS jurisdiction.

The opinion also concluded that RDT&E activities the U.S. Navy plans to conduct on the Keyport Range Complex are not likely to adversely affect critical habitat that has been designated for endangered or threatened species in the action area. Therefore they are not likely to result in the destruction or adverse modification of that habitat.

8 INCIDENTAL TAKE STATEMENT

Section 9 of the ESA and Federal regulation pursuant to section 4(d) of the ESA prohibits the take of endangered and threatened species, respectively, without special exemption. Take is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. Harm is further defined by NMFS to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering. Incidental take is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2) of the ESA, taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the Act provided that such taking is in compliance with the terms and conditions of an Incidental Take Statement (ITS).

8.1 Amount or Extent of Take Anticipated

The section 7 regulations require NMFS to specify the impact of any incidental take of endangered or threatened species; that is, the amount or extent, of such incidental taking on the species (50 CFR § 402.14(i)(1)(i)). The amount of take represents the number of individuals that are expected to be taken by proposed actions while the extent of take or “the extent of land or marine area that may be affected by an action” if we cannot assign numerical limits for animals that could be incidentally taken during the course of an action (51 FR 19953). The amount of take
resulting from the Navy’s activities was difficult to estimate because for some of the protected species we have no empirical information on (a) the actual number of listed species that are likely to occur in the Keyport Range Complex sites, (b) the actual number of individuals of those species that are likely to be exposed, (c) the circumstances associated with any exposure, and (d) the range of responses we would expect different individuals of the different species to exhibit upon exposure.

No whales, Steller sea lions, leatherback sea turtles, green sturgeon, or Pacific eulachon would be taken as a result of the Navy RDT&E activities in the Keyport Range Complex. We assume that an unquantifiable number of Pacific salmon and steelhead would change their behavior in response to sound fields produced by active sonar and cues from the vessels involved in training exercises.

9 Conservation Recommendations

Section 7(a)(1) of the Act directs Federal agencies to utilize their authorities to further the purposes of the Act by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations are discretionary agency activities to minimize or avoid adverse effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information.

The following conservation recommendations would provide information for future consultations involving the issuance of marine mammal permits that may affect endangered whales as well as reduce harassment related to research activities:

1. Cumulative Impact Analysis. The U.S. Navy should work with NMFS Endangered Species Division and other relevant stakeholders (the Marine Mammal Commission, International Whaling Commission, and the marine mammal research community) to develop a method for assessing the cumulative impacts of anthropogenic noise on cetaceans, pinnipeds, sea turtles, and other marine animals. This includes the cumulative impacts on the distribution, abundance, and the physiological, behavioral and social ecology of these species.

In order to keep NMFS Endangered Species Division informed of actions minimizing or avoiding adverse effects or benefitting listed species or their habitats, the Permits, Conservation and Education Division of the Office of Protected Resources should notify the Endangered Species Division of any conservation recommendations they implement in their final action.

10 Reinitiation Notice

This concludes formal consultation on RDT&E activities the U.S. Navy plans to conduct on the Naval Undersea Warfare Center Keyport Range Complex during a one-year period beginning in May 2011 and ending in May 2012 and the National Marine Fisheries Service’s Permits, Conservation, and Education Division’s issuance of a letter of authorization to authorize the U.S. Navy to “take” marine mammals incidental to these RDT&E activities. As provided in 50 CFR 402.16, reinitiation of formal consultation is normally required where discretionary Federal agency involvement or control over the action has been retained (or is authorized by law) and if: (1) the amount or extent of incidental take is exceeded; (2) new information reveals effects of the agency action that may affect listed species or critical habitat in a manner or to an extent not considered in this opinion; (3) the agency action is
subsequently modified in a manner that causes an effect to the listed species or critical habitat not considered in this opinion; or (4) a new species is listed or critical habitat designated that may be affected by the action. In instances where the amount or extent of incidental take is exceeded, Action Agencies are normally required to reinitiate Section 7 consultation immediately.
11 Literature Cited

Calambokidis, J., and coauthors. 1997. Abundance and population structure of humpback whales in the North Pacific basin. Southwest Fisheries Science Center, 50ABNF500113, La Jolla, CA.

CMC and NMFS. 1988. Proceedings of a workshop to review and evaluate whale watching programs and management needs. Center for Marine Conservation

National Marine Fisheries Service, Monterey, California.

the leatherback turtle (Dermochelys coriacea). Nature 244:181.

northeastern Pacific whales off coastal British Columbia: An analysis of commercial whaling records from

Griffin, R. B. 1999. Sperm whale distributions and community ecology associated with a warm-core ring off

Hain, J. H. W., M. A. M. Hyman, R. D. Kenney, and H. E. Winn. 1985. The role of cetaceans in the shelf-edge

Hain, J. H. W., M. J. Ratnaswamy, R. D. Kenney, and H. E. Winn. 1992. The fin whale, Balaenoptera physalus, in
waters of the northeastern United States continental shelf. Reports of the International Whaling
Commission 42:653-669.

Hall, J. D. 1982. Prince William Sound, Alaska: Humpback whale population and vessel traffic study. NMFS,

Hannah, R. W., and S. A. Jones. 2007. Effectiveness of bycatch reduction devices (BRDs) in the ocean shrimp

distemper virus infection in harbour seals (Phoca vitulina) exposed to polychlorinated biphenyls.

the Beaufort Sea during late summer. Seventh Biennial Conference on the Biology of Marine Mammals, 5-
9 December Miami Florida. p.29.

Harwood, M. B., and D. Hembree. 1987. Incidental catch of small cetaceans in the offshore gillnet fishery in

Hastings, M. C., and A. N. Popper. 2005. Effects of Sound on Fish. For California Department of Transportation,
Sacramento.

Hastings, M. C., A. N. Popper, J. J. Finneran, and P. J. Lanford. 1996. Effects of low-frequency underwater sound
on hair cells of the inner ear and lateral line of the teleost fish Astronotus ocellatus. The Journal of the

Hatch, L. T., and C. W. Clark. 2004. Acoustic differentiation between fin whales in both the North Atlantic and
North Pacific Oceans, and integration with genetic estimates of divergence. Unpublished paper to the IWC

Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, volume Tomus I. Holmiæ. (Salvius).

Moyle, P. B., R. M. Yoshiyama, J. E. Williams, and E. D. Wikramanayake. 1995. Fish Species of Special Concern in California. California Department of Fish and Game, Inland Fisheries Division.

NMFS. 2001b. Stock assessments of loggerhead and leatherback sea turtles and an assessment of the impact of the pelagic longline fishery on the loggerhead and leatherback sea turtles of the western North Atlantic.

NMFS. 2010b. Endangered Species Act consultation biological opinion on U.S. Navy proposed training activities on the Northwest Training Range from June 2010 to June 2015, promulgation of regulations to authorize the U.S. Navy to "take" marine mammals incidental to training on the Northwest Training Range from June 2010 to June 2015, and the U.S. Navy's proposed research, development, test, and evaluation activities at the Naval Undersea Warfare Center Keyport Range Complex from June 2010 to June 2015. Pages 356 in. Office of Protected Resources, Silver Spring, Maryland.

NMFS. 2011. Request of initiation of Section 7 consultation under the Endangered Species Act for the issuance of a letter of authorization for the take of marine mammals incidental to the Navy's Keyport Range Complex research, development, test and evaluation activities. Permits, Conservation and Education Division, National Marine Fisheries Service, Silver Spring, MD.

Schultz, L. P., and A. C. DeLacy. 1935. Fishes of the American Northwest : a catalogue of the fishes of Washington and Oregon, with distributional records and a bibliography. s.n., Honolulu?

