
Agency: 

National Marine Fisheries Service 
Endangered Species Act Section 7 Consultation 

Biological and Conference Opinion 

NOAA's National Marine Fisheries Service-Office of Protected 
Resources-Permits, Conservation, and Education Division 

Activities Considered: Issuance of permit to John Bengtson, National Marine Fisheries 
Service, National Marine Mammal Laboratory [Permit No. 14245] 

Consultation Conducted by: NOAA's National Marine Fisheries Service-Office of Protected 
Resources-Endangered Species Division 

Approved by: 

Date: 

Section 7(a)(2) of the Endangered Species Act (ESA)(16 U.S.C. 1531 et seq.) requires that each 
federal agency shall ensure that any action authorized, funded, or carried out by such agency is 
not likely to jeopardize the continued existence of any endangered or threatened species or result 
in the destruction or adverse modification of critical habitat of such species. When the action of 
a federal agency "may affect" a listed species or critical habitat designated for them, that agency 
is required to consult with either the NOAA's National Marine Fisheries Service (NMFS) or the 
U.S. Fish and Wildlife Service, depending upon the listed resources that may be affected. For the 
actions described in this document, the action agency is the NMFS' Office of Protected 
Resources-Permits, Conservation, and Education Division (Permits Division), which proposes to 
authorize close approach, aerial survey, biopsy, and tagging activities on blue, fin, sei, bowhead, 
North Pacific right, humpback, spenn, Cook Inlet beluga, southern resident killer, and Hawaiian 
insular false killer whales in the Beaufort, Bering, and Chukchi Seas and North Pacific Ocean, as 
well as humpback whales in the western North Atlantic Ocean. Unintentional harassment of 
both eastern and western DPSs of Steller sea lions, Beringia bearded seals and, Arctic ringed 
seals would also be authorized. The consulting agency for these proposals is the NMFS' Office 
of Protected Resources - Endangered Species Division. 

This document represents the NMFS' biological and conference opinion (Opinion) of the effects 
of the proposed actions on endangered and threatened species and designated critical habitat and 
has been prepared in accordance with section 7 of the ESA. This Opinion is based on 
information provided in the application, draft permit, environmental assessment, recovery plans 
for listed whales, the most current marine mammal stock assessment reports, past and current 
research and population dynamics modeling efforts, monitoring reports from prior research, other 
information provided by the applicant, and other biological opinions involving similar marine 
mammal research, and other information. 

1 



2  

Consultation history 

On April 27, 2010, the Permits Division published a notice in the Federal Register soliciting 
public comment on their intent to issue the proposed permit. 

On November 22, 2010, NMFS’ Endangered Species Division received a request for formal 
consultation from the Permits Division to authorize Permit Number 14245, John Bengtson, 
National Marine Fisheries Service, National Marine Mammal Laboratory. 

On January 13, 2011, NMFS’ Endangered Species Division initiated formal consultation with the 
Permits Division to authorize Permit Number 14245, John Bengtson, National Marine Fisheries 
Service, National Marine Mammal Laboratory. 

Description of the proposed action 

The NMML proposes to conduct numerous research projects on marine mammals to aide in 
ongoing studies of marine mammal abundance, distribution, and population dynamics.  These 
studies include aerial and vessel-based transect surveys as well as small boat approaches of 
marine mammals for photoidentification, biopsy sampling, and telemetry tagging (both invasive 
implantable tagging, non-invasive suction-cup tagging, as well as dermal [dart/dash] tagging). 

Aerial surveys are typically conducted from an Aero Commander 680 or NOAA twin otter 
aircraft along preplanned tracklines, but deviations to investigate and circle a marine mammal 
sighting typically occur.  Circling can occur up to 16 times, but four to eight circling episodes are 
more common for target, high-priority, or unusual species sightings.  Over the course of a survey 
season, an individual or group may be surveyed multiple times (exemplified by Cook Inlet beluga 
whale surveys, whose population occurs in a limited range).  Flight duration is typically six 
hours, but can be significantly longer.  Flight altitude varies based upon project, but can range 
from ~100-500 m and are typically flown at ~229-305 m.  Speed is usually 167-222 km/hr.  
During this time, photographs and sighting documentation are recorded from the plane   Aerial 
surveys would also be conducted to assist surface vessels in locating target individuals, 
particularly during North Pacific right whale surveys.  In this situation, a survey aircraft would 
fly transect tracklines until a target individual is identified.  The survey aircraft would circle or 
otherwise maintain contact with the individual until the vessel arrives, which could engage in 
photoidentification, biopsy sampling, and/or deployment of telemetry devices.  Survey vessels 
may also engage in oceanographic and prey sampling in instances where target whales are 
observed feeding. 

Vessel surveys are also conducted along pre-planned tracklines, but the vessel may deviate from 
its course to investigate a marine mammal sighting.  Marine mammals would be followed to 
obtain photoidentification records, biopsy samples, or attach a telemetry device to a target 
individual(s).  A survey vessel may be used during close approaches, or a smaller vessel may be 
launched from the survey vessel.  Large vessels would approach an individual laterally or from 
behind using a minimum speed required to close the distance with the target individual or group 
(usually less than 10 knots) down to ~500m.  Small vessels would approach from behind, with a 
minimum of course and speed changes, and at a speed that would not rapidly overtake a target 
individual or group.  Approaches for photoidentification or biopsy would close to within 15-20 m 
for large whales or 5-10 m for smaller species.  Approaches for tagging would close to within the 
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range that the deployment method would allow (see last paragraph of this section).  Focal follows 
before or after biopsy or tagging attempts would not be conducted except on occasion. 

Biopsy sampling would be conducted during some close approaches.  All age classes except 
neonates could be sampled.  Depending upon the species, vessel used, and other circumstances, 
different methods may be used to obtain a biopsy.  Bowriding odontocetes may be sampled with 
an airgun or pole-spear, while whales may be sampled using a crossbow, airgun, or Larsen gun 
(modified 0.38 caliber gun firing blanks to propel a dart out of the rifle barrel).  Samples are 
preferably obtained from just below and behind the dorsal fin, specifically avoiding the 
individual’s facial area.  Biopsy darts are roughly 25 mm in depth for small cetaceans and 40-60 
mm for medium and large cetaceans.  It is noteworthy that although invasive tagging of Cook 
Inlet beluga whales (which requires capture, handling, and restraint) was proposed by the 
applicant, the permit under consideration does not include these activities and are not within the 
scope of this consultation.  Biopsy and suction cup tagging would be authorized, however, 
requiring close approach. 

Tagging may occur using a variety of methods (pole, crossbow, Larsen gun, modified line 
thrower) and instrument types (implantable, dart/dash, suction cup).  Suction cup tags would be 
applied to all age classes except neonates, while skin-penetrating tags would be applied to 
juveniles, subadults, and adults only.  Depth of penetration into blubber would vary depending 
upon the tag type and target species.  Medium-sized cetaceans, such as killer whales and false 
killer whales would not receive implantable tags (large whale only), but would instead receive 
dart/dash tags (Figures 1 and 2), which implant using dermal anchors (blubber implantation only) 
instead of blubber- and muscle-penetrating implantable tags (Figure 3).  All species may receive 
suction-cup tags (Figure 4).  Suction cups may range in size from three to 30 cm in size and use 
an inert silicon grease to improve attachment duration.  Dart or dash tags would be deployed 
using a crossbow or pneumatic rifle aimed at the dorsal fin or just below it.  A tether line would 
be fired with the dart-encasing bolt to retrieve the bolt following tag attachment.  Implantable 
tags may be partially or fully implantable.  Partially implantable tags are typically streamlined 
rectangles with deeply buried anchors into an individual’s epaxial muscle or blubber.  Fully 
implantable tags are typically cylinders with a penetrating conical tip on one end and a flat end 
where an antenna and saltwater switch is located; this later portion is usually a few centimeters 
above the whale’s skin.  Extensive efforts are made to concurrently ensure maximum longevity 
for designed transmission, size reduction, and functional reliability.  Although these are the 
typical designs of cetacean tagging devices currently employed, the field of telemetry design is 
rapidly evolving, particularly in miniaturization, tag longevity, and inclusion of additional 
instrumentation.  Therefore, it is reasonable to expect that new tag designs may be developed 
during the life of this permit and utilized by the applicants.  However, we do not expect that the 
impacts of any new tag design to be substantially different or more significant than the impacts 
assessed in this consultation.  
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Figure 1.  A dash tag prior to deployment. 

 

 Figure 2.  A dart tag prior to deployment and implanted in a killer whale’s dorsal fin. 

 

Figure 3. Schematic of an implantable tag and the blunt, antenna-protruding end of an implanted 
tag. 
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Figure 4. A suction cup tag attached to a humpback whale. 

Tags generally fall within one of five categories: 1. radio transmitter: suction- cup or dart/dash 
device (up to 9.5 cm by 2.5 cm by 1.3 cm [42 g]) that emits signals beyond the range of a target 
individual’s hearing (or that of its predators or prey) for hours to months; 2. time-depth 
recorders: recoverable instruments (up to 10 cm by 3 cm by 3 cm [42 g]) attached by suction cup 
for hours to a few days; 3. satellite transmitter: long-term (days to > one year), implantable 
device (14 cm by 9 cm by 3 cm [450 g] for implantable tags, up to 6.3 cm by 3 cm by 1.9 cm [40 
g] for dart tags) that can couple with additional sensing instruments and transmit information to 
orbiting satellites; 4. acoustic time-depth recorder (DTAG): suction cup or dart/dash attached 
recoverable device (up to 9.5 cm by 2.5 cm by 1.3 cm [42 g]) that adds an acoustic recorder to 
the previously described time-depth recorder for attachment between hours and days; and 5. 
“Critter-Cam”: a suction cup or dart/dash anchored video camera (up to 30 cm by 8 cm by 8 cm 
[<1000 g]) that records video for a period of hours.   

Dash tag attachments consist of a solid-core needle <10 cm by 0.64 cm (similar in size to a 
biopsy plug) with raised rings around the cylinder to hamper tag removal (Figure 1).  The end 
that penetrates the target individual is sharpened to facilitate cleaner entry, reducing the potential 
for infection.  The actual tag is attached via a corrodible link (decays over hours to weeks based 
upon design).  Some tags can release on command by receiving an acoustic signal.  Dash tags are 
fired from a compressed air device with a housing that separates upon impact with the target 
individual.  Effective range for deployment is 10-25 m from the target and the target area is from 
one-meter posterior of the blowhole to one to two meters cranial of the peduncle and above the 
water line.  Once the tag detaches, the needle remains imbedded in the target individual.  It is 
anticipated that the body will reject the needle over time, treating it as a foreign body, and 
pushing it out of the opening from whence it entered over the course of several days to weeks. 

Dart tags are essentially miniaturized satellite transmitters (Figure 2).  Tags are fired with 
crossbows or pneumatic rifles, with the tag being deployed with a bolt that is subsequently 
retrieved by an attached tether line.  Attachment is via a pair of titanium or stainless steel barbed 
darts that penetrate up to 6.5 cm.  Tags are expunged from the body over the course of weeks to a 
few months, although the applicant is pursuing the design of a tag that would remain attached in 
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excess of one year.  Target region is the dorsal fin or just beneath it. 

Partially implantable tags not only provide satellite telemetry data, but normally include 
accessory sensing instrumentation.  Although the attachment system is similar to that of 
implantable tags (i.e., deep-penetrating barbs below the muscle-fascia-blubber interface), the 
instrumentation package itself remains outside the body.  Attachment can last over one year.  As 
with fully implantable tags, the target region is high on the individual’s back. 

Implantable tags penetrate much further into the body than do dash or dart tags, as they are 
designed to anchor underneath the muscle-fascia-blubber interface, giving them a much longer 
attachment time.  Penetration depth is customized around the species, size, and body condition of 
the target individual.  As with other penetrating tags, stoppers on the tag limit the depth to which 
tags can penetrate.  The tags are generally designed of materials considered inert to tissue 
interaction, such as surgical grade stainless steel, titanium, or ultra high molecular weight 
surgical material.  Recurved barbs or toggles along the length of the tag hamper tag expulsion, 
which occurs slowly over months and, in some cases, over more than two years.   

Tags may be deployed either by passively awaiting a target individual to pass near the research 
vessel (or other natural/manmade platform on occasion) while surfacing or by active vessel 
approach to a target individual (more common).  An individual could be targeted to carry up to 
two devices which pierce the skin and one additional non-piercing tag (i.e., suction cup tag).  
Tags can be applied using an eight m long pole at three to six meters away from the target 
individual, which can simultaneously apply a tag and extract a biopsy sample, and usually 
requires 30-45 minutes to approach and deploy.  A modified line thrower (ARTS) device uses 
compressed air to deploy satellite tags on target individuals 10-30 m away.  This system usually 
involves 5-30 minutes to approach and deploy a tag.  Crossbows can fire tags onto target 
individuals 5-10 m away and usually involve the use of a tether to retrieve a bolt.  The same 
requirement applies to a Larsen gun, which fires blanks but can be used 25-30 m from the target 
individual (minimum distance is 10 m). 
 

Approach to the Assessment 

The NMFS approaches its section 7 analyses of agency actions through a series of steps.  The 
first step identifies those aspects of proposed actions that are likely to have direct and indirect 
physical, chemical, and biotic effects on listed species or on the physical, chemical, and biotic 
environment of an action area.  As part of this step, we identify the spatial extent of these direct 
and indirect effects, including changes in that spatial extent over time.  The result of this step 
includes defining the action area for the consultation.  The second step of our analyses identifies 
the listed resources that are likely to co-occur with these effects in space and time and the nature 
of that co-occurrence (these represent our exposure analyses).  In this step of our analyses, we try 
to identify the number, age (or life stage), and gender of the individuals that are likely to be 
exposed to an action’s effects and the populations or subpopulations those individuals represent.  
Once we identify which listed resources are likely to be exposed to an action’s effects and the 
nature of that exposure, we examine the scientific and commercial data available to determine 
whether and how those listed resources are likely to respond given their exposure (these represent 
our response analyses).  

The final steps of our analyses – establishing the risks those responses pose to listed resources – 
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are different for listed species and designated critical habitat (these represent our risk analyses).  
Our jeopardy determinations must be based on an action’s effects on the continued existence of 
threatened or endangered species as those “species” have been listed, which can include true 
biological species, subspecies, or distinct population segments of vertebrate species.  The 
continued existence of these “species” depends on the fate of the populations that comprise them. 
 Similarly, the continued existence of populations are determined by the fate of the individuals 
that comprise them – populations grow or decline as the individuals that comprise the population 
live, die, grow, mature, migrate, and reproduce (or fail to do so). 

Our risk analyses reflect these relationships between listed species, the populations that comprise 
that species, and the individuals that comprise those populations.  Our risk analyses begin by 
identifying the probable risks actions pose to listed individuals that are likely to be exposed to an 
action’s effects.  Our analyses then integrate those individual risks to identify consequences to 
the populations those individuals represent.  Our analyses conclude by determining the 
consequences of those population-level risks to the species those populations comprise.  

We measure risks to listed individuals using the individuals’ “fitness,” or the individual’s 
growth, survival, annual reproductive success, and lifetime reproductive success.  In particular, 
we examine the scientific and commercial data available to determine if an individual’s probable 
lethal, sub-lethal, or behavioral responses to an action’s effect on the environment (which we 
identify during our response analyses) are likely to have consequences for the individual’s 
fitness.  

When individual, listed plants or animals are expected to experience reductions in fitness in 
response to an action, those fitness reductions are likely to reduce the abundance, reproduction, 
or growth rates (or increase the variance in these measures) of the populations those individuals 
represent (see Stearns 1992).  Reductions in at least one of these variables (or one of the 
variables we derive from them) is a necessary condition for reductions in a population’s viability, 
which is itself a necessary condition for reductions in a species’ viability.  As a result, when 
listed plants or animals exposed to an action’s effects are not expected to experience reductions 
in fitness, we would not expect the action to have adverse consequences on the viability of the 
populations those individuals represent or the species those populations comprise (e.g., Anderson 
2000; Brandon 1978; Mills and Beatty 1979; Stearns 1992).  As a result, if we conclude that 
listed plants or animals are not likely to experience reductions in their fitness, we would conclude 
our assessment.  

Although reductions in fitness of individuals is a necessary condition for reductions in a 
population’s viability, reducing the fitness of individuals in a population is not always sufficient 
to reduce the viability of the population(s) those individuals represent.  Therefore, if we conclude 
that listed plants or animals are likely to experience reductions in their fitness, we determine 
whether those fitness reductions are likely to reduce the viability of the populations the 
individuals represent (measured using changes in the populations’ abundance, reproduction, 
spatial structure and connectivity, growth rates, variance in these measures, or measures of 
extinction risk).  In this step of our analyses, we use the population’s base condition (established 
in the Environmental baseline and Status of listed resources sections of this Opinion) as our 
point of reference.  If we conclude that reductions in individual fitness are not likely to reduce the 
viability of the populations those individuals represent, we would conclude our assessment.   
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Reducing the viability of a population is not always sufficient to reduce the viability of the 
species those populations comprise.  Therefore, in the final step of our analyses, we determine if 
reductions in a population’s viability are likely to reduce the viability of the species those 
populations comprise using changes in a species’ reproduction, numbers, distribution, estimates 
of extinction risk, or probability of being conserved.  In this step of our analyses, we use the 
species’ status (established in the Status of listed resources section of this Opinion) as our point 
of reference.  Our final determinations are based on whether threatened or endangered species are 
likely to experience reductions in their viability and whether such reductions are likely to be 
appreciable.  

To conduct these analyses, we rely on all of the evidence available to us.  This evidence consists 
of monitoring reports submitted by past and present permit holders, reports from NMFS Science 
Centers; reports prepared by natural resource agencies in States and other countries, reports from 
non-governmental organizations involved in marine conservation issues, the information 
provided by the Permits Division when it initiates formal consultation, and the general scientific 
literature.  

We supplement this evidence with reports and other documents – environmental assessments, 
environmental impact statements, and monitoring reports – prepared by other federal and state 
agencies like the Minerals Management Service, U.S. Coast Guard, and U.S. Navy whose 
operations extend into the marine environment. 

During the consultation, we conducted electronic searches of the general scientific literature 
using search engines, including Agricola, Ingenta Connect, Aquatic Sciences and Fisheries 
Abstracts, JSTOR, Conference Papers Index, First Search (Article First, ECO, and WorldCat), 
Web of Science, Oceanic Abstracts, Google Scholar, and Science Direct.    

We supplemented these searches with electronic searches of doctoral dissertations and master’s 
theses.  These searches specifically tried to identify data or other information that supports a 
particular conclusion (for example, a study that suggests whales will exhibit a particular response 
to close vessel approach) as well as data that do not support that conclusion.  When data were 
equivocal or when faced with substantial uncertainty, our decisions are designed to avoid the 
risks of incorrectly concluding that an action would not have an adverse effect on listed species 
when, in fact, such adverse effects are likely (i.e., Type II error). 

The analyses used in this Opinion include several assumptions.  As far as we are able to 
determine, field researchers cannot generally identify specific individuals in the field and, 
therefore, have no mechanism to know what previous exposure an individual has had to proposed 
activities or other natural or anthropogenic stressors.  Based upon descriptions in annual NMML 
monitoring reports and documentation provided by the Permits Division, we assume that 
proposed activities will be similar to those that the NMML has conducted in the past and the 
level of “effort” (magnitude of time and asset resources dedicated to the proposed action) will be 
roughly similar to that which has previously occurred.  We assume that free-ranging cetaceans 
(apart from Cook Inlet beluga whales) range over wide areas and although they likely occupy 
restricted regions for relatively brief periods (hours to days), individuals are not expected to 
move widely and, as far as we can predict, broadly within an oceanographic region.  Although we 
expect that variability in reporting exists within NMML’s annual reports, based upon project type 
and individual reporting, these reports accurately document the number of “takes” that occurred 
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under the MMPA and that additional, accessory data not rising to the level of “take” 
(observations of unusual or rare species) are also reported.   

Action Area 

The proposed action area includes a broad region of the North Pacific from southern California to 
Washington State and Alaska.  Waters surrounding Hawaii would also be included in the action 
area.  The action area extends from shore to international waters of the North Pacific Ocean, 
Beaufort, Bering and Chukchi seas, Arctic Ocean, and Gulf of Alaska.  Actions also have the 
potential to occur in the Gulf of California (Mexican territorial and EEZ waters) and territorial 
waters of Russia, Japan, and the Philippines.  Also included in the action area are waters along 
the U.S. eastern seaboard, from the U.S.-Canadian border to Florida as well as U.S. territories in 
the Caribbean Sea (Puerto Rico and the U.S. Virgin Islands).  Actions are not proposed to be 
conducted in the EEZ or territorial waters of Canada, Mexico, or any Caribbean nation.  The 
applicant would be permitted to conduct research during any time of year, but anticipates most 
research would be conducted during late spring and summer. 

Status of Listed Resources 

The NMFS has determined that the actions considered in this Opinion may affect species listed in 
Table 1, which are provided protection under the Endangered Species Act of 1973, as amended 
(16 U.S.C. 1531 et seq.).   

Table 1.  Listed resources in the action area.  Asterisks denote critical habitat in the action area.  
Double Asterisks denote proposed critical habitat in the action area. 

Common Name (Distinct Population Segment, Evolutionarily 
Significant Unit, or Subspecies) 

Scientific Name Status 

Cetaceans 
Blue whale  Balaenoptera musculus Endangered 
Fin whale Balaenoptera physalus Endangered 
Humpback whale Megaptera novaeangliae Endangered 
Killer whale (Southern Resident*) 
Bowhead whale  

Orcinus orca 
Balaena mysticetus 

Endangered 
Endangered 

North Atlantic right whale* Eubalaena glacialis Endangered 
North Pacific right whale* Eubalaena japonica Endangered 
Sei whale  Balaenoptera borealis Endangered 
Sperm whale Physeter macrocephalus Endangered 
Beluga whale (Cook Inlet)** Delphinapterus leucas Endangered 

Pinnipeds 
Hawaiian monk seal* Monachus schauinslandi Endangered 
Steller sea lion (Eastern*) Eumetopias jubatus Threatened 
Steller sea lion (Western*)  Endangered 

Marine Turtles 
Green sea turtle (Florida & Mexico’s Pacific coast colonies) Chelonia mydas Endangered 
Green sea turtle (All other areas*)  Threatened 
Hawksbill sea turtle* Eretmochelys imbricata Endangered 
Kemp’s ridley sea turtle Lepidochelys kempii Endangered 
Leatherback sea turtle*, ** Dermochelys coriacea Endangered 
Loggerhead sea turtle  Caretta caretta  Threatened 
Olive ridley sea turtle (Mexico’s Pacific coast breeding colonies) Lepidochelys olivacea Endangered 
Olive ridley sea turtle  (All other areas)  Threatened 
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Common Name (Distinct Population Segment, Evolutionarily 
Significant Unit, or Subspecies) 

Scientific Name Status 

Anadromous Fishes 
Atlantic salmon (Gulf of Maine*) Salmo salar Endangered 
Chinook salmon (California Coastal*) Oncorhynchus tschawytscha Threatened 
Chinook salmon (Central Valley Spring-run*)  Threatened 
Chinook salmon (Lower Columbia River*)  Threatened 
Chinook salmon (Upper Columbia River Spring-run*)  Endangered 
Chinook salmon (Puget Sound*)  Threatened 
Chinook salmon (Sacramento River Winter-run*)  Endangered 
Chinook salmon (Snake River Fall-run*)  Threatened 
Chinook salmon (Snake River Spring/Summer-run*)  Threatened 
Chinook salmon (Upper Willamette River*)  Threatened 
Chum salmon (Columbia River*) Oncorhynchus keta Threatened 
Chum salmon (Hood Canal Summer-run*)  Threatened 
Coho salmon (Central California Coast*) Oncorhynchus kisutch Endangered 
Coho salmon (Lower Columbia River)  Threatened 
Coho salmon (Southern Oregon & Northern California Coast*)  Threatened 
Coho salmon (Oregon Coast*)   
Green sturgeon (Southern*) Acipenser medirostris Threatened 
Shortnose sturgeon Acipenser brevirostrum Endangered 

Bocaccio (Georgia Basin) Sebastes paucispinis Endangered 

Yelloweye rockfish (Georgia Basin) Sebastes pinniger Threatened 

Canary rockfish (Georgia Basin) Sebastes ruberrimus Threatened 

Pacific eulachon** Thaleichthys pacificus Threatened 

Sockeye salmon (Ozette Lake*) Oncorhynchus nerka Threatened 
Sockeye salmon (Snake River*)  Endangered 
Steelhead (Central California Coast*) Oncorhynchus mykiss Threatened 
Steelhead (California Central Valley*)  Threatened 
Steelhead (Lower Columbia River*)  Threatened 
Steelhead (Middle Columbia River*)  Threatened 
Steelhead (Northern California*)  Threatened 
Steelhead (Puget Sound)  Threatened 
Steelhead (Snake River*)  Threatened 
Steelhead (South-Central California Coast*)  Threatened 
Steelhead (Southern California*)  Threatened 
Steelhead (Upper Columbia River*)  Threatened 
Steelhead (Upper Willamette River*)  Threatened 

Marine Invertebrates 
White abalone Haliotis sorenseni Endangered 
Black abalone** Haliotis cracherodii Endangered 

Proposed for listing 

False killer whale (Hawaii Insular)** Pseudorca crassidens Proposed Endangered 
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Common Name (Distinct Population Segment, Evolutionarily 
Significant Unit, or Subspecies) 

Scientific Name Status 

Bearded seal (Beringia) 

Ringed seal (Arctic) 

Atlantic sturgeon (Gulf of Maine) 

Atlantic sturgeon (New York Bight) 

Erignathus barbatus 
nauticus 

Phoca hispida hispida 

Asipenser oxyrinchus 

Proposed Threatened 

Proposed Threatened 

Proposed Threatened 

Proposed Endangered 

Species not considered further 

Hawaiian monk seals may co-occur with proposed actions in Hawaiian waters and be exposed to 
the same stressors as described for listed cetaceans.  Instances of shipstrike are known for 
Hawaiian monk seals, but extensive vessel-based effort by the NMML in the past has not 
resulted in a shipstrike to any pinniped.  Therefore, we find the possibility of Hawaiian monk seal 
shipstrike to be discountable.  We are unaware of a significant use of underwater sound by 
Hawaiian monk seals, but it is possible that this sense can be important for listed individuals in 
water.  However, exposure to sound frequencies within the hearing range of listed individuals 
would be brief at most and likely insignificant to their survival, growth, or reproduction.  For 
these reasons, we will not consider Hawaiian monk seals further in this Opinion. 

Sea turtles would be exposed to these same potential stressors.  As with marine mammals, sea 
turtles have not been documented to be struck by researchers in the area and the possibility of 
this occurring is discountable.  Listed salmonids, rockfish, eulachon, and sturgeon may also be 
exposed to potential stressors from the proposed actions.  Salmonids and eulachon may occur 
near the ocean surface, but we expect individuals to be easily capable of moving out of the direct 
path of even a fast-moving vessel.  Sturgeon and rockfish tend to be epibenthic in marine waters 
and we do not expect co-occurrence with vessels at the surface.  We therefore find the potential 
for direct strike to listed salmonids, rockfish, and sturgeon to be discountable.  For these reasons, 
we will not consider sea turtles, salmonids, rockfish, eulachon, or sturgeon further in this 
Opinion. 

Although listed invertebrates (black and white abalone as well as elkhorn and staghorn coral) 
would co-occur with the proposed actions, we cannot identify any stressors that reasonably could 
impact their biology.  We therefore find stressors to be insignificant for these listed species and 
we will not consider them further in this Opinion. 

We do not expect that the proposed actions will impact the primary constituent elements of 
critical habitat or proposed critical habitat in the action area for any listed species.  We therefore 
find risk to critical habitat to be discountable and we will not consider them further in this 
Opinion. 

The biology and ecology of species with anticipated exposure below informs the effects analysis 
for this Opinion.  Summaries of the global status and trends of each species presented provide a 
foundation for the analysis of species as a whole.  

Cetaceans 
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Blue whale 

Description of the species.  Blue whales occur primarily in the open ocean from tropical to polar 
waters worldwide.  Blue whales are highly mobile, and their migratory patterns are not well 
known (Perry et al. 1999; Reeves et al. 2004).  Blue whales migrate toward the warmer waters of 
the subtropics in fall to reduce energy costs, avoid ice entrapment, and reproduce (NMFS 1998a). 
 Blue whales typically occur alone or in groups of up to five animals, although larger foraging 
aggregations of up to 50 have been reported including aggregations mixed with other rorquals 
such as fin whales (Corkeron et al. 1999; Shirihai 2002). 

Subspecies.  Several blue whale subspecies have been characterized from morphological and 
geographical variability, but the validity of blue whale subspecies designations remains uncertain 
(McDonald et al. 2006).  The largest, the Antarctic or true blue whale (Balaenoptera musculus 
intermedia), occurs in the highest Southern Hemisphere latitudes (Gilpatrick and Perryman. 
2009).  During austral summers, “true” blue whales occur close to Antarctic ice.  A slightly 
smaller blue whale, B. musculus musculus, inhabits the Northern Hemisphere (Gilpatrick and 
Perryman. 2009).  The pygmy blue whale (B. musculus brevicauda), may be geographically 
distinct from B. m. musculus (Kato et al. 1995).  Pygmy blue whales occur north of the Antarctic 
Convergence (60°-80° E and 66°-70° S), while true blue whales are south of the Convergence 
(58° S) in the austral summer (Kasamatsu et al. 1996; Kato et al. 1995).  A fourth subspecies, B. 
musculus indica, may exist in the northern Indian Ocean (McDonald et al. 2006). 

Population structure.  Little is known about population and stock structure1

Gambell 1979

 of blue whales.  
Studies suggest a wide range of alternative population and stock scenarios based on movement, 
feeding, and acoustic data.  Some suggest that as many as 10 global populations, while others 
suggest that the species is composed of a single panmictic population ( ; Gilpatrick 
and Perryman. 2009; Reeves et al. 1998a).  For management purposes, the International Whaling 
Commission (IWC) considers all Pacific blue whales as a single stock, whereas under the 
MMPA, the NMFS recognizes four stocks of blue whales: western North Pacific Ocean, eastern 
North Pacific Ocean, Northern Indian Ocean, and Southern Hemisphere. 

Until recently, blue whale population structure had not been tested using molecular or nuclear 
genetic analyses (Reeves et al. 1998a).  A recent study by Conway (2005) suggested that the 
global population could be divided into four major subdivisions, which roughly correspond to 
major ocean basins: eastern North and tropical Pacific Ocean, Southern Indian Ocean, Southern 
Ocean, and western North Atlantic Ocean.  The eastern North/tropical Pacific Ocean 
subpopulation includes California, western Mexico, western Costa Rica, and Ecuador, and the 
western North Atlantic Ocean subpopulation (Conway 2005).  Genetic studies of blue whales 
occupying a foraging area south of Australia (most likely pygmy blue whales) have been found to 
belong to a single population (Attard et al. 2010).  For this Opinion, blue whales as treated four 
                                                 
“Populations” herein are a group of individual organisms that live in a given area and share a common genetic 
heritage.  While genetic exchange may occur with neighboring populations, the rate of exchange is greater between 
individuals of the same population than among populations---a population is driven more by internal dynamics, birth 
and death processes, than by immigration or emigration of individuals.  To differentiate populations, NMFS 
considers geographic distribution and spatial separation, life history, behavioral and morphological traits, as well as 
genetic differentiation, where it has been examined.  In many cases, the behavioral and morphological differences 
may evolve and be detected before genetic variation occurs.  In some cases, the term “stock” is synonymous with this 
definition of “population” while other usages of “stock” are not. 
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distinct populations as outlined by Conway (2005). 

North Atlantic.  Blue whales are found from the Arctic to at least mid-latitude waters, 
and typically inhabit the open ocean with occasional occurrences in the U.S. EEZ (Gagnon and 
Clark 1993; Wenzel et al. 1988; Yochem and Leatherwood 1985).  Yochem and Leatherwood 
(1985) summarized records suggesting winter range extends south to Florida and the Gulf of 
Mexico.  The U.S. Navy’s Sound Surveillance System acoustic system has detected blue whales 
in much of the North Atlantic, including subtropical waters north of the West Indies and deep 
waters east of the U.S. Atlantic EEZ (Clark 1995).  Blue whales are rare in the shelf waters of the 
eastern U.S.  In the western North Atlantic, blue whales are most frequently sighted from the 
Gulf of St. Lawrence and eastern Nova Scotia and in waters off Newfoundland, during the winter 
(Sears et al. 1987).  In the eastern North Atlantic, blue whales have been observed off the Azores, 
although Reiner et al. (1993) did not consider them common in that area.  Observations of 
feeding have recently occurred over Ireland’s western continental slope (Wall et al. 2009). 

North Pacific.  Blue whales occur widely throughout the North Pacific.  Acoustic 
monitoring has recorded blue whales off Oahu and the Midway Islands, although sightings or 
strandings in Hawaiian waters have not been reported (Barlow et al. 1997; Northrop et al. 1971; 
Thompson and Friedl 1982).  Nishiwaki (1966) notes blue whale occurrence among the Aleutian 
Islands and in the Gulf of Alaska, but until recently, no one has sighted a blue whale in Alaska 
for some time, despite several surveys (Carretta et al. 2005b; Forney and Brownell Jr. 1996; 
Leatherwood et al. 1982; Stewart et al. 1987), possibly supporting a return to historical migration 
patterns (Anonmyous. 2009). 

Blue whales are thought to summer in high latitudes and move into the subtropics and tropics 
during the winter (Yochem and Leatherwood 1985).  Minimal data suggest whales in the western 
region of the North Pacific may summer southwest of Kamchatka, south of the Aleutians, and in 
the Gulf of Alaska, and winter in the lower latitudes of the western Pacific (Sea of Japan, the 
East China, Yellow, and Philippine seas) and less frequently in the central Pacific, including 
Hawaii (Carretta et al. 2005b; Stafford 2003; Stafford et al. 2001; Watkins et al. 2000), although 
this population is severely depleted or has been extirpated (Gilpatrick and Perryman. 2009).  
However, acoustic recordings made off Oahu showed bimodal peaks of blue whales, suggesting 
migration into the area during summer and winter (McDonald and Fox 1999; Thompson and 
Friedl 1982).  In the eastern North Pacific, blue whales appear to summer off California and 
occasionally as far north as British Columbia, migrating south to productive areas off Mexico 
and as far south as the Costa Rica Dome (10° N) from June through November (Calambokidis et 
al. 1998; Calambokidis et al. 1990; Chandler and Calambokidis 2004; Mate et al. 1999; Reilly 
and Thayer 1990; Stafford et al. 1999; Wade and Friedrichsen 1979; Wade and Gerrodette 1993). 
 However, some data indicate that some individuals may remain here year-round (Reilly and 
Thayer 1990; Wade and Friedrichsen 1979).  The Costa Rican Dome’s productivity may allow 
blue whales to feed during their winter calving/breeding season and not fast (Gilpatrick and 
Perryman. 2009; Mate et al. 1999).  A blue whale tagged off Vancouver Island in 1963 was 
recovered a year later in just south of Kodiak Island, supporting the idea that blue whales 
harvested off British Columbia were en route to and from feeding areas in the Gulf of Alaska 
(COSEWIC 2002).  One blue whale was photo-identified off the Queen Charlotte Islands in 
British Columbia and resighted off the Santa Barbara Channel in California, representing the first 
match between California and waters further north (COSEWIC 2002).  
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Blue whales off southern California appear to feed on dense euphausiid schools between 100-200 
m below the surface (Croll et al. 1998; Fiedler et al. 1998).  These concentrations of krill are 
associated with upwelling regions near steep topography off the continental shelf break (Croll et 
al. 1999).  Blue whale migrations to and from California probably reflect seasonal patterns and 
productivity (Croll et al. 2005).  Blue whales also feed in cool, offshore, upwelling-modified 
waters in the eastern tropical and equatorial Pacific (Palacios 1999; Reilly and Thayer 1990).  
Feeding areas may be associated with a greater incidence of blue whale vocalizations (Moore et 
al. 2002).  During summer, blue whales calls in water of the Northwest Pacific were closely 
associated with cold water and sharp sea surface temperature gradients or fronts, probably 
corresponding to zooplankton concentrations.  From fall through spring, call locations were 
concentrated primarily near seamounts (Moore et al. 2002). 

Indian Ocean.  Blue whale sightings have occurred in the Gulf of Aden, Persian Gulf, 
Arabian Sea, and across the Bay of Bengal to Burma and the Strait of Malacca (Clapham et al. 
1999; Mikhalev 1997; Mizroch et al. 1984). 

Southern Hemisphere.  Blue whales range from the edge of the Antarctic pack ice (40o-
78oS) during the austral summer north to Ecuador, Brazil, South Africa, Australia, and New 
Zealand during the austral winter (Shirihai 2002).  Occurrence in Antarctic waters appears to be 
highest from February-May as well as in November (Gedamke and Robinson. 2010; Sirovic et al. 
2009).  Gedamke and Robinson (2010) found blue whales to be particularly numerous and/or 
vocal north of Prydz Bay, Antarctica based upon sonar buoy deployments.  Pygmy blue whales 
were also frequently heard in Antarctic waters, further south than they had previously been 
documented (Gedamke and Robinson 2010).  Blue whales are occasionally sighted in pelagic 
waters off the western coast of Costa Rica and Nicaragua, near the Galápagos Islands, and along 
the coasts of Ecuador and northern Peru (Aguayo 1974; Clarke 1980b; Donovan 1984; LGL Ltd. 
2007; Mate et al. 1999; Palacios 1999; Reilly and Thayer 1990).  Individuals here may represent 
to populations; the true and pygmy blue whales of the Southern Hemisphere (Gilpatrick and 
Perryman. 2009).  Although, recent analyses of vocalizations and photos have linked blue whales 
found in the Costa Rica Dome to the North Pacific population (Chandler and Calambokidis 
2004). 

Age distribution.  Blue whales may reach 70–80 years of age (COSEWIC 2002; Yochem and 
Leatherwood 1985). 

Reproduction.  Gestation takes 10-12 months, followed by a 6-7 month nursing period.  Sexual 
maturity occurs at 5-15 years of age and calves are born at 2-3 year intervals (COSEWIC 2002; 
NMFS 1998b; Yochem and Leatherwood 1985).  Recent data from illegal Russian whaling for 
Antarctic and pygmy blue whales support sexual maturity at 23 m and 19-20 m, respectively 
(Branch and Mikhalev 2008). 

Movement.  Satellite tagging indicates that, for blue whales tagged off Southern California, 
movement is more linear and faster (3.7 km/h) while traveling versus while foraging (1.7 km/h) 
(Bailey et al. 2009).  Residency times in what are likely prey patches averages 21 days and 
constituted 29% of an individual’s time overall, although foraging could apparently occur at any 
time of year for tagged individuals (Bailey et al. 2009).  Broad scale movements also varied 
greatly, likely in response to oceanographic conditions influencing prey abundance and 
distribution (Bailey et al. 2009). 
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Feeding.  Data indicate that some summer feeding takes place at low latitudes in upwelling-
modified waters, and that some whales remain year-round at either low or high latitudes (Clarke 
and Charif 1998; Hucke-Gaete et al. 2004; Reilly and Thayer 1990; Yochem and Leatherwood 
1985).  One population feeds in California waters from June to November and migrates south in 
winter/spring (Calambokidis et al. 1990; Mate et al. 1999).  Prey availability likely dictates blue 
whale distribution for most of the year (Burtenshaw et al. 2004; Clapham et al. 1999; Sears 2002 
as cited in NMFS 2006a).  The large size of blue whales requires higher energy requirements 
than smaller whales and potentially prohibits fasting Mate et al. (1999).  Krill are the primary 
prey of blue whales in the North Pacific (Kawamura 1980; Yochem and Leatherwood 1985).   

While feeding, blue whales show slowed and less obvious avoidance behavior then when not 
feeding (Sears et al. 1983 as cited in NMFS 2005c). 

Diving.  Blue whales spend greater than 94% of their time underwater (Lagerquist et al. 2000).  
Generally, blue whales dive 5-20 times at 12-20 sec intervals before a deep dive of 3-30 min 
(Croll et al. 1999; Leatherwood et al. 1976; Mackintosh 1965; Maser et al. 1981; Strong 1990; 
Yochem and Leatherwood 1985).  Average foraging dives are 140 m deep and last for 7.8 min 
(Croll et al. 2001a).  Non-foraging dives are shallower and shorter, averaging 68 m and 4.9 min 
(Croll et al. 2001a).  However, dives of up to 300 m are known (Calambokidis et al. 2003).  
Nighttime dives are generally shallower (50 m).   

Blue whales occur singly or in groups of two or three (Aguayo 1974; Mackintosh 1965; Nemoto 
1964; Pike and MacAskie 1969; Ruud 1956; Slijper 1962).  However, larger foraging 
aggregations, even with other species such as fin whales, are regularly reported (Fiedler et al. 
1998; Schoenherr 1991). 

Vocalization and hearing.  Blue whales produce prolonged low-frequency vocalizations that 
include moans in the range from 12.5-400 Hz, with dominant frequencies from 16-25 Hz, and 
songs that span frequencies from 16-60 Hz that last up to 36 sec repeated every 1 to 2 min (see 
McDonald et al. 1995). Berchok et al. (2006) examined vocalizations of St. Lawrence blue 
whales and found mean peak frequencies ranging from 17.0-78.7 Hz.  Reported source levels are 
180-188 dB re 1μPa, but may reach 195 dB re 1μPa (Aburto et al. 1997; Clark and Ellison 2004; 
Ketten 1998; McDonald et al. 2001).  Samaran et al. (2010) estimated Antarctic blue whale calls 
in the Indian Ocean at 179 ± 5 dB re 1 µParms @1 m in the 17-30 Hz range and pygmy blue whale 
calls at 175± 1 dB re 1 µParms @1 m in the 17-50 Hz range. 

As with other baleen whale vocalizations, blue whale vocalization function is unknown, although 
numerous hypotheses exist (maintaining spacing between individuals, recognition, socialization, 
navigation, contextual information transmission, and location of prey resources; (Edds-Walton 
1997; Payne and Webb 1971; Thompson et al. 1992).  Intense bouts of long, patterned sounds are 
common from fall through spring in low latitudes, but these also occur less frequently while in 
summer high-latitude feeding areas.  Short, rapid sequences of 30-90 Hz calls are associated with 
socialization and may be displays by males based upon call seasonality and structure.  

Blue whale calls appear to vary between western and eastern North Pacific regions, suggesting 
possible structuring in populations (Rivers 1997; Stafford et al. 2001). 

Direct studies of blue whale hearing have not been conducted, but it is assumed that blue whales 
can hear the same frequencies that they produce (low-frequency) and are likely most sensitive to 
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this frequency range (Ketten 1997; Richardson et al. 1995c).  

Status and trends.  Blue whales (including all subspecies) were originally listed as endangered 
in 1970 (35 FR 18319), and this status continues since the inception of the ESA in 1973.     

Table 2 contains historic and current estimates of blue whales by region.  Globally, blue whale 
abundance has been estimated at between 5,000-13,000 animals (COSEWIC 2002; Yochem and 
Leatherwood 1985); a fraction of the 200,000 or more that are estimated to have populated the 
oceans prior to whaling (Maser et al. 1981; U.S. Department of Commerce 1983). 

North Atlantic.  Commercial hunting had a severe effect on blue whales, such that they remain 
rare in some formerly important habitats, notably in the northern and northeastern North Atlantic 
(Sigurjónsson and Gunnlaugsson 1990).  Sigurjónsson and Gunnlaugsson (1990) estimated that 
at least 11,000 blue whales were harvested from all whaling areas from the late nineteenth to 
mid-twentieth centuries.  The actual size of the blue whale population in the North Atlantic is 
uncertain, but estimates range from a few hundred individuals to about 2,000 (Allen 1970; 
Mitchell 1974a; Sigurjónsson 1995; Sigurjónsson and Gunnlaugsson 1990).  Current trends are 
unknown, although an increasing annual trend of 4.9% annually was reported for 1969–1988 off 
western and southwestern Iceland (Sigurjónsson and Gunnlaugsson 1990).  Sigurjónsson and 
Gunnlaugsson (1990) concluded that the blue whale population had been increasing since the late 
1950s.  In the northeastern Atlantic, blue whales are most common west and south of Iceland and 
may be the largest concentration of blue whales in the North Atlantic (Pike et al. 2009b).  In this 
area, the population may be recovering at a rate of 4-5%(Pike et al. 2009b) 

North Pacific.  Estimates of blue whale abundance are uncertain.  Prior to whaling, Gambell 
(1976) reported there may have been as many as 4,900 blue whales.  Blue whales were hunted in 
the Pacific Ocean, where approximately 5,761 killed from 1889–1965 (Perry et al. 1999).  The 
IWC banned commercial whaling in the North Pacific in 1966, although Soviet whaling 
continued after the ban.  In the eastern North Pacific, the minimum stock (based upon surveys in 
U.S. EEZ waters) is thought to be 1,384 whales, but no minimum estimate has been established 
(Carretta et al. 2006).  Although blue whale abundance has likely increased since its protection in 
1966, the possibility of unauthorized harvest by Soviet whaling vessel, incidental ship strikes, 
and gillnet mortalities make this uncertain.     

Calambokidis and Barlow (2004) estimated roughly 3,000 blue whales inhabit waters off 
California, Oregon, and Washington based on line-transect surveys and 2,000 based on capture-
recapture methods.  Carretta et al.(2006) noted that the best estimate of abundance off California, 
Oregon, and Washington is an average of line-transect and capture-recapture estimates (1,744).  
Barlow (2003) reported mean group sizes of 1.0–1.9 during surveys off California, Oregon, and 
Washington.  A density estimate of 0.0003 individuals/km2 was given for waters off 
Oregon/Washington, and densities off California ranged from 0.001-0.0033 individuals/km2 
(Barlow 2003). 
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Table 2.  Summary of past and present blue whale abundance.   
 

 
*Note: Confidence Intervals (C.I.) not provided by the authors were calculated from Coefficients of Variation (C.V.)  
where available, using the computation from Gotelli and Ellison (2004).  

 Southern Hemisphere.  Estimates of 4-5% for an average rate of population growth have 
been proposed (Yochem and Leatherwood 1985).  However, a recent estimate of population 
growth for Antarctic blue whales throughout was 7.3% (Branch et al. 2007).  Branch et al. (2007) 
also included an estimate of 1,700 individuals south of 60º.  Blue whales in the region remain 
severely depleted with the 1996 estimate only 0.7% of pre-whaling levels (IWC 2005). 

Blue whales were the mainstay of whaling in the region once the explosive harpoon was 
developed in the late nineteenth century (Shirihai 2002).  During the early 1900s, the species 
became a principal target of the whaling industry throughout the world, with the majority killed 
in the Southern Hemisphere.  Approximately 330,000–360,000 blue whales were harvested from 
1904 to 1967 in the Antarctic alone, reducing their abundance to <3% of their original numbers 
(Perry et al. 1999; Reeves et al. 2003b).  Blue whales were protected in portions of the Southern 
Hemisphere beginning in 1939, and received full protection in the Antarctic in 1966.   

Region 
Population, stock, 
  or study area 

Pre-exploitation  
estimate 95% C.I. 

Current  
estimate 95% C.I. Source 

Global -- 200,000 -- 11,200-13,000  -- (DOC 1983; Maser et al. 1981) 
5,000-12,000 (COSEWIC 2002) 

North Atlantic Basinwide 1,100-1,500  -- 100-555 -- (Braham 1991; Gambell 1976) 
NMFS - Western North  
Atlantic stock -- -- 308 -- (Sears et al. 1987) 

North Pacific Basinwide 4,900 -- 1,400-1,900 -- (Gambell 1976) 

3,300 -- (Wade and Gerrodette 1993) and 

Eastern Tropical Pacific -- -- 1,415 1,078-2,501 (Wade and Gerrodette 1993) 
EEZ of Costa Rica -- -- 48 22-102* (Gerrodette and Palacios 1996) 

EEZs of Central America  
north of Costa Rica -- -- 94 34-257* (Gerrodette and Palacios 1996) 
Eastern North Pacific -- -- 2,997 2,175-3,819* (Calambokidis and Barlow 2004) 
NMFS - western North  
Pacific stock -- -- n/a -- (Carretta et al. 2006) 

NMFS - eastern North  
Pacific stock -- -- 1,368 CV=0.22 (Carretta et al. 2008) 

Southern  
Hemisphere Basinwide 150,000-210,000 -- 5,000-6,000 -- (Gambell 1976; Yochem and 

Leatherwood 1985) 
300,000 -- -- -- (COSEWIC 2002) 

-- -- 400-1,400 400-1,400 IWC, for years 1980-2000 
-- -- 1,700 860-2,900 (IWC 2005c), point estimate for  

1996 
Within IWC survey areas -- -- 1,255 -- (IWC 1996) 
Pygmy blue whale  
population 10,000 -- 5,000 -- (Gambell 1976) 

13,000 -- 6,500 -- (Zemsky and Sazhinov 1982) 

(Barlow 1997b) as combined in 
(Perry et al. 1999) 
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Natural threats.  As the world’s largest animals, blue whales are only occasionally known to be 
killed by killer whales (Sears et al. 1990; Tarpy 1979).  Blue whales engage in a flight response 
to evade killer whales, which involves high energetic output, but show little resistance if 
overtaken (Ford and Reeves 2008).  Blue whales are known to become infected with the 
nematode Carricauda boopis, which are believed to have caused mortality in fin whale due to 
renal failure (Lambertsen 1986). 

Anthropogenic threats.  Blue whales have faced threats from several historical and current 
sources.  Blue whale populations are severely depleted originally due to historical whaling 
activity. 

Ship strike is presently a concern for blue whale recovery.  Ship strikes have recently averaged 
roughly one every other year (eight ship strike incidents are known Jensen and Silber (2004), but 
in September 2007, ships struck five blue whales within a few-day period off southern California 
(Calambokidis pers. comm. 2008)(Berman-Kowalewski et al. 2010).  Dive data support a 
surface-oriented behavior during nighttime that would make blue whales particularly vulnerable 
to ship strikes.  There are concerns that, like right whales, blue whales may surface when 
approached by large vessels; a behavior that would increase their likelihood of being struck.  
Protective measures are not currently in place.  In the California/Mexico stock, annual incidental 
mortality due to ship strikes averaged one whale every 5 years, but we cannot determine if this 
reflects the actual number of blue whales struck and killed by ships (i.e., individuals not observed 
when struck and those who do not strand; Barlow et al. (1997; Berman-Kowalewski et al. 2010). 
 It is believed that the vast majority of ship strike mortalities are never identified, and that actual 
mortality is higher than currently documented.   

Increasing oceanic noise may impair blue whale behavior.  Although available data do not 
presently support traumatic injury from sonar, the general trend in increasing ambient low-
frequency noise in the deep oceans of the world, primarily from ship engines, could impair the 
ability of blue whales to communicate or navigate through these vast expanses (Aburto et al. 
1997; Clark 2006).   

There is a paucity of contaminant data regarding blue whales.  Available information indicates 
that organochlorines, including dichloro-diphenyl-trichloroethane (DDT), polychlorinated 
biphenyls (PCB), benzene hexachloride (HCH), hexachlorobenzene (HCB), chlordane, dieldrin, 
methoxychlor, and mirex have been isolated from blue whale blubber and liver samples 
(Gauthier et al. 1997b; Metcalfe et al. 2004).  Contaminants transfer between mother and calf 
meaning that young often start life with concentrations of contaminants equal to their mothers, 
before accumulating additional contaminant loads during life and passing higher loads to the next 
generation (Gauthier et al. 1997a; Metcalfe et al. 2004).   

Critical habitat.  The NMFS has not designated critical habitat for blue whales.   

Fin whale 

Description of the species.  The fin whale is the second largest baleen whale and is widely 
distributed in the world’s oceans.  Most fin whales in the Northern Hemisphere migrate 
seasonally from Antarctic feeding areas in the summer to low-latitude breeding and calving 
grounds in winter.  Fin whales tend to avoid tropical and pack-ice waters, with the high-latitude 
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limit of their range set by ice and the lower-latitude limit by warm water of approximately 15° C 
(Sergeant 1977).  Fin whale concentrations generally form along frontal boundaries, or mixing 
zones between coastal and oceanic waters, which corresponds roughly to the 200 m isobath (the 
shelf edge; (Cotte et al. 2009; Nasu 1974). 

Subspecies.  There are two recognized subspecies of fin whales, Balaenoptera physalus 
physalus, which occurs in the North Atlantic Ocean, and B. p. quoyi, which occurs in the 
Southern Ocean.  These subspecies and North Pacific fin whales appear to be organized into 
separate populations, although there is a lack of consensus in the published literature as to 
population structure.   

Population structure.  Population structure has undergone only a rudimentary framing. Genetic 
studies by Bérubé et al. (1998) indicate that there are significant genetic differences among fin 
whales in differing geographic areas (Sea of Cortez, Gulf of St. Lawrence, and Gulf of Maine).  
Further, individuals in the Sea of Cortez may represent an isolated population from other eastern 
North Pacific fin whales (Berube et al. 2002).  Even so, mark-recapture studies also demonstrate 
that individual fin whales migrate between management units designated by the IWC (Mitchell 
1974b; Sigujónsson and Gunnlaugsson 1989). 

North Atlantic.  Fin whales are common off the Atlantic coast of the U.S. in waters 
immediately off the coast seaward to the continental shelf (about the 1,800 m contour). 

Fin whales occur during the summer from Baffin Bay to near Spitsbergen and the Barents Sea, 
south to Cape Hatteras in North Carolina and off the coasts of Portugal and Spain (Rice 1998a).  
In areas north of Cape Hatteras, fin whales account for about 46% of the large whales observed 
in surveys between 1978-1982 (CETAP 1982).  Little is known about the winter habitat of fin 
whales, but in the western North Atlantic, the species has been found from off Newfoundland 
south to the Gulf of Mexico and Greater Antilles, and in the eastern North Atlantic the winter 
range extends from the Faroes and Norway south to the Canary Islands.  Fin whales in the eastern 
North Atlantic have been found in highest densities in the Irminger Sea between Iceland and 
Greenland (Víkingsson et al. 2009).  In the Atlantic Ocean, a general migration in the fall from 
the Labrador and Newfoundland region, south past Bermuda, and into the West Indies has been 
theorized (Clark 1995).  Historically, fin whales were by far the most common large whale found 
off Portugal (Brito et al. 2009). 

Fin whales are also endemic to the Mediterranean Sea, where (at least in the western 
Mediterranean), individuals tend to aggregate during summer and disperse in winter over large 
spatial scales (Cotte et al. 2009).  Mediterranean fin whales are genetically distinct from fin 
whales in the rest of the North Atlantic at the population level (Berube et al. 1999).  Individuals 
also tend to associate with colder, saltier water, where steep changes in temperature occurred, 
and where higher northern krill densities would be expected (Cotte et al. 2009).  A genetically 
distinct population resides year-round in the Ligurian Sea (IWC 2006a).   

North Pacific.  Fin whales undertake migrations from low-latitude winter grounds to high-
latitude summer grounds and extensive longitudinal movements both within and between years 
(Mizroch et al. 1999).  Fin whales are sparsely distributed during November-April, from 60°N, 
south to the northern edge of the tropics, where mating and calving may take place (Mizroch et 
al. 1999).  However, fin whales have been sighted as far north as 60°N throughout winter 
(Mizroch et al. 1999).  A resident fin whale population may exist in the Gulf of California 
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(Tershy et al. 1993). 

Fin whales are observed year-round off central and southern California with peak numbers in the 
summer and fall (Barlow 1997b; Dohl et al. 1983; Forney et al. 1995).  Peak numbers of fin 
whales are seen during the summer off Oregon, and in summer and fall in the Gulf of Alaska and 
southeastern Bering Sea (Moore et al. 2000c; Perry et al. 1999).  Fin whales are observed feeding 
in Hawaiian waters during mid-May, and their sounds have been recorded there during the 
autumn and winter (Balcomb 1987; Northrop et al. 1968; Shallenberger 1981b; Thompson and 
Friedl 1982).  Fin whales in the western Pacific winter in the Sea of Japan, the East China, 
Yellow, and Philippine seas (Gambell 1985a). 

Southern Hemisphere.  Fin whales range from near 40o S (Brazil, Madagascar, western 
Australia, New Zealand, Colombia, Peru, and Chile) during austral winter southward to 
Antarctica (Rice 1998a).  Fin whales appear to be present in Antarctic waters only from 
February-July and were not detected in the Ross Sea during year-round acoustic surveys (Sirovic 
et al. 2009).  Fin whales in the action area likely would be from the New Zealand stock, which 
summers from 170º E to 145º W and winters in the Fiji Sea and adjacent waters (Gambell 
1985a).  
Age distribution.  Aguilar and Lockyer (1987) suggested annual natural mortality rates in 
northeast Atlantic fin whales may range from 0.04 to 0.06.  Fin whales live 70-80 years (Kjeld et 
al. 2006). 

Reproduction.  Fin whales reach sexual maturity between 5-15 years of age (COSEWIC 2005; 
Gambell 1985a; Lockyer 1972).  Mating and calving occurs primarily from October-January, 
gestation lasts ~11 months, and nursing occurs for 6-11 months (Boyd et al. 1999; Hain et al. 
1992).  The average calving interval in the North Atlantic is estimated at about 2-3 years (Agler 
et al. 1993; Christensen et al. 1992a).  The location of winter breeding grounds is uncertain but 
mating is assumed to occur in pelagic mid-latitude waters (Perry et al. 1999).  Although seasonal 
migration occurs between presumed foraging and breeding locations, fin whales have been 
acoustically detected throughout the North Atlantic Ocean and Mediterranean Sea year-round, 
implying that not all individuals follow a set migratory pattern (Notarbartolo-Di-Sciara et al. 
1999). 

Feeding.  Fin whales in the North Atlantic eat pelagic crustaceans (mainly krill and schooling 
fish such as capelin, herring, and sand lance (Borobia and Béland 1995; Christensen et al. 1992a; 
Hjort and Ruud 1929; Ingebrigtsen 1929; Jonsgård 1966; Mitchell 1974b; Overholtz and Nicolas 
1979; Sergeant 1977; Shirihai 2002; Watkins et al. 1984a).  In the North Pacific, fin whales also 
prefer euphausiids and large copepods, followed by schooling fish such as herring, walleye 
Pollock, and capelin (Kawamura 1982a; Kawamura 1982b; Ladrón De Guevara et al. 2008; 
Nemoto 1970; Paloma et al. 2008).  Fin whales frequently forage along cold eastern boundaries 
of currents (Perry et al. 1999).  Antarctic fin whales feed on krill, Euphausia superba, which 
occurs in dense near-surface schools (Nemoto 1959).  However, off the coast of Chile, fin whales 
are known to feed on the euphausiid E. mucronata (Antezana 1970; Perez et al. 2006).  Feeding 
may occur in waters as shallow as 10 m when prey are at the surface, but most foraging is 
observed in high-productivity, upwelling, or thermal front marine waters (Gaskin 1972; Nature 
Conservancy Council 1979 as cited in ONR 2001; Panigada et al. 2008; Sergeant 1977).  While 
foraging, fin whales in the Mediterranean Sea have been found to move in restricted territories in 
a convoluted manner (Lafortuna et al. 1999). 
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Diving.  The amount of time fin whales spend at the surface varies.  Some authors have reported 
that fin whales make 5-20 shallow dives, each of 13-20 s duration, followed by a deep dive of 
1.5-15 min (Gambell 1985a; Lafortuna et al. 2003; Stone et al. 1992).  Other authors have 
reported that the fin whale’s most common dives last 2-6 min (Hain et al. 1992; Watkins 1981a). 
 The most recent data support average dives of 98 m and 6.3 min for foraging fin whales, while 
non-foraging dives are 59 m and 4.2 min (Croll et al. 2001a).  However, Lafortuna et al. (1999) 
found that foraging fin whales have a higher blow rate than when traveling.  Foraging dives in 
excess of 150 m are known (Panigada et al. 1999).  In waters off the U.S. Atlantic Coast, 
individuals or duos represented about 75% of sightings during the Cetacean and Turtle 
Assessment Program (Hain et al. 1992).  Individuals or groups of less than five individuals 
represented about 90% of the observations.  Barlow (2003) reported mean group sizes of 1.1–4.0 
during surveys off California, Oregon, and Washington. 

Vocalization and hearing.  Fin whales produce a variety of low-frequency sounds in the 10-200 
Hz range (Edds 1988; Thompson et al. 1992; Watkins 1981a; Watkins et al. 1987).  Typical 
vocalizations are long, patterned pulses of short duration (0.5-2 s) in the 18-35 Hz range, but only 
males are known to produce these (Croll et al. 2002; Patterson and Hamilton 1964).  Richardson 
et al. (1995b) reported the most common sound as a 1 s vocalization of about 20 Hz, occurring in 
short series during spring, summer, and fall, and in repeated stereotyped patterns in winter.  Au 
(2000) reported moans of 14-118 Hz, with a dominant frequency of 20 Hz, tonal vocalizations of 
34-150 Hz, and songs of 17-25 Hz (Cummings and Thompson 1994; Edds 1988; Watkins 
1981a).  Source levels for fin whale vocalizations are 140-200 dB re 1μPa·m (see also Clark and 
Ellison 2004; as compiled by Erbe 2002a).  The source depth of calling fin whales, has been 
reported to be about 50 m (Watkins et al. 1987). 

Although their function is still in doubt, low-frequency fin whale vocalizations travel over long 
distances and may aid in long-distance communication (Edds-Walton 1997; Payne and Webb 
1971).  During the breeding season, fin whales produce pulses in a regular repeating pattern, 
which have been proposed to be mating displays similar to those of humpbacks (Croll et al. 
2002).  These vocal bouts last for a day or longer (Tyack 1999). 

Direct studies of fin whale hearing have not been conducted, but it is assumed that blue whales 
can hear the same frequencies that they produce (low) and are likely most sensitive to this 
frequency range  (Ketten 1997; Richardson et al. 1995c).  

Status and trends.  Fin whales were originally listed as endangered in 1970 (35 FR 18319), and 
this status continues since the inception of the ESA in 1973.  Although fin whale population 
structure remains unclear, various abundance estimates are available (Table 3).  Pre-exploitation 
fin whale abundance is estimated at 464,000 individuals worldwide; the estimate for 1991 was 
roughly 25% of this (Braham 1991). Historically, worldwide populations were severely depleted 
by commercial whaling, with more than 700,000 whales harvested in the twentieth century 
(Cherfas 1989).  
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Table 3.  Summary of past and present fin whale abundance. 
 

 
*Note: Confidence Intervals (C.I.) not provided by the authors were calculated from Coefficients of Variation (C.V.) 
where available, using the computation from Gotelli and Ellison (2004).  

North Atlantic.  Sigurjónsson (1995) estimated that between 50,000 and 100,000 fin 
whales once populated the North Atlantic, although he provided no data or evidence to support 
that estimate.  However, over 48,000 fin whales were caught between 1860- 1970 (Braham 
1991).  Although protected by the IWC, from 1988-1995 there have been 239 fin whales 
harvested from the North Atlantic.  Recently, Iceland resumed whaling of fin whales despite the 
1985 moratorium imposed by the IWC.  Forcada et al. (1996) estimated that 3,583 individuals 
(95% CI = 2,130- 6,027) inhabit the western Mediterranean Sea.  Goujon et al. (1994) estimated 
7,000-8,000 fin whales in the Bay of Biscay. Vikingsson et al. (2009) estimated roughly 20,000 
fin whales to be present in a large portion of the eastern North Atlantic in 1995, which increased 
to roughly 25,000 in 2001.  The authors concluded that actual numbers were likely higher due to 
negative bias in their analysis, and that the population(s) were increasing at 4% annually 

Region 
Population, stock, 
  or study area 

Pre-exploitation  
estimate 95% C.I. 

Current  
estimate 95% C.I. Source 

Global -- >464,000 -- 119,000 -- (Braham 1991) 
North Atlantic 

Basinwide 30,000-50,000 -- -- -- (Sergeant 1977) 

360,000 249,000- 
481,000 -- -- (Roman and Palumbi 2003) 

Central and Northeastern  
Atlantic -- -- 30,000 23,000- 

39,000 
(IWC 2007) 

Western North Atlantic -- -- 3,590-6,300  -- (Braham 1991) 
 NMFS - Western North  

Atlantic stock -- -- 2,269 CV=0.37 (NMFS 2008d) 
Northeastern U.S. Atlantic  
Continental Shelf -- -- 2,200-5,000 -- (Hain et al. 1992; 

Waring et al. 2000) 
IWC - Newfoundland- 
Labrador stock -- -- 13,253 0-50,139* (IWC 1992b) 
IWC - British Isles-Spain and  
Portugal stock 10,500 9,600- 

11,400 4,485 3,369-5,600 (Braham 1991) 
 

17,355 10,400- 
28,900 (Buckland et al. 1992) 

IWC - North Norway stock -- -- -- -- -- 
IWC - East Greenland- 
Iceland stock -- -- 11,563 5,648-17,478* (Gunnlaugsson and 

Sigurjónsson 1990) 
IWC - West Greenland stock -- -- 1,700 840-3,500 (IWC 2006a) 

North Pacific 
Basinwide 42,000-45,000 -- 16,625 14,620- 

18,630 
(Braham 1991; Ohsumi 
and Wada 1974)  

Central Bering Sea -- -- 4,951 2,833-8,653 (Moore et al. 2002) 
NMFS - Northeast Pacific  
stock, west of Kenai  
Peninsula 

-- -- 5,700 -- (Angliss and Allen 2007) 

NMFS - California/Oregon/  
Washington stock -- -- 2,636 CV=0.15 (Carretta et al. 2008) 

NMFS - Hawaii stock -- -- 174 0-420* (Carretta et al. 2008) 
Southern  
Hemisphere Basinwide 400,000 -- 85,200 -- (Braham 1991; IWC 1979) 

South of 60 o S -- -- 1,735 514-2,956 (IWC 1996) 
South of 30 o S -- -- 15,178 -- (IWC 1996) 
Scotia Sea and Antarctic  
Peninsula -- -- 4,672 792-8,552* (Hedley et al. 2001; 

Reilly et al. 2004) 
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(Víkingsson et al. 2009). 

 North Pacific.  The status and trend of fin whale populations is largely unknown.  Over 
26,000 fin whales were harvested between 1914-1975 (Braham 1991 as cited in Perry et al. 
1999).  NMFS estimates roughly 3,000 individuals occur off California, Oregon, and Washington 
based on ship surveys in summer/autumn of 1996, 2001, and 2005, of which estimates of 283 
and 380 have been made for Oregon and Washington alone (Barlow 2003; Barlow and Taylor 
2001; Forney 2007).  Barlow (2003) noted densities of up to 0.0012 individuals/km2 off Oregon 
and Washington and up to 0.004 individuals/km2 off California. 

 Southern Hemisphere.  The Southern Hemisphere population was one of the most 
heavily exploited whale populations under commercial whaling.  From 1904 to 1975, over 
700,000 fin whales were killed in Antarctic whaling operations (IWC 1990).  Harvests increased 
substantially upon the introduction of factory whaling ships in 1925, with an average of 25,000 
caught annually from 1953-1961 (Perry et al. 1999).  Current estimates are a tiny fraction of 
former abundance. 

Natural threats.  Natural sources and rates of mortality are largely unknown, but Aguilar and 
Lockyer (1987) suggested annual natural mortality rates might range from 0.04 to 0.06 for 
northeast Atlantic fin whales.  The occurrence of the nematode Crassicauda boopis appears to 
increase the potential for kidney failure and may be preventing some fin whale populations from 
recovering (Lambertsen 1992).  Adult fin whales engage in a flight responses (up to 40 km/h) to 
evade killer whales, which involves high energetic output, but show little resistance if overtaken 
(Ford and Reeves 2008).  Killer whale or shark attacks may also result in serious injury or death 
in very young and sick individuals (Perry et al. 1999). 

Anthropogenic threats.  Fin whales have undergone significant exploitation, but are currently 
protected under the IWC.  Fin whales are still hunted in subsistence fisheries off West Greenland. 
 In 2004, five males and six females were killed, and two other fin whales were struck and lost.  
In 2003, two males and four females were landed and two others were struck and lost (IWC 
2005).  Between 2003 and 2007, the IWC set a catch limit of up to 19 fin whales in this 
subsistence fishery.  However, the scientific recommendation was to limit the number killed to 
four individuals until accurate populations could be produced (IWC 2005).  In the Antarctic 
Ocean, fin whales are hunted by Japanese whalers who have been allowed to kill up to 10 fin 
whales each ear for the 2005-2006 and 2006-2007 seasons under an Antarctic Special Permit 
NMFS (2006d).  The Japanese whalers plan to kill 50 whales per year starting in the 2007-2008 
season and continuing for the next 12 years (IWC 2006b; Nishiwaki et al. 2006). 

Fin whales experience significant injury and mortality from fishing gear and ship strikes (Carretta 
et al. 2007a; Douglas et al. 2008; Lien 1994; Perkins and Beamish 1979; Waring et al. 2007).  
Between 1969-1990, 14 fin whales were captured in coastal fisheries off Newfoundland and 
Labrador; of these seven are known to have died because of capture (Lien 1994; Perkins and 
Beamish 1979).  In 1999, one fin whale was reported killed in the Gulf of Alaska pollock trawl 
fishery and one was killed the same year in the offshore drift gillnet fishery (Angliss and Outlaw 
2005a; Carretta et al. 2004a).  According to Waring et al. (2007), four fin whales in the western 
North Atlantic died or were seriously injured in fishing gear, while another five were killed or 
injured as a result of ship strikes between January 2000 and December 2004.  Jensen and Silber 
(2004) review of the NMFS’ ship strike database revealed fin whales as the most frequently 
confirmed victims of ship strikes (26% of the recorded ship strikes [n = 75/292 records]), with 
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most collisions occurring off the east coast, followed by the west coast of the U.S. and 
Alaska/Hawaii.  Between 1999-2005, there were 15 reports of fin whales strikes by vessels along 
the U.S. and Canadian Atlantic coasts (Cole et al. 2005a; Nelson et al. 2007a).  Of these, 13 were 
confirmed, resulting in the deaths of 11 individuals.  Five of seven fin whales stranded along 
Washington State and Oregon showed evidence of ship strike with incidence increasing since 
2002 (Douglas et al. 2008).  Similarly, 2.4% of living fin whales from the Mediterranean show 
ship strike injury and 16% of stranded individuals were killed by vessel collision (Panigada et al. 
2006).  There are also numerous reports of ship strikes off the Atlantic coasts of France and 
England (Jensen and Silber 2004). 

Management measures aimed at reducing the risk of ships hitting right whales should also reduce 
the risk of collisions with fin whales.  In the Bay of Fundy, recommendations for slower vessel 
speeds to avoid right whale ship strike appear to be largely ignored (Vanderlaan et al. 2008).  
However, new rules for seasonal (June through December) slowing of vessel traffic to 10 knots 
and changing shipping lanes by less than one nautical mile to avoid the greatest concentrations of 
right whales are predicted to be capable of reducing ship strike mortality by 27% in the Bay of 
Fundy region. 

The organochlorines DDE, DDT, and PCBs have been identified from fin whale blubber, but 
levels are lower than in toothed whales due to the lower level in the food chain that fin whales 
feed at (Aguilar and Borrell 1988; Borrell 1993; Borrell and Aguilar 1987; Henry and Best 1983; 
Marsili and Focardi 1996).  Females contained lower burdens than males, likely due to 
mobilization of contaminants during pregnancy and lactation (Aguilar and Borrell 1988; Gauthier 
et al. 1997a; Gauthier et al. 1997b).  Contaminant levels increase steadily with age until sexual 
maturity, at which time levels begin to drop in females and continue to increase in males(Aguilar 
and Borrell 1988). 

Climate change also presents a potential threat to fin whales, particularly in the Mediterranean 
Sea, where fin whales appear to rely exclusively upon northern krill as a prey source.  These krill 
occupy the southern extent of their range and increases in water temperature could result in their 
decline and that of fin whales in the Mediterranean Sea (Gambaiani et al. 2009). 

Critical habitat.  The NMFS has not designated critical habitat for fin whales. 

Sei whale 
Description of the species.  The sei whale occurs in all oceans of the world except the Arctic.  
The migratory pattern of this species is thought to encompass long distances from high-latitude 
feeding areas in summer to low-latitude breeding areas in winter; however, the location of winter 
areas remains largely unknown (Perry et al. 1999).  Sei whales are often associated with deeper 
waters and areas along continental shelf edges (Hain et al. 1985).  This general offshore pattern is 
disrupted during occasional incursions into shallower inshore waters (Waring et al. 2004b).  The 
species appears to lack a well-defined social structure and individuals are usually found alone or 
in small groups of up to six whales (Perry et al. 1999).  When on feeding grounds, larger 
groupings have been observed (Gambell 1985b). 

Population designations.  The population structure of sei whales is unknown and populations 
herein assume (based upon migratory patterns) population structuring is discrete by ocean basin 
(north and south), except for sei whales in the Southern Ocean, which may form a ubiquitous 
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population or several discrete ones.   

North Atlantic.  In the western North Atlantic, a major portion of the sei whale 
population occurs in northern waters, potentially including the Scotian Shelf, along Labrador and 
Nova Scotia, south into the U.S. EEZ, including the Gulf of Maine and Georges Bank (Mitchell 
and Chapman 1977; Waring et al. 2004b).  These whales summer in northern areas before 
migrating south to waters along Florida, in the Gulf of Mexico, and the northern Caribbean Sea 
(Gambell 1985b; Mead 1977).  Sei whales may range as far south as North Carolina.  In the U.S. 
EEZ, the greatest abundance occurs during spring, with most sightings on the eastern edge of 
Georges Bank, in the Northeast Channel, and along the southwestern edge of Georges Bank in 
Hydrographer Canyon (CETAP 1982).  In 1999, 2000, and 2001, NMFS aerial surveys found sei 
whales concentrated along the northern edge of Georges Bank during spring (Waring et al. 
2004b).  Surveys in 2001 found sei whales south of Nantucket along the continental shelf edge 
(Waring et al. 2004b).  During years of greater prey abundance (e.g., copepods), sei whales are 
found in more inshore waters, such as the Great South Channel (in 1987 and 1989), Stellwagen 
Bank (in 1986), and the Gulf of Maine (Payne et al. 1990; Schilling et al. 1992).  In the eastern 
Atlantic, sei whales occur in the Norwegian Sea, occasionally occurring as far north as 
Spitsbergen Island, and migrate south to Spain, Portugal, and northwest Africa (Gambell 1985b; 
Jonsgård and Darling 1977).   

North Pacific.  Some mark-recapture, catch distribution, and morphological research indicate 
more than one population may exist – one between 155°-175° W, and another east of 155° W 
(Masaki 1976; Masaki 1977).  Sei whales have been reported primarily south of the Aleutian 
Islands, in Shelikof Strait and waters surrounding Kodiak Island, in the Gulf of Alaska, and 
inside waters of southeast Alaska and south to California to the east and Japan and Korea to the 
west (Leatherwood et al. 1982; Nasu 1974).  Sightings have also occurred in Hawaiian waters 
(Smultea et al. 2010).  Sei whales have been occasionally reported from the Bering Sea and in 
low numbers on the central Bering Sea shelf (Hill and DeMaster 1998).  Whaling data suggest 
that sei whales do not venture north of about 55°N (Gregr et al. 2000).  Masaki (1977) reported 
sei whales concentrating in the northern and western Bering Sea from July-September, although 
other researchers question these observations because no other surveys have reported sei whales 
in the northern and western Bering Sea.  Horwood (1987) evaluated Japanese sighting data and 
concluded that sei whales rarely occur in the Bering Sea.  Horwood (1987)  reported that 75-85% 
of the North Pacific population resides east of 180°.  During winter, sei whales are found from 
20°-23° N (Gambell 1985b; Masaki 1977).  Considering the many British Columbia whaling 
catches in the early to mid 1900s, sei whales have clearly utilized this area in the past (Gregr et 
al. 2000; Pike and MacAskie 1969). 

Southern Hemisphere.  Sei whales occur throughout the Southern Ocean during the 
austral summer, generally between 40°-50° S (Gambell 1985b).  During the austral winter, sei 
whales occur off Brazil and the western and eastern coasts of southern Africa and Australia, 
although all of the 20 sightings off Argentina occurred in August or September (Iniguez et al. 
2010).  However, sei whales generally do not occur north of 30º S in the Southern Hemisphere 
(Reeves et al. 1999).  However, confirmed sighting records exist for Papua New Guinea and New 
Caledonia, with unconfirmed sightings in the Cook Islands (Programme) 2007).  A sei whale 
stranded in New Caledonia during May of 1962 (Borsa 2006). 
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In the Southern Hemisphere, the IWC has divided the Southern Ocean into six baleen whale 
feeding areas – designated at 60° S latitude and longitude as: 60°-120° W (Area I), 0°-60° W 
(Area II), 0° to 70° E (Area III), 70°-130° E (Area IV), 130°-170° W (Area V), and 170°-120°W 
(Area VI).   

There is little information on the population structure of sei whales in the Antarctic, although 
some degree of isolation appears to exist between IWC Areas I-VI, although sei whale 
movements are dynamic and individuals move between stock designation areas  (Donovan 1991; 
IWC 1980a). 

Reproduction.  Reproductive activities for sei whales occur primarily in winter.  Gestation is 
about 12.7 months, calves are weaned at 6-9 months, and the calving interval is about 2-3 years 
(Gambell 1985b; Rice 1977).  Sei whales become sexually mature at about age 10 (Rice 1977).   

Feeding.  Sei whales are primarily planktivorous, feeding mainly on euphausiids and copepods, 
although they are also known to consume fish (Waring et al. 2006).  In the Northern Hemisphere, 
sei whales consume small schooling fish such as anchovies, sardines, and mackerel when locally 
abundant (Mizroch et al. 1984; Rice 1977).  Sei whales in the North Pacific feed on euphausiids 
and copepods, which make up about 95% of their diets (Calkins 1986).  The dominant food for 
sei whales off California during June-August is northern anchovy, while in September-October 
whales feed primarily on krill (Rice 1977).  The balance of their diet consists of squid and 
schooling fish, including smelt, sand lance, Arctic cod, rockfish, pollack, capelin, and Atka 
mackerel (Nemoto and Kawamura 1977).  In the Southern Ocean, analysis of stomach contents 
indicates sei whales consume Calanus spp. and small-sized euphasiids with prey composition 
showing latitudinal trends (Kawamura 1974).  Evidence indicates that sei whales in the Southern 
Hemisphere reduce direct interspecific competition with blue and fin whales by consuming a 
wider variety of prey and by arriving later to feeding grounds (Kirkwood 1992).  Rice (1977) 
suggested that the diverse diet of sei whales may allow them greater opportunity to take 
advantage of variable prey resources, but may also increase their potential for competition with 
commercial fisheries.  In the North Pacific, sei whales appear to prefer feeding along the cold 
eastern currents (Perry et al. 1999). 

Vocalization and hearing.  Data on sei whale vocal behavior is limited, but includes records off 
the Antarctic Peninsula of broadband sounds in the 100-600 Hz range with 1.5 s duration and 
tonal and upsweep calls in the 200-600 Hz range of 1-3 s durations (McDonald et al. 2005).  
Differences may exist in vocalizations between ocean basins (Rankin and Barlow 2007).    
Vocalizations from the North Atlantic consisted of paired sequences (0.5-0.8 sec, separated by 
0.4-1.0 sec) of 10-20 short (4 msec) FM sweeps between 1.5-3.5 kHz (Thomson and Richardson 
1995). 

Status and trends.  The sei whale was originally listed as endangered in 1970 (35 FR 18319), 
and this status remained since the inception of the ESA in 1973.  Table 4 provides estimates of 
historic and current abundance for ocean regions. 
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Table 4.  Summary of past and present sei whale abundance. 

Region Population, 
stock, or 

study area 

Pre-
exploitation 

estimate 

95
% 

C.I. 

Current 
estimate 

95% 
C.I. 

Source 

Global -- >105,000 -- 25,000 -- (Braham 1991) 

North Atlantic Basinwide -- -- >4000 -- (Braham 1991) 

  NMFS - Nova Scotia 
stock 

-- -- 207 -- (NMFS 2008d) 

  IWC - Iceland-
Denmark stock 

-- -- 1,290 0-2,815* (Cattanach et al. 1993) 

  IWC - Iceland-
Denmark stock 

-- -- 1,590 343-2,837* (Cattanach et al. 1993) 

North Pacific Basinwide 42,000 -- 7,260-12,620* -- (Tillman 1977); *circa 1974 
  NMFS - eastern 

North Pacific stock 
-- -- 46 CV=0.61 (Carretta et al. 2008) 

  NMFS - Hawaii 
stock 

-- -- 77 0-237* (Carretta et al. 2008) 

Southern 
Hemisphere 

Basinwide 63,100 -- -- -- (Mizroch et al. 1984) 

  Basinwide 65,000 -- -- -- (Braham 1991) 
  South of 60oS -- -- 626 553-699 (IWC 1996) 
  South of 30oS -- -- 9,718 -- (IWC 1996) 

*Note: Confidence Intervals (C.I.) not provided by the authors were calculated from Coefficients of Variation (C.V.) 
where available, using the computation from Gotelli and Ellison (2004). 

North Atlantic.  No information on sei whale abundance exists prior to commercial 
whaling (Perry et al. 1999).  Between 1966 and 1972, whalers from land stations on the east coast 
of Nova Scotia engaged in extensive hunts of sei whales on the Nova Scotia shelf, killing about 
825 sei whales (Mitchell and Chapman 1977).  In 1974, the North Atlantic stock was estimated 
to number about 2,078 individuals, including 965 whales in the Labrador Sea group and 870 
whales in the Nova Scotia group (Mitchell and Chapman 1977).  In the northwest Atlantic, 
Mitchell and Chapman (1977) estimated the Nova Scotia stock to contain between 1,393-2,248 
whales; and an aerial survey program conducted from 1978 to 1982 on the continental shelf and 
edge between Cape Hatteras, North Carolina, and Nova Scotia generated an estimate of 280 sei 
whales (CETAP 1982).  These two estimates are more than 20 years out of date and likely do not 
reflect the current true abundance; in addition, the Cetacean and Turtle Assessment Program 
estimate has a high degree of uncertainty and is considered statistically unreliable (Perry et al. 
1999; Waring et al. 2004b; Waring et al. 1999).  The total number of sei whales in the U.S. 
Atlantic EEZ remains unknown (Waring et al. 2006).  Rice (1977) estimated total annual 
mortality for adult females as 0.088 and adult males as 0.103. 

North Pacific.  Ohsumi and Fukuda (1975) estimated that sei whales in the North Pacific 
numbered about 49,000 whales in 1963, had been reduced to 37,000-38,000 whales by 1967, and 
reduced again to 20,600-23,700 whales by 1973.  From 1910-1975, approximately 74,215 sei 
whales were caught in the entire North Pacific Ocean (Horwood 1987; Perry et al. 1999).  From 
the early 1900s, Japanese whaling operations consisted of a large proportion of sei whales: 300-
600 sei whales were killed per year from 1911-1955.  The sei whale catch peaked in 1959, when 
1,340 sei whales were killed.  In 1971, after a decade of high sei whale catch numbers, sei whales 
were scarce in Japanese waters.  Japanese and Soviet catches of sei whales in the North Pacific 
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and Bering Sea increased from 260 whales in 1962 to over 4,500 in 1968-1969, after which the 
sei whale population declined rapidly (Mizroch et al. 1984).  When commercial whaling for sei 
whales ended in 1974, the population in the North Pacific had been reduced to 7,260-12,620 
animals (Tillman 1977).  There have been no direct estimates of sei whale populations for the 
eastern Pacific Ocean (or the entire Pacific).  During aerial surveys between 1991 and 2001, there 
were two confirmed sightings of sei whales along the U.S. Pacific coast.  The minimum estimate 
of individuals along the U.S. west coast between 1996-2001 was 35 (Carretta et al. 2006).  

Natural threats.  The foraging areas of right and sei whales in the western North Atlantic Ocean 
overlap and both whales feed preferentially on copepods (Mitchell 1975).   

Andrews (1916) suggested that killer whales attacked sei whales less frequently than fin and blue 
whales in the same areas.  Sei whales engage in a flight responses to evade killer whales, which 
involves high energetic output, but show little resistance if overtaken (Ford and Reeves 2008).  
Endoparasitic helminths (worms) are commonly found in sei whales and can result in pathogenic 
effects when infestations occur in the liver and kidneys (Rice 1977).  

Anthropogenic threats.  Human activities known to threaten sei whales include whaling, 
commercial fishing, and maritime vessel traffic.  Historically, whaling represented the greatest 
threat to every population of sei whales and was ultimately responsible for listing sei whales as 
an endangered species.  Sei whales are thought to not be widely hunted, although harvest for 
scientific whaling or illegal harvesting may occur in some areas. 

Sei whales are occasionally killed in collisions with vessels.  Of three sei whales that stranded 
along the U.S. Atlantic coast between 1975-1996, two showed evidence of collisions (Laist et al. 
2001).  Between 1999 and 2005, there were three reports of sei whales being struck by vessels 
along the U.S. Atlantic coast and Canada’s Maritime Provinces (Cole et al. 2005b; Nelson et al. 
2007b).  Two of these ship strikes were reported as having resulted in death.  One sei whale was 
killed in a collision with a vessel off the coast of Washington in 2003 (Waring et al. 2008).  New 
rules for seasonal (June through December) slowing of vessel traffic in the Bay of Fundy to 10 
knots and changing shipping lanes by less than one nautical mile to avoid the greatest 
concentrations of right whales are predicted to reduce sei whale ship strike mortality by 17%. 

Sei whales are known to accumulate DDT, DDE, and PCBs (Borrell 1993; Borrell and Aguilar 
1987; Henry and Best 1983).  Males carry larger burdens than females, as gestation and lactation 
transfer these toxins from mother to offspring.   

Critical habitat.  The NMFS has not designated critical habitat for sei whales. 

Humpback whale 
Description of the species.  Humpback whales are a cosmopolitan species that occur in the 
Atlantic, Indian, Pacific, and Southern oceans.  Humpback whales migrate seasonally between 
warmer, tropical or sub-tropical waters in winter months (where they breed and give birth to 
calves, although feeding occasionally occurs) and cooler, temperate or sub-Arctic waters in 
summer months (where they feed; (Gendron and Urban 1993).  In both regions, humpback 
whales tend to occupy shallow, coastal waters.  However, migrations are undertaken through 
deep, pelagic waters (Winn and Reichley 1985). 
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Population designations.  Populations have been relatively well defined for humpback whales 

North Atlantic.  Humpback whales range from the mid-Atlantic bight and the Gulf of 
Maine across the southern coast of Greenland and Iceland to Norway in the Barents Sea.  Whales 
migrate to the western coast of Africa and the Caribbean Sea during the winter.  Humpback 
whales aggregate in four summer feeding areas: Gulf of Maine and eastern Canada, west 
Greenland, Iceland, and Norway (Boye et al. 2010; Katona and Beard 1990; Smith et al. 1999).   

Increasing range and occurrence in the Mediterranean Sea coincides with population growth and 
may represent reclaimed habitat from pre-commercial whaling (Frantzis et al. 2004; Genov et al. 
2009).  The principal breeding range for Atlantic humpback whales lies from the Antilles and 
northern Venezuela to Cuba (Balcomb III and Nichols 1982; Whitehead and Moore 1982; Winn 
et al. 1975).  The largest breeding aggregations occur off the Greater Antilles where humpback 
whales from all North Atlantic feeding areas have been photo-identified (Clapham et al. 1993; 
Katona and Beard 1990; Mattila et al. 1994; Palsbøll et al. 1997; Smith et al. 1999; Stevick et al. 
2003b).  However, the possibility of historic and present breeding further north remains 
enigmatic but plausible (Smith and G.Pike 2009).  Winter aggregations also occur at the Cape 
Verde Islands in the eastern North Atlantic and along Angola (Reeves et al. 2002; Reiner et al. 
1996; Weir 2007).  Accessory and historical aggregations also occur in the eastern Caribbean 
(Levenson and Leapley 1978; Mitchell and Reeves 1983; Reeves et al. 2001a; Reeves et al. 
2001b; Schwartz 2003; Smith and Reeves 2003; Swartz et al. 2003; Winn et al. 1975).  To 
further highlight the “open” structure of humpback whales, a humpback whale migrated from the 
Indian Ocean to the South Atlantic Ocean, demonstrating that interoceanic movements can occur 
(Pomilla and Rosenbaum 2005).  Genetic exchange at low-latitude breeding groups between 
Northern and Southern Hemisphere individuals and wider-range movements by males has been 
suggested to explain observed global gene flow (Rizzo and Schulte 2009).  However, there is 
little genetic support for wide-scale interchange of individuals between ocean basins or across the 
equator. 

North Pacific.  Based on genetic and photo-identification studies, the NMFS currently 
recognizes four stocks, likely corresponding to populations, of humpback whales in the North 
Pacific Ocean: two in the eastern North Pacific, one in the central North Pacific, and one in the 
western Pacific (Hill and DeMaster 1998).  However, there gene flow between them may exist.  
Humpback whales summer in coastal and inland waters from Point Conception, California, north 
to the Gulf of Alaska and the Bering Sea, and west along the Aleutian Islands to the Kamchatka 
Peninsula and into the Sea of Okhotsk (Johnson and Wolman 1984; Nemoto 1957; Tomilin 
1967).  These whales migrate to Hawaii, southern Japan, the Mariana Islands, and Mexico during 
winter.  However, more northerly penetrations in Arctic waters occur on occasion (Hashagen et 
al. 2009).  The central North Pacific population winters in the waters around Hawaii while the 
eastern North Pacific population (also called the California-Oregon-Washington-Mexico stock) 
winters along Central America and Mexico.  However, Calambokidis et al. (1997) identified 
individuals from several populations wintering (and potentially breeding) in the areas of other 
populations, highlighting the potential fluidity of population structure.  Herman (1979) presented 
extensive evidence that humpback whales associated with the main Hawaiian Islands immigrated 
there only in the past 200 years.  Winn and Reichley (1985) identified genetic exchange between 
the humpback whales that winter off Hawaii and Mexico (with further mixing on feeding areas in 
Alaska) and suggested that humpback whales that winter in Hawaii may have emigrated from 
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Mexican wintering areas.  A “population” of humpback whales winters in the South China Sea 
east through the Philippines, Ryukyu Retto, Ogasawara Gunto, Mariana Islands, and Marshall 
Islands, with occurrence in the Mariana Islands, at Guam, Rota, and Saipan from January-March 
(Darling and Mori 1993; Eldredge 1991; Eldredge 2003; Rice 1998a).  During summer, whales 
from this population migrate to the Kuril Islands, Bering Sea, Aleutian Islands, Kodiak, 
Southeast Alaska, and British Columbia to feed (Angliss and Outlaw 2007b; Calambokidis 1997; 
Calambokidis et al. 2001). 

Separate feeding groups of humpback whales are thought to inhabit western U.S. and Canadian 
waters, with the boundary between them located roughly at the U.S./Canadian border (Carretta et 
al. 2006).  The southern feeding ground ranges between 32°-48°N, with limited interchange with 
areas north of Washington State (Calambokidis et al. 2004a; Calambokidis et al. 1996).  
Humpback whales feed along the coasts of Oregon and Washington from May-November, with 
peak numbers reported May-September, when they are the most commonly reported large 
cetacean in the region (Calambokidis et al. 2004a; Calambokidis et al. 2000; Dohl et al. 1983; 
Forney and Barlow 1998; Green et al. 1992).  Off Washington State, humpback whales 
concentrate between Juan de Fuca Canyon and the outer edge of the shelf break in a region called 
“the Prairie,” near Barkley and Nitnat canyons, in the Blanco upwelling zone, and near Swiftsure 
Bank (Calambokidis et al. 2004b).  Humpback whales also tend to congregate near Heceta Bank 
off the coast of Oregon (Green et al. 1992).  Additional data suggest that further subdivisions in 
feeding groups may exist, with up to six feeding groups present between Kamchatka and 
southern California (Witteveen et al. 2009). 

Humpback whales primarily feed along the shelf break and continental slope (Green et al. 1992; 
Tynan et al. 2005).   Although humpback whales were common in inland Washington State 
waters in the early 1900s, severe hunting throughout the eastern North Pacific has diminished 
their numbers and few recent inshore sighting have been made (Calambokidis and Steiger 1990; 
Pinnell and Sandilands 2004; Scheffer and Slipp 1948).   

Similarly, humpback whales do not appear to frequent offshore waters in the region.  Extensive 
aerial surveys conducted up to 550 km off the Oregonian and Washingtonian coasts, only one 
humpback whale was reported in offshore waters >200 m deep (Green et al. 1992).  Encounter 
rates off Oregon/Washington during the summer were highest over the slope (2.16/1,000 
individuals/km2) followed by shelf waters (0.56 /1,000 individuals/km2), with no sightings in 
offshore waters during the summer. 

Southern Hemisphere.  Eight proposed stocks, or populations, of humpback whales 
occur in waters off Antarctica (Figure 5).  Individuals from these stocks winter and breed in 
separate areas and are known to return to the same areas.  However, the degree (if any) of gene 
flow (i.e., adult individuals wintering in different breeding locations) is uncertain.  Based upon 
recent satellite telemetry, a revision of stocks A and G may be warranted to reflect stock 
movements within and between feeding areas separated east of 50º W (Dalla Rosa et al. 2008).  
A separate population of humpback whales appears to reside in the Arabian Sea in the Indian 
Ocean off the coasts of Oman, Pakistan, and India and movements of this group are poorly 
known (Mikhalev 1997; Rasmussen et al. 2007).  Areas of the Mozambique Channel appear to 
be significant calving and wintering areas for humpback whales (Kiszka et al. 2010a).  In 
addition to being a breeding area, the west coast of South Africa also appears to serve as a 
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foraging ground due to upwelling of the Benguela Current (Barendse et al. 2010).  In addition, 
females appear in this area in large numbers well before their male counterparts, frequently 
accompanied by calves (Barendse et al. 2010). 

 

Figure 5.  Southern Hemisphere humpback stocks (populations) (IWC 2005). 

Reproduction.  Humpback whale calving and breeding generally occurs during winter at lower 
latitudes.  Gestation takes about 11 months, followed by a nursing period of up to 1 year (Baraff 
and Weinrich 1993).  Sexual maturity is reached at between 5-7 years of age in the western North 
Atlantic, but may take as long as 11 years in the North Pacific, and perhaps over 11 years of age 
in the North Pacific (e.g., southeast Alaska, Gabriele et al. 2007).  Females usually breed every 2-
3 years, although consecutive calving is not unheard of (Clapham and Mayo 1987; 1990; 
Glockner-Ferrari and Ferrari 1985 as cited in NMFS 2005b; Weinrich et al. 1993).  Larger 
females tend to produce larger calves that may have a greater chance of survival (Pack et al. 
2009).  In some Atlantic areas, females tend to prefer shallow nearshore waters for calving and 
rearing, even when these areas are extensively trafficked by humans (Picanco et al. 2009). 

In calving areas, males sing long complex songs directed towards females, other males, or both.  
The breeding season can best be described as a floating lek or male dominance polygamy 
(Clapham 1996).  Calving occurs in the shallow coastal waters of continental shelves and oceanic 
islands worldwide (Perry et al. 1999).  Males “cort” females in escort groups and compete for 
proximity and presumably access to reproduce females (particularly larger females) (Pack et al. 
2009).  Although long-term relationships do not appear to exist between males and females, 
mature females do pair with other females; those individuals with the longest standing 
relationships also have the highest reproductive output, possibly as a result of improved feeding 
cooperation (Ramp et al. 2010).   

Diving.  In Hawaiian waters, humpback whales remain almost exclusively within the 1,800 m 
isobath and usually within waters depths of less than 182 m.  Maximum diving depths are 
approximately 170 m (but usually <60 m), with a very deep dive (240 m) recorded off Bermuda 
(Hamilton et al. 1997).  Dives can last for up to 21 min, although feeding dives ranged from 2.1-
5.1 min in the north Atlantic (Dolphin 1987).  In southeast Alaska, average dive times were 2.8 
min for feeding whales, 3.0 min for non-feeding whales, and 4.3 min for resting whales (Dolphin 
1987).  In the Gulf of California, humpback whale dive durations averaged 3.5 min (Strong 
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1990).  Because most humpback prey is likely found within 300 m of the surface, most 
humpback dives are probably relatively shallow.  In Alaska, capelin are the primary prey of 
humpback and are found primarily between 92 and 120 m; depths to which humpbacks 
apparently dive for foraging (Witteveen et al. 2008). 

Feeding.  During the feeding season, humpback whales form small groups that occasionally 
aggregate on concentrations of food that may be stable for long-periods of times.  Humpbacks 
use a wide variety of behaviors to feed on various small, schooling prey including krill and fish 
(Hain et al. 1982; Hain et al. 1995; Jurasz and Jurasz 1979; Weinrich et al. 1992a).  The principal 
fish prey in the western North Atlantic are sand lance, herring, and capelin (Kenney et al. 1985).  
There is good evidence of some territoriality on feeding and calving areas (Clapham 1994; 
Clapham 1996; Tyack 1981).  Humpback whales are generally believed to fast while migrating 
and on breeding grounds, but some individuals apparently feed while in low-latitude waters 
normally believed to be used exclusively for reproduction and calf-rearing (Danilewicz et al. 
2009; Pinto De Sa Alves et al. 2009).  Some individuals, such as juveniles, may not undertake 
migrations at all (Findlay and Best. 1995).  Additional evidence, such as songs sung in northern 
latitudes during winter, provide additional support to plastic seasonal distribution (Smith and 
G.Pike 2009).  Relatively high rates of resighting in foraging sites in Greenland suggest whales 
return to the same areas year after year (Kragh Boye et al. 2010). 

Vocalization and hearing.  Humpback whale vocalization is much better understood than is 
hearing.  Different sounds are produced that correspond to different functions: feeding, breeding, 
and other social calls (Dunlop et al. 2008).  Males sing complex sounds while in low-latitude 
breeding areas in a frequency range of  20 Hz to 4 kHz with estimated source levels from 144-
174 dB (Au 2000; Au et al. 2006; Frazer and Mercado 2000; Payne 1970; Richardson et al. 
1995c; Winn et al. 1970).  Males also produce sounds associated with aggression, which are 
generally characterized as frequencies between 50 Hz to 10 kHz and having most energy below 3 
kHz (Silber 1986; Tyack 1983).  Such sounds can be heard up to 9 km away (Tyack and 
Whitehead 1983). Other social sounds from 50 Hz to 10 kHz (most energy below 3 kHz) are also 
produced in breeding areas (Richardson et al. 1995c; Tyack and Whitehead 1983).  While in 
northern feeding areas, both sexes vocalize in grunts (25 Hz to 1.9 kHz), pulses (25-89 Hz), and 
songs (ranging from 30 Hz to 8 kHz but dominant frequencies of 120 Hz to 4 kHz) which can be 
very loud (175-192 dB re 1 µPa at 1 m; (Au 2000; Erbe 2002a; Payne and Payne 1985; 
Richardson et al. 1995c; Thompson et al. 1986).  However, humpbacks tend to be less vocal in 
northern feeding areas than in southern breeding areas (Richardson et al. 1995c).  

Status and trends.  Humpback whales were originally listed as endangered in 1970 (35 FR 
18319), and this status remains under the ESA.  (Winn and Reichley 1985) argued that the global 
humpback whale population consisted of at least 150,000 whales in the early 1900s, mostly in the 
Southern Ocean.  In 1987, the global population of humpback whales was estimated at about 
10,000 (NMFS 1987).  Although this estimate is outdated, it appears that humpback whale 
numbers are increasing.  Table 5 provides estimates of historic and current abundance for ocean 
regions. 
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Table 5.  Summary of past and present humpback whale abundance. 
 

 
*Note: Confidence Intervals (C.I.) not provided by the authors were calculated from Coefficients of Variation (C.V.) 
where available, using the computation from Gotelli and Ellison (2004).  

North Atlantic.  The best available estimate of North Atlantic abundance comes from 
1992-1993 mark-recapture data, which generated an estimate of 11,570 humpback whales 
(Stevick et al. 2003a).  Historical estimates have ranged from 40,000-250,000 individuals and 
significant disagreement exists on how many humpbacks whales inhabited the North Atlantic 
prior to whaling (Smith and G.Pike 2009).  Estimates of animals in Caribbean breeding grounds 
exceed 2,000 individuals (Balcomb III and Nichols 1982).  Several researchers report an 
increasing trend in abundance for the North Atlantic population, which is supported by increased 
sightings within the Gulf of Maine feeding aggregation (Barlow 1997a; Katona and Beard 1990; 
Smith et al. 1999; Waring et al. 2001).  The rate of increase varies from 3.2-9.4%, with rates of 
increase slowing over the past two decades (Barlow 1997a; Katona and Beard 1990; Stevick et 
al. 2003a).  If the North Atlantic population has grown according to the estimated instantaneous 
rate of increase (r = 0.0311), this would lead to an estimated 18,400 individual whales in 2008 
(Stevick et al. 2003a). Pike et al. (2009a) suggested that the eastern and northeastern waters off 
Iceland are areas of significant humpback utilization for feeding, estimating nearly 5,000 whales 
in 2001 and proposing an annual growth rate of 12% for the area.  The authors went so far as to 
suggest that humpback whales in the area had probably recovered from whaling. 

North Pacific.  The pre-exploitation population size may have been as many as 15,000 
humpback whales, and current estimates are 6,000-8,000 whales (Calambokidis et al. 1997; Rice 
1978a).  It is estimated that 15,000 humpback whales resided in the North Pacific in 1905 (Rice 

Region 
Population, stock, or  

study area 
Pre-exploitation  

estimate 95% C.I. 
Current  
estimate 95% C.I. Source 

Global -- 1,000,000 -- -- -- (Roman and Palumbi 2003) 
North Atlantic 

Basinwide 240,000 156,000- 
401,000* 11,570 10,005- 

13,135* 
(Roman and Palumbi 2003) 
(Stevick et al. 2001) in  
(Waring et al. 2004b) 

Basinwide - Females -- -- 2,804 1,776-4,463 (Palsbøll et al. 1997) 
Basinwide - Males -- -- 4,894 3,374-7,123 (Palsbøll et al. 1997) 
Western North Atlantic from  
Davis Strait, Iceland to the  
West Indies 

>4,685* -- -- -- *circa 1865; (Mitchell and 
Reeves 1983)  

NMFS - Gulf of Maine stock -- -- 845 CV=0.55 (NMFS 2008d) 
NMFS - Gulf of Maine stock,  
including a portion of  
Scotian Shelf 

-- -- 902 177-1,627* (Clapham et al. 2003) 

Northeast Atlantic - Barents  
and Norwegian Seas -- -- 889 331-1,447* (Øien 2001) in (Waring et al. 

2004b) 
North Pacific Basinwide 15,000 -- 6,000-8,000 -- (Calambokidis et al. 1997) 

NMFS - Western North  
Pacific stock -- -- 394 329-459* (Angliss and Allen 2007) 
NMFS - Central North  
Pacific stock -- -- 4,005 3,259-4,751* (Angliss and Allen 2007) 
NMFS - Eastern North  
Pacific stock -- -- 1,391 1,331-1,451* (Carretta et al. 2008) 

Indian  
Ocean Arabian Sea -- -- 56 35-255 Minton et al. (2008) in  

(Bannister 2005) 
Southern  
Hemisphere Basinwide 100,000 -- 19,851 -- (Gambell 1976; IWC 1996) 

South of 60 o S -- -- 4,660 2,897-6,423 (IWC 1996) 
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1978a).  However, from 1905 to 1965, nearly 28,000 humpback whales were harvested in 
whaling operations, reducing the number of all North Pacific humpback whale to roughly 1,000 
(Perry et al. 1999).  Estimates have risen over time from 1,407-2,100 in the 1980s to 6,010 in 
1997 (Baker 1985; Baker and Herman 1987; Calambokidis et al. 1997; Darling and Morowitz 
1986).  Because estimates vary by methodology, they are not directly comparable and it is not 
clear which of these estimates is more accurate or if the change from 1,407 to 6,010 is the result 
of a real increase or an artifact of model assumptions.  Tentative estimates of the eastern North 
Pacific stock suggest an increase of 6-7% annually, but fluctuations have included negative 
growth in the recent past (Angliss and Outlaw 2005a).  However, based upon surveys between 
2004 and 2006, Calambokidis et al. (2008) estimated that the number of humpback whales in the 
North Pacific consisted of about 18,300 whales, not counting calves.  Almost half of these 
whales likely occur in wintering areas around the Hawaiian Islands. 

Southern Hemisphere.  The IWC recently compiled population data on humpback 
whales in the Southern Hemisphere.  Approximately 42,000 Southern Hemisphere humpbacks 
can be found south of 60° S during the austral summer feeding season (IWC 2007).  However, 
humpback whales in this region experienced severe whaling pressure.  Based upon whaling logs, 
particularly by Soviet vessels, at least 75,542 humpback whales were harvested from Antarctic 
waters from 1946 through 1973, largely from management areas IV, V, and VI (Clapham et al. 
2009).  One-third of these catches occurred from 1959-1961 in Area V.  These numbers support 
Southern Hemisphere humpbacks being well below their carrying capacities (Clapham et al. 
2009).  Recent surveys off the Brazilian breeding grounds suggests a populations of 6,404 
individuals in this area (Andriolo et al. 2010). 

Natural threats.  Natural sources and rates of mortality of humpback whales are not well 
known.  Based upon prevalence of tooth marks, attacks by killer whales appear to be highest 
among humpback whales migrating between Mexico and California, although populations 
throughout the Pacific Ocean appear to be targeted to some degree (Steiger et al. 2008).  
Juveniles appear to be the primary age group targeted.  Humpback whales engage in grouping 
behavior, flailing tails, and rolling extensively to fight off attacks.  Calves remain protected near 
mothers or within a group and lone calves have been known to be protected by presumably 
unrelated adults when confronted with attack (Ford and Reeves 2008).   

Parasites and biotoxins from red-tide blooms are other potential causes of mortality (Perry et al. 
1999).  The occurrence of the nematode Crassicauda boopis appears to increase the potential for 
kidney failure in humpback whales and may be preventing some populations from recovering 
(Lambertsen 1992).  Studies of 14 humpback whales that stranded along Cape Cod between 
November 1987 and January 1988 indicate they apparently died from a toxin produced by 
dinoflagellates during this period.  

Anthropogenic threats.  Three human activities are known to threaten humpback whales: 
whaling, commercial fishing, and shipping.  Historically, whaling represented the greatest threat 
to every population of whales and was ultimately responsible for listing several species as 
endangered.   

Humpback whales are also killed or injured during interactions with commercial fishing gear.  
Like fin whales, humpback whales have been entangled by fishing gear off Newfoundland and 
Labrador, Canada.  A total of 595 humpback whales were reported captured in coastal fisheries 
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in those two provinces between 1969 and 1990, of which 94 died (Lien 1994; Perkins and 
Beamish 1979).  Along the Atlantic coast of the U.S. and the Maritime Provinces of Canada, 
there were 160 reports of humpback whales being entangled in fishing gear between 1999 and 
2005 (Cole et al. 2005b; Nelson et al. 2007b).  Of these, 95 entangled humpback whales were 
confirmed, with 11 whales sustaining injuries and nine dying of their wounds.  Several 
humpback whales are also known to have become entangled in the North Pacific (Angliss and 
Outlaw 2007b; Hill et al. 1997).  

More humpback whales are killed in collisions with ships than any other whale species except fin 
whales (Jensen and Silber 2003a).  Along the Pacific coast, a humpback whale is known to be 
killed about every other year by ship strikes (Barlow et al. 1997).  Of 123 humpback whales that 
stranded along the Atlantic coast of the U.S. between 1975 and 1996, 10 (8.1%) showed evidence 
of collisions with ships (Laist et al. 2001).  Between 1999 and 2005, there were 18 reports of 
humpback whales being struck by vessels along the Atlantic coast of the U.S. and the Maritime 
Provinces of Canada (Cole et al. 2005b; Nelson et al. 2007b).  Of these reports, 13 were 
confirmed as ship strikes and in seven cases, ship strike was determined to be the cause of death. 
 In the Bay of Fundy, recommendations for slower vessel speeds to avoid right whale ship strike 
appear to be largely ignored (Vanderlaan et al. 2008).  However, new rules for seasonal (June 
through December) slowing of vessel traffic to 10 knots and changing shipping lanes by less than 
one nautical mile to avoid the greatest concentrations of right whales are expected to reduce the 
chance of humpback whales being hit by ships by 9%.   

Organochlorines, including PCB and DDT, have been identified from humpback whale blubber 
(Gauthier et al. 1997a).  Higher PCB levels have been observed in Atlantic waters versus Pacific 
waters along the United States and levels tend to increase with individual age (Elfes et al. 2010). 
 Although humpback whales in the Gulf of Maine and off Southern California tend to have the 
highest PCB concentrations, overall levels are on par with other baleen whales, which are 
generally lower than odontocete cetaceans (Elfes et al. 2010).  As with blue whales, these 
contaminants are transferred to young through the placenta, leaving newborns with contaminant 
loads equal to that of mothers before bioaccumulating additional contaminants during life and 
passing the additional burden to the next generation (Metcalfe et al. 2004).  Contaminant levels 
are relatively high in humpback whales as compared to blue whales.  Humpback whales feed 
higher on the food chain, where prey carry higher contaminant loads than the krill that blue 
whales feed on. 

Critical habitat.  The NMFS has not designated critical habitat for humpback whales. 

Bowhead whale 

Description of the species.  Currently, five bowhead whale stocks have been identified: Sea of 
Okhotsk, Davis Strait, Hudson Bay, offshore waters of Spitsbergen, and the western Arctic, with 
only the latter occurring in U.S. waters, and most stocks consist of a few dozens to hundreds of 
individuals (Ivashchenko and Clapham 2010; IWC 1992a; NMFS 2006i).  Genetically, 
significant genetic differentiation exists between these areas (Givens et al. 2010; Ivashchenko 
and Clapham 2010).  However, genetic analyses have thus far not clearly identified differences, 
particularly between Atlantic stocks, although some differentiation in haplotypes appears to exist 
between Hudson Bay and Davis Strait individuals in some areas (but not in all areas) (Bachmann 
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et al. 2010; Heide-Jorgensen and Postma 2006; Postma and Cosens 2006).  Genetic 
differentiation appears to be high within the western Arctic stock, which likely represents a 
single population (Givens et al. 2010).  

Distribution.  Bowhead whales only occur at high latitudes in the northern hemisphere and have 
a disjunctive circumpolar distribution (Reeves 1980).  Bowhead whales are found in the western 
Arctic (Bering, Chukchi, and Beaufort Seas), the Canadian Arctic and West Greenland (Baffin 
Bay, Davis Strait, and Hudson Bay), the Okhotsk Sea (eastern Russia), and the Northeast Atlantic 
from Spitzbergen westward to eastern Greenland.  In the Chukchi Sea, bowheads are found in all 
months of the year (mainly west and southwest of Point Barrow) and distribution does not appear 
 linked to changes in sea ice cover (Clarke and Ferguson. 2010b).  Bowheads inhabiting the 
Okhotsk Sea appear to reside there year-round (Ivashchenko and Clapham 2010).  Historically, 
bowhead whale range has extended into the eastern Atlantic, in which basin it is estimated that 
52,500 individuals once lived (Allen et al. 2006). 

Movement and habitat.  The majority of the western Arctic stock migrates annually from 
wintering areas (November to March) in the northern Bering Sea, through the Chukchi in spring 
(March through June), to the Beaufort Sea where they spend much of the summer (mid-May 
through November) before returning again to the Bering Sea in fall.  In the Chukchi Sea, 
bowheads are generally found in waters between 50 and 200 m deep (Clarke and Ferguson. 
2010b).  However, individuals in the Beaufort Sea appear to strongly favor shallower areas less 
than 50 m and preferably shallower than 20 m (Clarke and Ferguson. 2010a).  Feeding appears to 
preferentially occur in 154-157º longitude in the Beaufort Sea (Clarke and Ferguson. 2010a).  
During their migrations north, they are forced between land and pack ice around Point Barrow, 
Alaska.  They spend most of the summer in relatively ice-free waters of the Beaufort Sea, but 
they are associated with sea ice the rest of the year (Moore and Reeves 1993).  During their 
autumn migration, bowhead whales preferentially select nearshore shelf waters, except if there 
are heavy ice conditions, in which case they select slope habitat.  Not all bowhead whales follow 
this migration and some over-summer in the Bering and Chukchi Seas.   

Growth and reproduction.  Reproductive activities for bowhead whales occur throughout the 
year, but conception takes place in late winter or early spring.  Some whales may be unable to 
conceive, as there is evidence of pseudohermaphroditism in a relatively high percentage (two of 
76 whales sampled) of male bowhead whales (Philo et al. 1992).  Gestation lasts 12 to 16 months 
and the calving interval is between 3.5 and seven years (Nerini et al. 1984; Tarpley et al. 1995).  
Bowhead whales take approximately two decades to become sexually mature, when they reach 
approximately 40 to 46 feet in length (IWC 2004a; Nerini et al. 1984; Schell and Saupe 1993; 
Schell et al. 1989).  Disko Bay, Canada has been proposed as a breeding site for bowheads in the 
Baffin Bay stock and Foxe Bay has been proposed as a calf-rearing site (Heide-Jorgensen et al. 
2010b). 

Feeding.  Bowhead whales in the North Pacific feed on euphausiids and copepods, which make 
up most of their diets (Heide-Jorgensen et al. 2010a; Lowry 1993).   

Diving.  Bowhead diving behavior is situational (Stewart 2002).  Calves dive for very short 
periods and their mothers tend to dive less frequently and for shorter durations.  Feeding dives 
tend to last from three to 12 minutes and may extend to the relatively shallow bottom in the 
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Beaufort Sea.  “Sounding” dives average between 7 and 14 minutes.  When individuals migrate 
through pack ice, dives tend to become longer and deeper, presumably to navigate through areas 
where breathing holes may not be accessible.  However, when harassed by whalers, bowheads 
are known to dive for as long as 80 minutes. 

Status and trends.  Bowhead whales were originally listed as endangered in 1970 (35 FR 
18319), and this status remained since the inception of the ESA in 1973.  Bowhead whale 
abundance prior to commercial whaling in the western Arctic has been estimated at 10,400 to 
23,000 (Woodby and Botkin 1993).  At the end of commercial whaling the species had declined 
to between 1,000 and 3,000 bowhead whales in the western Arctic.  The current minimum 
population estimate is 9,472 whales, and in 2001 the population was estimated at 10,545 
individuals (Angliss and Outlaw 2008).  Also in 2001, 121 calves were counted, which is the 
most calves recorded in a single year.  The population has been increasing at approximately 3.1% 
from 1978 to 1993 and more recently by about 3.5% annually (Angliss and Outlaw 2008).   

This upward population trend is consistent with impressions of local hunters and western Arctic 
recovery may warrant delisting in the future (Gerber et al. 2007; Noongwook et al. 2007).  It is 
also estimated that 1,229 individuals reside in the Spitsbergen stock, which also exceeds prior 
abundance estimates and sightings are occurring on a more regular basis (Gilg and Born 2005; 
Heide-Jorgensen et al. 2007).  In 2009, a calf was spotted off northeast Greenland; the first 
observed in the Spitsbergen stock in 18 years (Boertmann and Nielsen. 2010).  Hansen et al. 
(2010) estimated 1,105 individuals in Isabella Bay, Canada in September 2009.  The eastern 
Canada-western Greenland stock appears to be increasing robustly based upon age at sexual 
maturity and calving interval data (Koski et al. 2010). 

Natural threats.  Little is known of diseases and natural death in the western Arctic bowhead 
whale population, but the mortality rate is thought to be low (Koski et al. 1993).  Bowhead 
whales have been subjects of killer whale attacks and, because of their robust size and slow 
swimming speed, tend to form small groups and fight killer whales when confronted and may 
cause killer whale mortality with their flukes (Ford and Reeves 2008).  Individuals have been 
known to be trapped by sea ice for extended periods, which may pose a lethal threat. 

Anthropogenic threats.  Bowhead whales began declining precipitously with directed whaling 
efforts in the Bering Sea between 1850 and 1870, when an estimated 60% of individuals were 
harvested (Braham 1984b).  Harvests declined after 1870, although whaling efforts continued, 
including illegal Soviet whaling (Ivashchenko and Clapham 2010).  Subsistence harvests 
continue at present, with 31 of 38 whales struck by Alaskan native harpoons killed and landed in 
2009, which is roughly similar to annual landings over the past decade (Suydam et al. 2004; 
Suydam et al. 2009; Suydam et al. 2010; Suydam et al. 2005; Suydam et al. 2006; Suydam et al. 
2003; Suydam and George. 2004; Suydam et al. 2002). 

Present threats to bowhead whales include interactions with crab pots, nets, and ship propellers at 
low levels.  Between 1978 and 2004, eight bowheads were observed entangled and five had 
propeller scars (NMFS 2006i).  These bowheads likely became entangled as a result of 
“skimming” prey at the water’s surface and becoming entangled with debris.  More significant 
are the number of bowhead whales taken by native tribes from the western Arctic stock: 14 to 72 
individuals, or 0.1 to 0.5% of the stock population annually.  Under this system, 832 individuals 
are known to have been taken from 1974 to 2003.  However, these hunts are closely monitored 
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and accessed for negative impacts on population number and structure and serve to maintain 
tribal culture.  Individuals are known to have been taken by native tribes in Canada and Russia, 
although in extremely low numbers.  Another potential threat is the documented reduction in sea 
ice, weather, or temperature conditions that has resulted from global warming (Tynan and 
DeMaster 1997).  It is unknown what effects these large scale changes may have (NMFS 2006i). 

Several contaminants have been isolated from bowhead whale tissues in low concentrations, 
including organochlorines, mercury, lead, arsenic, zinc, copper, cadmium, selenium, and silver 
(Dehn et al. 2006; O'Hara et al. 2006; Rosa et al. 2007b).  Rosa et al. (2008) measured metal 
concentrations in the liver that included zinc (6.99 to 135.11 mg/kg wet weight), copper (1.09 to 
203.81 mg/kg), cadmium (0.003 to 50.91 mg/kg), selenium (0.06 to 3.77 mg/kg), silver (0.05 to 
2.37 mg/kg), and mercury (0.001 to 0.47 mg/kg).  These same metals in kidney are generally 
lower, but present; zinc (9.07 to 56.31 mg/kg wet weight), copper (0.76 to 7.94 mg/kg), cadmium 
(0.01 to 64.0 mg/kg), selenium (0.23 to 3.21 mg/kg), silver (0.01 to 0.06 mg/kg), and mercury 
(0.001 to 0.14 mg/kg).  Thickening of the Bowman’s capsules and fibrous tissue formations are 
associated with cadmium accumulation in the kidney.  These changes may reduce kidney 
function, although bowheads seem to be able to withstand significant kidney pathology (Parrish 
et al. 2008).  Bioaccumulation of these metals occurs with age, but differences between sexes 
have not been observed in metal concentration (Parrish et al. 2008).  These concentrations are 
lower than in other studied cetaceans due to the lower level at which bowhead whales feed in the 
overall food chain (Dehn et al. 2006; Parrish et al. 2008).  Hormonal concentrations suggest that 
contaminants are not presently a significant hindrance for bowhead whales (Rosa et al. 2007a).  
However, the development of Arctic regions for oil and gas can increase contaminant loads in the 
environment, prey species, and protected species such as bowhead whales.  Organochlorine 
levels are also believed to accumulate in arctic regions (Tanabe et al. 1994), leading to concern 
over the potential bioaccumulation of these toxins in bowhead whales due to global sources. 

Bowhead whales have also been shown to vacate areas in which drilling and seismic survey 
operations occur, apparently in response to sound (Davies 1997; Miller et al. 1999b; Richardson 
1995; Richardson and Malme 1993; Schick and Urban 2000).  It is possible that migratory routes 
have already shifted in response to anthropogenic sound (Richardson et al. 2004a).   

Critical habitat.  NMFS has not designated critical habitat for bowhead whales.   

North Pacific right whale 

Description of the species.  Many basic life history parameters of North Pacific right whales are 
unknown.  All North Pacific right whales constitute a single population.   

Distribution.  Very little is known of the distribution of right whales in the North Pacific and 
very few of these animals have been seen in the past 20 years.  Historical whaling records 
indicate that right whales ranged across the North Pacific north of 30° N latitude and 
occasionally as far south as 20° N, with a bimodal distribution longitudinally favoring the eastern 
and western North Pacific and occurring infrequently in the central North Pacific (Gregr and 
Coyle. 2009; Josephson et al. 2008a; Maury 1853; Scarff 1986; Scarff 1991; Townsend 1935a).  
North Pacific right whales summered in the North Pacific and southern Bering Sea from April or 
May to September, with a peak in sightings in coastal waters of Alaska in June and July (Klumov 
1962; Maury 1852; Omura 1958; Omura et al. 1969a; Townsend 1935a).  North Pacific right 
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whale summer range extended north of the Bering Strait (Omura et al. 1969a).  However, they 
were particularly abundant in the Gulf of Alaska from 145° to 151°W, and apparently 
concentrated in the Gulf of Alaska, especially south of Kodiak Islands and in the eastern Aleutian 
Islands and southern Bering Sea waters (Berzin and Rovnin 1966; Braham and Rice 1984).   

Current information on the seasonal distribution of right whales is spotty.  In the eastern North 
Pacific, this includes sightings over the middle shelf of the Bering Sea, Bristol Bay, Aleutian and 
Pribilof Islands (Goddard and Rugh 1998; Hill and DeMaster 1998; Perryman et al. 1999; Wade 
et al. 2006b; Waite et al. 2003).  Some more southerly records also record occurrence along 
Hawaii, California, Washington, and British Columbia (Herman et al. 1980; Scarff 1986).  
However, records from Mexico and California may suggest historical wintering grounds in 
offshore southern North Pacific latitudes (Brownell et al. 2001a; Gregr and Coyle. 2009). 

Growth and reproduction.  While no reproductive data are known for the North Pacific, studies 
of North Atlantic right whales suggest calving intervals of two to seven years and growth rates 
that are likely dependent on feeding success (Best et al. 2001; Burnell 2001; Cooke et al. 2001; 
Kenney 2002; Knowlton et al. 1994; Reynolds et al. 2002).  It is presumed that right whales calve 
during mid-winter (Clapham et al. 2004a).  Western North Pacific sightings have been recorded 
along Japan, the Yellow Sea, and Sea of Japan (Best et al. 2001; Brownell et al. 2001b, areas that 
are speculated to be important breeding and calving areas ). 

Lifespan.  Lifespans of up to 70 years can be expected based upon North Atlantic right whale 
data. 

Feeding.  Stomach contents from North Pacific right whales indicate copepods and, to a lesser 
extent, euphausiid crustaceans are the whales’ primary prey (Omura et al. 1969b).  Their diet is 
likely more varied than North Atlantic right whales, likely due to the multiple blooms of different 
prey available in the North Pacific from January through August (Gregr and Coyle. 2009).  Based 
upon trends in prey blooms, it is predicted that North Pacific right whales may shift from feeding 
offshore to over the shelf edge during late summer and fall (Gregr and Coyle. 2009).  North 
Pacific right whales, due to the larger size of North Pacific copepods, have been proposed to be 
capable to exploit younger age classes of prey as well as a greater variety of species.  Also as a 
result, they may require prey densities that are one-half to one-third those of North Atlantic right 
whales (Gregr and Coyle. 2009).  Right whales feed by continuously filtering prey through their 
baleen while moving, mouth agape, through patches of planktonic crustaceans.  Right whales are 
believed to rely on a combination of experience, matrilinear learning, and sensing of 
oceanographic conditions to locate prey concentrations in the open ocean (Gregr and Coyle. 
2009; Kenney 2001). 

Habitat.  Habitat preference data are sparse for North Pacific right whales as well.  Sightings 
have been made with greater regularity in the western North Pacific, notably in the Okhotsk Sea, 
Kuril Islands, and adjacent areas (Brownell et al. 2001b).  In the western North Pacific, feeding 
areas occur in the Okhotsk Sea and adjacent waters along the coasts of Kamchatka and the Kuril 
Islands (IWC 2001).   

Historical concentrations of sightings in the Bering Sea together with some recent sightings 
indicate that this region, together with the Gulf of Alaska, may represent an important summer 
habitat for eastern North Pacific right whales (Brownell et al. 2001b; Clapham et al. 2004a; 
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Goddard and Rugh 1998; Scarff 1986; Shelden et al. 2005a).  Few sighting data are available 
from the eastern North Pacific, with a single sighting of 17 individuals in the southeast Bering 
Sea being by far the greatest known occurrence (Wade et al. 2006a).  Some further sightings have 
occurred in the northern Gulf of Alaska (Wade et al. 2006a).  Recent eastern sightings tend to 
occur over the continental shelf, although acoustic monitoring has identified whales over abyssal 
waters (Mellinger et al. 2004).  It has been suggested that North Pacific right whales have shifted 
their preferred habitat as a result of reduced population numbers, with oceanic habitat taking on a 
far smaller component compared to shelf and slope waters (Shelden et al. 2005b). 

Migration and movement.  Historical sighting and catch records provide the only information 
on possible migration patterns for North Pacific right whales (Omura 1958; Omura et al. 1969a; 
Scarff 1986).  During summer, whales have been found in the Gulf of Alaska, along both coasts 
of the Kamchatka Peninsula, the Kuril Islands, the Aleutian Islands, the southeastern Bering Sea, 
and in the Okhotsk Sea.  Fall and spring distribution was the most widely dispersed, with whales 
occurring in mid-ocean waters and extending from the Sea of Japan to the eastern Bering Sea.  In 
winter, right whales have been found in the Ryukyu Islands (south of Kyushu, Japan), the Bonin 
Islands, the Yellow Sea, and the Sea of Japan.  Whalers never reported winter calving areas in the 
North Pacific and where calving occurs remains unknown (Clapham et al. 2004a; Gregr and 
Coyle. 2009; Scarff 1986).  North Pacific right whales probably migrate north from lower 
latitudes in spring and may occur throughout the North Pacific from May through August north 
of 40º N from marginal seas to the Gulf of Alaska and Bering Sea, although absence from the 
central North Pacific has been argued due to inconsistencies in whaling records (Clapham et al. 
2004b; Josephson et al. 2008b).  This follows generalized patterns of migration from high-
latitude feeding grounds in summer to more temperate, possibly offshore waters, during winter 
(Braham and Rice 1984; Clapham et al. 2004a; Scarff 1986). 

Status and trends.  The Northern right whale was originally listed as endangered in 1970 (35 FR 
18319), and this status remained since the inception of the ESA in 1973.  The early listing 
included both the North Atlantic and the North Pacific populations, although subsequent genetic 
studies conducted by Rosenbaum (2000) resulted in strong evidence that the North Atlantic and 
North Pacific right whales are separate species.  Following a comprehensive status review, 
NMFS concluded that Northern right whales are indeed two separate species.  In March 2008, 
NMFS published a final rule listing North Pacific and North Atlantic right whales as separate 
species (73 FR 12024). 

Very little is known about right whales in the eastern North Pacific, which were severely 
depleted by commercial whaling in the 1800s (Brownell et al. 2001b).  At least 11,500 
individuals were taken by American whalers in the early- to mid-19th century, but harvesting 
continued into the 20th century (Best 1987).  Illegal Soviet whaling took 372 individuals between 
1963 and 1967 (Brownell et al. 2001a).  In the last several decades there have been markedly 
fewer sightings due to a drastic reduction in number, caused by illegal Soviet whaling in the 
1960s (Doroshenko 2000).  Previous estimates of the size of the right whale population in the 
Pacific Ocean range from a low of 100-200 (Braham and Rice 1984) to a high of 220-500 
(Berzin and Yablokov 1978).  The current population size of right whales in the North Pacific is 
likely fewer than 1,000 animals (NMFS 2006g).   

Abundance estimates and other vital rate indices in both the eastern and western North Pacific 
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are not well established.  Where such estimates exist, they have very wide confidence limits.  
Previous estimates of the size of the right whale population in the Pacific Ocean range from a 
low of 100-200 to a high of 220-500 (Berzin and Yablokov 1978; Braham and Rice 1984).  
Although Hill and DeMaster (1998) argued that it is not possible to reliably estimate the 
population size or trends of right whales in the North Pacific, Reeves et al. (2003a) concluded 
that North Pacific right whales in the eastern Pacific Ocean exist as a small population of 
individuals while the western population of right whales probably consists of several hundred 
animals, although Clapham et al. (2005) placed this population at likely under 100 individuals.  
Brownell et al. (2001b) reviewed sighting records and also estimated that the abundance of right 
whales in the western North Pacific was likely in the low hundreds.  

Scientists participating in a recent study utilizing acoustic detection and satellite tracking 
identified 17 right whales (10 males and 7 females) in the Bearing Sea, which is almost threefold 
the number seen in any previous year in the last four decades (Wade et al. 2006b).  These 
sightings increased the number of individual North Pacific right whales identified in the genetic 
catalog for the eastern Bering Sea to 23.  Amidst the uncertainty of the eastern North Pacific right 
whale’s future, the discovery of females and calves gives hope that this endangered population 
may still possess the capacity to recover (Wade et al. 2006b).  Available age composition of the 
North Pacific right whale population indicates a most individuals are adults of adults (Kenney 
2002).  Length measurements for two whales observed off California suggest at least one of these 
whales was not yet sexually mature and two calves have been observed in the Bering Sea 
(Carretta et al. 1994; Wade et al. 2006b).  However, to date, there is no evidence of reproductive 
success (i.e., young reared to independence) in the eastern North Pacific.  No data are available 
for the western North Pacific. 

Natural threats.  Right whales have been subjects of killer whale attacks and, because of their 
robust size and slow swimming speed, tend to fight killer whales when confronted (Ford and 
Reeves 2008).  Similarly, mortality or debilitation from disease and red tide events are not 
known, but have the potential to be significant problems in the recovery of right whales because 
of their small population size. 

Anthropogenic threats.  Whaling for North Pacific right whales was discontinued in 1966 with 
the IWC whaling moratorium.  However, North Pacific right whales remain at considerable risk 
of extinction.  These include but are not limited to the following: (1) life history characteristics 
such as slow growth rate, long calving intervals, and longevity; (2) distorted age structure of the 
population and reduced reproductive success; (3) strong depensatory or Allee effects; (4) habitat 
specificity or site fidelity; and (5) habitat sensitivity.  However, the proximity of the other known 
right whale habitats to shipping lanes (e.g.  Unimak Pass) suggests that collisions with vessels 
may also represent a threat to North Pacific right whales (Elvin and Hogart 2008). 

Climate change may have a dramatic affect on survival of North Pacific right whales.  Right 
whale life history characteristics make them very slow to adapt to rapid changes in their habitat 
(see Reynolds et al. 2002).  They are also feeding specialists that require exceptionally high 
densities of their prey (see Baumgartner et al. 2003; Baumgartner and Mate 2003a).  Zooplankton 
abundance and density in the Bering Sea has been shown to be highly variable, affected by 
climate, weather, and ocean processes and in particular ice extent (Baier and Napp 2003; Napp 
and G.L. Hunt 2001).  The largest concentrations of copepods occurred in years with the greatest 
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southern extent of sea ice (Baier and Napp 2003).  It is possible that changes in ice extent, 
density and persistence may alter the dynamics of the Bering Sea shelf zooplankton community 
and in turn affect the foraging behavior and success of right whales.  No data are available for the 
western North Pacific. 

Critical habitat.  In July 2006, NMFS designated two areas as critical habitat for right whales in 
the North Pacific (71 FR 38277).  The areas encompass about 36,750 square miles of marine 
habitat, which include feeding areas within the Gulf of Alaska and the Bering Sea that support 
the species.  The primary constituent element to this critical habitat is the presence of large 
copepods and oceanographic factors that concentrate North Pacific right whale prey.  At present, 
this PCE has not been significantly degraded due to human activity.  However, significant 
concern has been voiced regarding the impact that oceanic contamination of pollutants may have 
on the food chain and consequent bioaccumulation of toxins by marine predators.  Changes due 
to global warming have also been raised as a concern that could affect the distribution or 
abundance of copepod prey for several marine mammals, including right whales. 

Sperm whale 
Description of the species.  Sperm whales are distributed in all of the world’s oceans, from 
equatorial to polar waters, and are highly migratory.  Mature males range between 70º N in the 
North Atlantic and 70º S in the Southern Ocean (Perry et al. 1999; Reeves and Whitehead 1997), 
whereas mature females and immature individuals of both sexes are seldom found higher than 
50º N or S (Reeves and Whitehead 1997). In winter, sperm whales migrate closer to equatorial 
waters (Kasuya and Miyashita 1988; Waring et al. 1993) where adult males join them to breed.   
Stock designations.  There is no clear understanding of the global population structure of sperm 
whales (Dufault et al. 1999).  Recent ocean-wide genetic studies indicate low, but statistically 
significant, genetic diversity and no clear geographic structure, but strong differentiation between 
social groups (Lyrholm and Gyllensten 1998; Lyrholm et al. 1996; Lyrholm et al. 1999).  The 
IWC currently recognizes four sperm whale stocks: North Atlantic, North Pacific, northern 
Indian Ocean, and Southern Hemisphere (Dufault et al. 1999; Reeves and Whitehead 1997).  The 
NMFS recognizes six stocks under the MMPA- three in the Atlantic/Gulf of Mexico and three in 
the Pacific (Alaska, California-Oregon-Washington, and Hawaii; (Perry et al. 1999; Waring et al. 
2004b).  Genetic studies indicate that movements of both sexes through expanses of ocean basins 
are common, and that males, but not females, often breed in different ocean basins than the ones 
in which they were born (Whitehead 2003).  Sperm whale populations appear to be structured 
socially, at the level of the clan, rather than geographically (Whitehead 2003; Whitehead et al. 
2008).  

North Atlantic.  In the western North Atlantic, sperm whales range from Greenland 
south into the Gulf of Mexico and the Caribbean, where they are common, especially in deep 
basins north of the continental shelf (Romero et al. 2001; Wardle et al. 2001).  The northern 
distributional limit of female/immature pods is probably around Georges Bank or the Nova 
Scotian shelf (Whitehead et al. 1991).  Seasonal aerial surveys confirm that sperm whales are 
present in the northern Gulf of Mexico in all seasons (Hansen et al. 1996; Mullin et al. 1994).  
Sperm whales distribution follows a distinct seasonal cycle, concentrating east-northeast of Cape 
Hatteras in winter and shifting northward in spring when whales are found throughout the Mid-
Atlantic Bight.  Distribution extends further northward to areas north of Georges Bank and the 
Northeast Channel region in summer and then south of New England in fall, back to the Mid-
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Atlantic Bight.  In the eastern Atlantic, mature male sperm whales have been recorded as far 
north as Spitsbergen (Øien 1990).  Recent observations of sperm whales and stranding events 
involving sperm whales from the eastern North Atlantic suggest that solitary and paired mature 
males predominantly occur in waters off Iceland, the Faroe Islands, and the Norwegian Sea 
(Christensen et al. 1992a; Christensen et al. 1992b; Gunnlaugsson and Sigurjónsson 1990; Øien 
1990). 

North Pacific.  Sperm whales are found throughout the North Pacific and are distributed 
broadly in tropical and temperate waters to the Bering Sea as far north as Cape Navarin in 
summer, and occur south of 40o N in winter (Gosho et al. 1984; Miyashita et al. 1995 as cited in 
Carretta et al. 2005; Rice 1974).  Sperm whales are found year-round in Californian and 
Hawaiian waters (Barlow 1995; Dohl et al. 1983; Forney et al. 1995; Lee 1993; Mobley Jr . et al. 
2000; Rice 1960; Shallenberger 1981b), but they reach peak abundance from April-mid-June and 
from the end of August-mid-November (Rice 1974).  They are seen in every season except 
winter (December-February) in Washington and Oregon (Green et al. 1992).  Summer/fall 
surveys in the eastern tropical Pacific (Wade and Gerrodette 1993) show that although sperm 
whales are widely distributed in the tropics, their relative abundance tapers off markedly towards 
the middle of the tropical Pacific and northward towards the tip of Baja California (Carretta et al. 
2006). 

Mediterranean.  Sperm whales are found from the Alboran Sea to the Levant Basin, 
primarily over steep slope and deep offshore waters.  Sperm whales are rarely sighted in the 
Sicilian Channel, and are vagrants to the northern Adriatic and Aegean Seas (Notarbartolo di 
Sciara and Demma 1997).  In Italian seas, sperm whales are more frequently associated with the 
continental slope off western Liguria, western Sardinia, northern and eastern Sicily, and both 
coasts of Calabria.   

Southern Hemisphere.  All sperm whales of the Southern Hemisphere are treated as a 
single stock with nine divisions, although this designation has little biological basis and is more 
in line with whaling records (Donovan 1991).  Sperm whales that occur off the Galapagos 
Islands, mainland Ecuador, and northern Peru may be distinct from other sperm whales in the 
Southern Hemisphere (Dufault and Whitehead 1995; Rice 1977; Wade and Gerrodette 1993).  
Gaskin (1973) found females to be absent in waters south of 50º and decrease in proportion to 
males south of 46-47º. 

Movement.  Movement patterns of Pacific female and immature male groups appear to follow 
prey distribution and, although not random, movements are difficult to anticipate and are likely 
associated with feeding success, perception of the environment, and memory of optimal foraging 
areas (Whitehead et al. 2008).  However, no sperm whale in the Pacific has been known to travel 
to points over 5,000 km apart and only rarely have been known to move over 4,000 km within a 
time frame of several years.  This means that although sperm whales do not appear to cross from 
eastern to western sides of the Pacific (or vice-versa), significant mixing occurs that can maintain 
genetic exchange.  Movements of several hundred miles are common, (i.e. between the 
Galapagos Islands and the Pacific coastal Americas).  Movements appear to be group or clan 
specific, with some groups traveling straighter courses than others over the course of several 
days.  However, general transit speed averages about 4 km/h.  Sperm whales in the Caribbean 
region appear to be much more restricted in their movements, with individuals repeatedly sighted 
within less than 160 km of previous sightings. 

Gaskin (1973) proposed a northward population shift of sperm whales off New Zealand in the 
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austral autumn based on reduction of available food species and probable temperature tolerances 
of calves.  

Habitat.  Sperm whales have a strong preference for waters deeper than 1,000 m (Reeves and 
Whitehead 1997; Watkins 1977), although Berzin (1971) reported that they are restricted to 
waters deeper than 300 m.  While deep water is their typical habitat, sperm whales are rarely 
found in waters less than 300 m in depth (Clarke 1956; Rice 1989a).  Sperm whales have been 
observed near Long Island, New York, in water between 40-55 m deep (Scott and Sadove 1997). 
 When they are found relatively close to shore, sperm whales are usually associated with sharp 
increases in topography where upwelling occurs and biological production is high, implying the 
presence of a good food supply (Clarke 1956).  Such areas include oceanic islands and along the 
outer continental shelf.   

Sperm whales are frequently found in locations of high productivity due to upwelling or steep 
underwater topography, such as continental slopes, seamounts, or canyon features (Jaquet and 
Whitehead 1996; Jaquet et al. 1996).  Cold-core eddy features are also attractive to sperm whales 
in the Gulf of Mexico, likely because of the large numbers of squid that are drawn to the high 
concentrations of plankton associated with these features (Biggs et al. 2000; Davis et al. 2000; 
Davis et al. 2000b; Davis et al. 2000c; Davis et al. 2002; Wormuth et al. 2000).  Surface waters 
with sharp horizontal thermal gradients, such as along the Gulf Stream in the Atlantic, may also 
be temporary feeding areas for sperm whales (Griffin 1999; Jaquet et al. 1996; Waring et al. 
1993).  Sperm whale over George’s Bank were associated with surface temperatures of 23.2-
24.9°C (Waring et al. 2003).    

Local information is inconsistent regarding sperm whale tendencies.  Gregr and Trites (2001) 
reported that female sperm whales off British Columbia were relatively unaffected by the 
surrounding oceanography.  However, Tynan et al. (2005) reported increased sperm whales 
densities with strong turbulence associated topographic features along the continental slope near 
Heceta Bank.  Two noteworthy strandings in the region include an infamous incident (well 
publicized by the media) of attempts to dispose of a decomposed sperm whale carcass on an 
Oregon beach by using explosives.  In addition, a mass (Tynan et al. 2005) stranding of 47 
individuals in Oregon occurred during June 1979 (Norman et al. 2004; Rice et al. 1986). 

Reproduction.  Female sperm whales become sexually mature at an average of 9 years or 8.25-
8.8 m (Kasuya 1991).  Males reach a length of 10 to 12 m at sexual maturity and take 9-20 years 
to become sexually mature, but will require another 10 years to become large enough to 
successfully breed (Kasuya 1991; Würsig et al. 2000b).  Mean age at physical maturity is 45 
years for males and 30 years for females (Waring et al. 2004b).  Adult females give birth after 
roughly 15 months of gestation and nurse their calves for 2-3 years (Waring et al. 2004b).  The 
calving interval is estimated to be every 4-6 years between the ages of 12 and 40 (Kasuya 1991; 
Whitehead et al. 2008).  In the North Pacific, female sperm whales and their calves are usually 
found in tropical and temperate waters year round, while it is generally understood that males 
move north in the summer to feed in the Gulf of Alaska, Bering Sea, and waters off of the 
Aleutian Islands (Kasuya and Miyashita 1988).  It has been suggested that some mature males 
may not migrate to breeding grounds annually during winter, and instead may remain in higher 
latitude feeding grounds for more than 1 year at a time (Whitehead and Arnbom 1987).   

Sperm whale age distribution is unknown, but sperm whales are believed to live at least 60 years 
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(Rice 1978b).  Estimated annual mortality rates of sperm whales are thought to vary by age, but 
previous estimates of mortality rate for juveniles and adults are now considered unreliable (IWC 
1980b).  In addition to anthropogenic threats, there is evidence that sperm whale age classes are 
subject to predation by killer whales (Arnbom et al. 1987; Pitman et al. 2001).   

Stable, long-term associations among females form the core of sperm whale societies (Christal et 
al. 1998).  Up to about a dozen females usually live in such groups, accompanied by their female 
and young male offspring.  Young individuals are subject to alloparental care by members of 
either sex and may be suckled by non-maternal individuals (Gero et al. 2009).  Group sizes may 
be smaller overall in the Caribbean Sea (6-12 individuals) versus the Pacific (25-30 individuals) 
(Jaquet and Gendron 2009; Jaquet and Gendron. 2009).  Groups may be stable for long periods, 
such as for 80 days in the Gulf of California (shorter in other areas) (Jaquet and Gendron 2009).  
Males start leaving these family groups at about 6 years of age, after which they live in “bachelor 
schools,” but this may occur more than a decade later (Pinela et al. 2009).  The cohesion among 
males within a bachelor school declines with age.  During their breeding prime and old age, male 
sperm whales are essentially solitary (Christal and Whitehead 1997). 

Diving.  Sperm whales are probably the deepest and longest diving mammalian species, with 
dives to 3 km down and durations in excess of 2 hours (Clarke 1976; Watkins et al. 1993b; 
Watkins et al. 1985).  However, dives are generally shorter (25- 45 min) and shallower (400-
1,000 m).  Dives are separated by 8-11 min rests at the surface (Gordon 1987; Jochens et al. 
2006; Papastavrou et al. 1989; Watwood et al. 2006; Würsig et al. 2000b).  Sperm whales 
typically travel ~3 km horizontally and 0.5 km vertically during a foraging dive (Whitehead 
2003).  Differences in night and day diving patterns are not known for this species, but, like most 
diving air-breathers for which there are data (rorquals, fur seals, and chinstrap penguins), sperm 
whales probably make relatively shallow dives at night when prey are closer to the surface. 

Feeding.  Sperm whales appear to feed regularly throughout the year (NMFS 2006e).  It is 
estimated they consume about 3-3.5% of their body weight daily (Lockyer 1981).  They seem to 
forage mainly on or near the bottom, often ingesting stones, sand, sponges, and other non-food 
items (Rice 1989a).  A large proportion of a sperm whale’s diet consists of low-fat, ammoniacal, 
or luminescent squids (Clarke 1996; Clarke 1980b; Martin and Clarke 1986).  While sperm 
whales feed primarily on large and medium-sized squids, the list of documented food items is 
fairly long and diverse.  Prey items include other cephalopods, such as octopi, and medium- and 
large-sized demersal fishes, such as rays, sharks, and many teleosts (Angliss and Lodge 2004; 
Berzin 1972; Clarke 1977; Clarke 1980a; Rice 1989a).  The diet of large males in some areas, 
especially in high northern latitudes, is dominated by fish (Rice 1989a).  In some areas of the 
North Atlantic, however, males prey heavily on the oil-rich squid Gonatus fabricii, a species also 
frequently eaten by northern bottlenose whales (Clarke 1997).   

Vocalization and hearing.  Sound production and reception by sperm whales are better 
understood than in most cetaceans.  Sperm whales produce broad-band clicks in the frequency 
range of 100 Hz to 20 kHz that can be extremely loud for a biological source (200-236 dB re 
1μPa), although lower source level energy has been suggested at around 171 dB re 1 µPa (Goold 
and Jones 1995; Møhl et al. 2003; Weilgart and Whitehead 1993; Weilgart and Whitehead 1997). 
 Most of the energy in sperm whale clicks is concentrated at around 2-4 kHz and 10-16 kHz 
(Goold and Jones 1995; NMFS 2006d; Weilgart and Whitehead 1993).  The highly asymmetric 
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head anatomy of sperm whales is likely an adaptation to produce the unique clicks recorded from 
these animals (Cranford 1992; Norris and Harvey 1972; Norris and Harvey. 1972).  These long, 
repeated clicks are associated with feeding and echolocation (Goold and Jones 1995; Weilgart 
and Whitehead 1993; Weilgart and Whitehead 1997).  However, clicks are also used in short 
patterns (codas) during social behavior and intragroup interactions (Weilgart and Whitehead 
1993).  They may also aid in intra-specific communication.  Another class of sound, “squeals”, 
are produced with frequencies of 100 Hz to 20 kHz (e.g., Weir et al. 2007).   

Our understanding of sperm whale hearing stems largely from the sounds they produce.  The only 
direct measurement of hearing was from a young stranded individual from which auditory 
evoked potentials were recorded (Carder and Ridgway 1990).  From this whale, responses 
support a hearing range of 2.5-60 kHz.  However, behavioral responses of adult, free-ranging 
individuals also provide insight into hearing range; sperm whales have been observed to 
frequently stop echolocating in the presence of underwater pulses made by echosounders and 
submarine sonar (Watkins et al. 1985; Watkins and Schevill 1975).  They also stop vocalizing for 
brief periods when codas are being produced by other individuals, perhaps because they can hear 
better when not vocalizing themselves (Goold and Jones 1995).  Because they spend large 
amounts of time at depth and use low-frequency sound, sperm whales are likely to be susceptible 
to low frequency sound in the ocean (Croll et al. 1999).  

Status and trends.  Sperm whales were originally listed as endangered in 1970 (35 FR 18319), 
and this status remained with the inception of the ESA in 1973.  Although population structure of 
sperm whales is unknown, several studies and estimates of abundance are available.  Table 5 
contains historic and current estimates of sperm whales by region.  Sperm whale populations 
probably are undergoing the dynamics of small population sizes, which is a threat in and of itself. 
 In particular, the loss of sperm whales to directed Soviet whaling likely inhibits recovery due to 
the loss of adult females and their calves, leaving sizeable gaps in demographic and age 
structuring (Whitehead 2003). 

North Atlantic.  190,000 sperm whales were estimated to have been in the entire North 
Atlantic, but CPUE data from which this estimate is derived are unreliable according to the IWC 
(Perry et al. 1999).  The total number of sperm whales in the western North Atlantic is unknown 
(Waring et al. 2008).  The best available current abundance estimate for western North Atlantic 
sperm whales is 4,804 based on 2004 data.  The best available estimate for Northern Gulf of 
Mexico sperm whales is 1,665, based on 2003-2004 data, which are insufficient data to 
determine population trends (Waring et al. 2008).  Sperm whale were widely harvested, from the 
northeastern Caribbean (Romero et al. 2001) and the Gulf of Mexico where sperm whale fishery 
operated during the late 1700s to the early 1900s (NMFS 2006e; Townsend 1935b).   

North Pacific.  There are approximately 76,803 sperm whales in the eastern tropical 
Pacific, eastern North Pacific, Hawaii, and western North Pacific (Whitehead 2002).  Minimum 
estimates in the eastern North Pacific are 1,719 individuals and 5,531 in the Hawaiian Islands 
(Carretta et al. 2007c).  The tropical Pacific is home to approximately 26,053 sperm whales and 
the western North Pacific has approximately 29,674 (Whitehead 2002).  There was a dramatic 
decline in the number of females around the Galapagos Islands during 1985-1999 versus 1978-
1992 levels, likely due to migration to nearshore waters of South and Central America 
(Whitehead 2003).  
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Table 5.  Summary of past and present sperm whale abundance. 
 

 
*Note: Confidence Intervals (C.I.) not provided by the authors were calculated from Coefficients of Variation (C.V.) 
where available, using the computation from Gotelli and Ellison (2004).  

Sperm whales are sighted off Oregon in every season except winter (Green et al. 1992). 
However, sperm whales are found off California year-round (Barlow 1995; Dohl et al. 1983; 
Forney et al. 1995), with peak abundance from April to mid-June and from August to mid-

Region 
Population, stock,  

or study area 
 

Pre-exploitation  
estimate 95% C.I. Current  

estimate 95% C.I. 

Global -- -- -- 900,000 -- (Würsig et al. 2000a) 
-- 1,110,000 672,000- 

1,512,000 360,000 105,984- 
614,016* (Whitehead 2002) 

North Atlantic Basinwide 224,800 -- 22,000 -- (Gosho et al. 1984; 
Würsig et al. 2000b) 

Northeast Atlantic, Faroes- 
Iceland, and U.S. East Coast  
(combined) 

-- -- 13,190 -- (Whitehead 2002) 

NMFS - North Atlantic stock  
(Western North Atlantic) -- -- 4,804 1,226-8,382* (NMFS 2008d) 
Eastern North Atlantic -  
Iceland -- -- 1,234 823-1,645* (Gunnlaugsson and Sigurjónsson 1990) 

 Eastern North Atlantic -  
Faroe Islands -- -- 308 79-537* (Gunnlaugsson and 

Sigurjónsson 1990) 
 Eastern North Atlantic -  

Norwegian Sea -- -- 5,231 2,053-8,409* (Christensen et al. 1992b) 
Eastern North Atlantic -  
Northern Norway to  
Spitsbergen 

-- -- 2,548 1,200-3,896* (Øien 1990) 
Gulf of Mexico 

NMFS - Gulf of Mexico stock -- -- 1,665 CV=0.2 (NMFS 2008d) 
Northern Gulf of Mexico - off  
the Mississippi River Delta  
between 86 o  and 91 o W 

-- -- 398 253-607 (Jochens et al. 2006; Würsig et al. 2000b) 

North-central and  
Northwestern Gulf of Mexico -- -- 87 52-146 (Mullin et al. 2004) 

North Pacific Basinwide 620,400 -- 472,100 -- (Gosho et al. 1984) 
930,000 -- (Rice 1989a) 

 Eastern Tropical Pacific -- -- 26,053 13,797- 
38,309* (Whitehead 2003) 

Off Costa Rica -- -- 1,360 823-2,248* (Gerrodette and Palacios 1996) 

Off Central America north of  
Costa Rica -- -- 333 125-890* (Gerrodette and Palacios 1996) 

Eastern Temperate North  
Pacific -- -- 26,300 0-68,054* (Barlow and Taylor 2005) 

32,100 9,450-54,750* (Barlow and Taylor 2005) 
NMFS - North Pacific stock -- -- -- -- (Angliss and Allen 2007) 
NMFS - California/Oregon/  
Washington stock -- -- 2,853 CV=0.25* (Carretta et al. 2008) 
NMFS - Hawaii stock -- -- 7,082 2,918-11,246* (Carretta et al. 2008) 

Southern  
Hemisphere Basinwide 547,600 -- 299,400 -- (Gosho et al. 1984; IWC 1988; 

Perry et al. 1999) 
South of 60 o S -- -- 14,000 8,786-19,214* (Butterworth et al. 1995) as cited  

in (Perry et al. 1999) 
South of 30 o S -- -- 128,000 17,613- 

238,387* 
(Butterworth et al. 1995) as cited  

Source 

in (Perry et al. 1999) 
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November (Rice 1974).  Barlow (2003) reported mean group sizes of 2.0–11.8 during surveys the 
western U.S.  Barlow (2003) estimated that 440 and 52 sperm whales occurred in Oregonian and 
Washingtonian waters, depending upon year and area, supported by densities of 0.0002 to 0.0019 
individuals/km2. 

Hill and DeMaster (1999) concluded that about 258,000 sperm whales were harvested in the 
North Pacific between 1947-1987.  Although the IWC protected sperm whales from commercial 
harvest in 1981, Japanese whalers continued to hunt sperm whales in the North Pacific until 1988 
(Reeves and Whitehead 1997).  In 2000, the Japanese Whaling Association announced plans to 
kill 10 sperm whales in the Pacific Ocean for research.  Although consequences of these deaths 
are unclear, the paucity of population data, uncertainly regarding recovery from whaling, and re-
establishment of active programs for whale harvesting pose risks for the recovery and survival of 
this species.  Sperm whales are also hunted for subsistence purposes by whalers from Lamalera, 
Indonesia, where a traditional whaling industry has been reported to kill up to 56 sperm whales 
per year.  

Southern Hemisphere.  Whaling in the Southern Hemisphere averaged roughly 20,000 
whales between 1956-1976 (Perry et al. 1999).  Population size appears to be stable (Whitehead 
2003).  Whitehead (2002b) estimated 12,069 sperm whales south of 60° S. 

Natural threats.  Sperm whales are known to be occasionally predated upon by killer whales 
(Jefferson and Baird 1991; Pitman et al. 2001) and large sharks (Best et al. 1984) and harassed by 
pilot whales (Arnbom et al. 1987; Palacios and Mate 1996; Rice 1989b; Weller et al. 1996; 
Whitehead 1995).  Strandings are also relatively common events, with one to dozens of 
individuals generally beaching themselves and dying during any single event.  Although several 
hypotheses, such as navigation errors, illness, and anthropogenic stressors, have been proposed 
(Goold et al. 2002; Wright 2005), direct widespread causes remain unclear.  Calcivirus and 
papillomavirus are known pathogens of this species (Lambertsen et al. 1987; Smith and Latham 
1978). 

Anthropogenic threats.  Sperm whales historically faced severe depletion from commercial 
whaling operations.  From 1800 to 1900, the IWC estimated that nearly 250,000 sperm whales 
were killed by whalers, with another 700,000 from 1910 to 1982 (IWC Statistics 1959-1983).  
However, other estimates have included 436,000 individuals killed between 1800-1987 (Carretta 
et al. 2005b).  However, all of these estimates are likely underestimates due to illegal and 
inaccurate killings by Soviet whaling fleets between 1947 and 1973.  In the Southern 
Hemisphere, these whalers killed an estimated 100,000 whales that they did not report to the 
IWC (Yablokov et al. 1998), with smaller harvests in the Northern Hemisphere, primarily the 
North Pacific, that extirpated sperm whales from large areas (Yablokov and Zemsky 2000).  
Additionally, Soviet whalers disproportionately killed adult females in any reproductive 
condition (pregnant or lactating) as well as immature sperm whales of either gender.  

Following a moratorium on whaling by the IWC, significant whaling pressures on sperm whales 
were eliminated.  However, sperm whales are known to have become entangled in commercial 
fishing gear and 17 individuals are known to have been struck by vessels (Jensen and Silber 
2004).  Whale-watching vessels are known to influence sperm whale behavior (Richter et al. 
2006). 

Sperm whales are also killed incidentally by gill nets at a rate of roughly nine per year (data from 
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1991 to 1995) in U.S. Pacific waters (Barlow et al. 1997).  Sperm whales are known to interact 
(remove fish from) with longline fisheries in the Gulf of Alaska and entanglement has rarely 
been recorded (Hill and DeMaster 1999; Rice 1989a; Sigler et al. 2008).  The stranding of two 
sperm whales along northern California revealed that 134 separate nets had been injected by the 
individuals, likely as free floating marine debris, leading to their deaths by gastric impaction 
(blockage) (Jacobsen et al. 2010). 

Contaminants have been identified in sperm whales, but vary widely in concentration based upon 
life history and geographic location, with northern hemisphere individuals generally carrying 
higher burdens (Evans et al. 2004).  Contaminants include dieldrin, chlordane, DDT, DDE, 
PCBs, HCB and HCHs in a variety of body tissues (Aguilar 1983; Evans et al. 2004), as well as 
several heavy metals (Law et al. 1996).  However, unlike other marine mammals, females appear 
to bioaccumulate toxins at greater levels than males, which may be related to possible dietary 
differences between females who remain at relatively low latitudes compared to more migratory 
males (Aguilar 1983; Wise et al. 2009).  Chromium levels from sperm whales skin samples 
worldwide have varied from undetectable to 122.6 μg Cr/g tissue, with the mean (8.8 μg Cr/g 
tissue) resembling levels found in human lung tissue with chromium-induced cancer (Wise et al. 
2009).  Older or larger individuals did not appear to accumulate chromium at higher levels. 

Critical habitat.  The NMFS has not designated critical habitat for sperm whales. 

Southern resident killer whale 

Description of the species.  Southern Resident killer whales compose a single population that 
occurs primarily along Washington State and British Columbia.  The listed entity consists of 
three family groups, identified as J, K, and L pods.   

Distribution.  They are found throughout the coastal waters off Washington, Oregon, and 
Vancouver Island and are known to travel as far south as central California and as far north as the 
Queen Charlotte Islands, British Columbia.  However, there is limited information on the range 
of Southern Residents along the outer Pacific Coast, with only 25 confirmed sightings of J, K, 
and L pods between 1982 and 2006 (Krahn et al. 2004a).   

Movement and habitat.  Southern Residents are highly mobile and can travel up to 100 miles 
per day (Baird 2000; Erickson 1978b).  Members of K and L pods once traveled a straight-line 
distance of 584 miles from the northern Queen Charlotte Islands to Victoria, Vancouver Island, 
in seven days.  Movements may be related to food availability.   

Southern Resident killer whales spend a significant portion of the year in the inland waterways of 
the Strait of Georgia, Strait of Juan de Fuca, and Puget Sound, particularly during the spring, 
summer, and fall, when all three pods are regularly present in the Georgia Basin (defined as the 
Georgia Strait, San Juan Islands, and Strait of Juan de Fuca) (Felleman et al. 1991; Heimlich-
Boran 1988; Olson 1998; Osborne 1999).  Typically, K and L pods arrive in May or June and 
primarily occur in this core area until October or November.  During this stay, both pods also 
make frequent trips lasting a few days to the outer coasts of Washington and southern Vancouver 
Island (Ford et al. 2000); however, J pod’s movements differ considerably and are present only 
intermittently in the Georgia Basin and Puget Sound.  Late spring and early fall movements of 
Southern Residents in the Georgia Basin have remained fairly consistent since the early 1970s, 
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with strong site fidelity shown to the region as a whole (NMFS 2005e).  During late fall, winter, 
and early spring, the ranges and movements of the Southern Residents are less well known.  
Offshore movements and distribution are largely unknown for the Southern Resident population. 
  
While the Southern Residents are in inland waters during the warmer months, all of the pods 
concentrate their activities in Haro Strait, Boundary Passage, the southern Gulf Islands, the 
eastern end of the Strait of Juan de Fuca, and several localities in the southern Georgia Strait 
(Felleman et al. 1991; Ford et al. 2000; Heimlich-Boran 1988; Olson 1998).  Individual pods are 
similar in their preferred areas of use, although there are some seasonal and temporal differences 
in certain areas visited (Olson 1998).  For example, J pod is the only group to venture regularly 
inside the San Juan Islands.  The movements of Southern Resident killer whales relate to those of 
their preferred prey, salmon.  Pods commonly seek out and forage in areas where salmon occur, 
especially those associated with migrating salmon (Heimlich-Boran 1986; Heimlich-Boran 1988; 
Nichol and Shackleton 1996). 

Members of different pods do interact, but members generally remain within their matrilinear 
group (Parsons et al. 2009).  However, additional interaction between pods has occurred over the 
past two decades, possibly in association with the decline of the Southern Resident population as 
a whole (Parsons et al. 2009). 

Feeding.  Southern Resident killer whales are fish eaters, and predominantly prey upon 
salmonids, particularly Chinook salmon but are also known to consume more than 20 other 
species of fish and squid (Ford and Ellis 2005; Ford and Ellis 2006; Ford et al. 2000; Ford et al. 
1998; Saulitis et al. 2000; Scheffer and Slipp 1948).  Killer whales show a strong preference for 
Fraser River Chinook salmon (78% of identified prey) during late spring to fall (Ford and Ellis 
2006; Hanson et al. 2010b; Hanson et al. 2005).  Chum salmon are also taken in significant 
amounts (11%), especially in autumn.  Chinook are preferred despite much lower abundance in 
comparison to other salmonids (such as sockeye) presumably because of the species’ large size, 
high fat and energy content, and year-round occurrence in the area.  Killer whales also captured 
older (i.e., larger) than average Chinook (Ford and Ellis 2006).  Throughout inland waters from 
May to September, Southern resident killer whale diet is approximately 88% Chinook (Hanson et 
al. 2007b; Hanson et al. 2010a), with a shift to chum salmon in fall.  Little is known about the 
winter and early spring diet of Southern Residents.  Early results from genetic analysis of fecal 
and prey samples indicate that Southern Residents consume Fraser River-origin Chinook, as well 
as salmon from Puget Sound, Washington and Oregon coasts, the Columbia River, and Central 
Valley of California (Hanson et al. 2007a; Hanson et al. 2010a).  However, recent studies suggest 
that members of L pod have undergone dietary shifts from Chinook salmon during fall months 
over the past decade (Krahn et al. 2009a).  Southern resident killer whales appear to be more 
sensitive to vessel disturbance while feeding than during other activities (Ashe et al. 2010).  An 
area to the southwest of San Juan Island appears to be a foraging “hotspot” (Ashe et al. 2010) 

Growth and reproduction.  Female Southern Resident killer whales give birth to their first 
surviving calf between the ages of 12 and 16 years (mean ~ 14.9 years) and produce an average 
of 5.4 surviving calves during a reproductive life span lasting about 25 years (Matkin et al. 2003; 
Olesiuk et al. 1990a).  Females reach a peak of reproduction around ages 20-22 and decline in 
calf production gradually over the next 25 years until reproductive senescence (Ward et al. 
2009a).  Older mothers tend to have greater calving success than do their younger, less-
experienced counterparts (Ward et al. 2009b).  Calving success also appears to be aided by the 
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assistance of grandmothers (Ward et al. 2009b).  The mean interval between viable calves is four 
years (Bain 1990).  Males become sexually mature at body lengths ranging from 17 to 21 feet, 
which corresponds to between the ages of 10 to 17.5 years (mean ~ 15 years), and are presumed 
to remain sexually active throughout their adult lives (Christensen 1984; Duffield and Miller 
1988; Olesiuk et al. 1990a; Perrin and Reilly 1984a).  Most mating is believed to occur from May 
to October (Matkin et al. 1997; Nishiwaki 1972; Olesiuk et al. 1990a).  However, conception 
apparently occurs year-round because births of calves are reported in all months.  Newborns 
measure seven to nine feet long and weigh about 440 lbs (Clark et al. 2000; Ford 2002; 
Nishiwaki and Handa 1958; Olesiuk et al. 1990a).  Mothers and offspring maintain highly stable, 
life-long social bonds and this natal relationship is the basis for a matrilineal social structure 
(Baird 2000; Bigg et al. 1990; Ford et al. 2000).  Some females may reach 90 years of age 
(Olesiuk et al. 1990a). 

Diving.  Killer whales tend to make relatively shallow dives.  Of 87 tagged individuals in the 
Pacific Northwest, 31% of dives were less than 100 feet deep (Baird et al. 2003a).  However, a 
free-ranging killer whale was recorded to dive to 264 m off British Columbia (Baird et al. 
2005b).  The longest duration of a recorded dive was 17 minutes (Dahlheim and Heyning 1999). 

Status and trends.  Southern Resident killer whales have been listed as endangered since 2005 
(70 FR 69903).  In general, there is little information available regarding the historical abundance 
of Southern Resident killer whales.  Some evidence suggests that, until the mid- to late-1800s, 
the Southern Resident killer whale population may have numbered more than 200 animals 
(Krahn et al. 2002b).  This estimate was based, in part, on a recent genetic study that found that 
the genetic diversity of the Southern Resident population resembles that of the Northern 
Residents (Barrett-Lennard 2000; Barrett-Lennard and Ellis 2001), and concluded that the two 
populations were possibly once similar in size.  Unfortunately, lack of data prior to 1974 hinders 
long-term population analysis (NMFS 2005e).  The only pre- 1974 account of Southern Resident 
abundance is from Sheffer and Slipp (1948) and merely notes that the species was “frequently 
seen” during the 1940s in the Strait of Juan de Fuca, northern Puget Sound, and off the coast of 
the Olympic Peninsula, with smaller numbers along Washington’s outer coast.  Olesiuk et al. 
(1990a) estimated the Southern Resident population size in 1967 to be 96 animals.  Due to 
demand for marine mammals in zoos and marine parks, it is estimated that 47 killer whales, 
mostly immature, were taken from the Southern Resident population for public display between 
1967 and 1973.  By 1971, the level of removal decreased the population by about 30% to 
approximately 67 individuals (Olesiuk et al. 1990a).  The population went then went through 
periods of decline and expansion for more than two decades.  At the end of an 11-year growth 
cycle in 1995, the three Southern Resident pods – J, K, and L, reached a peak of 98 animals 
(NMFS 2008f). 

More recently, the Southern Resident population has continued to fluctuate in numbers.  After 
growing to 98 whales in 1995, the population declined by 17% to 81 whales in 2001 (-2.9% per 
year) before another slight increase to 84 whales in 2003 (Carretta et al. 2005a; Ford et al. 2000). 
 The population grew to 90 whales in 2006, although it declined to 87 in 2007 (NMFS 2008f).  
The most recent population abundance estimate of 87 Southern Residents consists of 25 whales 
in J pod, 19 whales in K pod, and 43 whales in L pod (NMFS 2008f).   

Natural threats.  The recent decline, unstable population status, and population structure (e.g., 
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few reproductive age males and non-calving adult females) continue to be causes for concern.  
Moreover, it is unclear whether the recent increasing trend will continue.  The relatively low 
number of individuals in this population makes it difficult to resist/recover from natural spikes in 
mortality, including disease and fluctuations in prey availability (NMFS 2008f).  Although 
disease outbreaks have not been identified in this population, increased contaminant load (see 
below) may increase the susceptibility of individuals to disease.   

Anthropogenic threats.  Numerous threats to the continued survival of Southern Resident killer 
whales have been identified (NMFS 2008f).  Many of these are human in origin.  The primary 
prey of killer whales, salmon, has been severely reduced due to habitat loss and overfishing of 
salmon along the West Coast (Gregory and Bisson 1997; Lackey 2003; Lichatowich 1999; NRC 
1996; Pess et al. 2003; Schoonmaker et al. 2003; Slaney et al. 1996).  Several salmon species are 
currently protected under the ESA, and are generally well below their former numbers.  A 50% 
reduction in killer whale calving has been correlated with years of low Chinook salmon 
abundance (Ward et al. 2009a). 

Puget Sound also serves as a major port and drainage for thousands of square miles of land.  
Contaminants entering Puget Sound and its surrounding waters accumulate in water, benthic 
sediments, and the organisms that live and eat here (Krahn et al. 2009a).  As the top marine 
predator, Southern Resident killer whales bioaccumulate these toxins in their tissues, potentially 
leading to numerous physiological changes such as skeletal deformity, lowered disease 
resistance, and enzyme disruption (Baird 2001b; Calambokidis et al. 1984; Darnerud 2003; de 
Wit 2002; Hall et al. 2003; Hayteas and Duffield. 2000; Krahn et al. 2004b; Krahn et al. 2007; 
Krahn et al. 2009a; Krahn et al. 2004c; Krahn et al. 2002c; NMFS 2008e; Ross et al. 2000b; 
Ross et al. 2000c; Waring et al. 2004a; Ylitalo et al. 2001).  Exposure is believed to be primarily 
through diet (Hickie et al. 2001); salmon preyed upon by SRKWs may also be at risk.  Presently, 
the greatest contaminant threats are organochlorines, which include PCBs, pesticides, dioxins, 
furans, other industrial products, and the popularized chemical DDT (CBD 2001; Cullon et al. 
2009; Krahn et al. 2009a; Krahn et al. 2002b; Ross et al. 2000a).  These chemicals tend to 
bioaccumulate in fatty tissues, such as whale blubber, persist over long periods in the 
environment, and can be transmitted from mother to offspring (Haraguchi et al. 2009; Krahn et 
al. 2009a).  Levels are much higher in field-sampled individuals than those found in a captive 
killer whale (Bennett et al. 2009).  A similar, but separate concern is the growth of the petroleum 
industry in Puget Sound, which has the low potential to create a catastrophic oil spill, or more 
likely, small but chronic releases of petrochemicals.  In addition, several hundred new chemicals 
enter the global marine environment annually; many of these chemicals have unknown effects to 
any lifeform (Grant and Ross. 2002; NMFS 2008e). 

Encouragingly, many persistent organic pollutants have been banned in the U.S. and, over the 
past few decades, regulatory actions, Superfund clean-up, improved waste handling, and ongoing 
cleanup efforts have led to improvements in regional water quality(NMFS 2008e).  This has led 
to decreasing levels of many organochlorine residues in the environment, (EVS Environmental 
Consultants 2003; Grant and Ross. 2002; Gray and Tuominen 2001; Mearns 2001) although it 
may take up to 60 years for some chemicals to fall below levels known to cause health effects in 
marine mammals (Hickie et al. 2001). 

Vessel activity also has been identified as a threat.  This includes physical harm or behavioral 
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modifications as well as habitat degradation/loss from U.S. naval vessel sonar activities, ship 
strike, and heavy and continuous presence by whale-watching vessels.  In 2005, a U.S. vessel 
participating in sonar exercises apparently caused significant behavior changes in killer whale 
activity in the area, such that the whales vacated the area (NMFS 2005b).  Although such 
activities are now receiving close scrutiny, the potential remains for these disruptions to occur, or 
as in other areas, the potential for auditory trauma, stranding, and death.  The increase in 
“background noise” resulting from vessel traffic and coastal development activities, although not 
directly traumatic, has the potential to influence or disrupt the acoustic system that Southern 
Resident killer whales use to navigate, communicate, and forage (Bain and Dahlheim 1994; Erbe 
2002c; Gordon and Moscrop 1996; Holt et al. 2009; NMFS 2008f; Williams et al. 2002a; 
Williams et al. 2002c).  Commercial whale-watching in the region focuses primarily on Southern 
Resident killer whales and has increased dramatically in the recent years (Baird 2001a; Erbe 
2002c; Koski 2004; Koski 2006b; Koski 2007a; MMMP 2002b; Osborne et al. 1999).  Although 
mechanisms are in place to regulate the industry, concerns remain over persistent exposure to 
vessel noise, proximity to whales, which can cause behavioral changes, stress, or potentially the 
loss of habitat (Bain et al. 2006a; Bain et al. 2006c; Foote et al. 2004a; Kriete 2002; Kruse 1991; 
NMFS 2008f; Noren et al. 2009; Wiley et al. 2008; Williams et al. 2002a; Williams et al. 2002c). 

Critical habitat.  Critical habitat for the DPS of Southern Resident killer whales was designated 
on November 29, 2006 (71 FR 69054).  Three specific areas were designated; (1) the Summer 
Core Area in Haro Strait and waters around the San Juan Islands; (2) Puget Sound; and (3) the 
Strait of Juan de Fuca, which comprise approximately 2,560 square miles of marine habitat.  
Three essential factors exist in these areas: water quality to support growth and development, 
prey species of sufficient quantity, quality, and availability to support individual growth, 
reproduction and development, as well as overall population growth, and passage conditions to 
allow for migration, resting, and foraging.  Water quality has declined in recent years due to 
agricultural run-off, urban development resulting in additional treated water discharge, industrial 
development, oil spills.  The primary prey of southern residents, salmon, has also declined due to 
overfishing and reproductive impairment associated with loss of spawning habitat.  The constant 
presence of whale-watching vessels and growing anthropogenic noise background has raised 
concerns about the health of areas of growth and reproduction as well. 

Cook Inlet beluga whale 

Description of the species.  Beluga whales are widely distributed in Arctic and subarctic waters, 
and in Alaska five putative populations exist (Beaufort Sea, eastern Chukchi Sea, Bristol Bay, 
eastern Bering Sea, and Cook Inlet)(Angliss et al. 2001).  Cook Inlet beluga whales are the only 
population that is listed under the ESA.  Mitochondrial and nuclear DNA distinguish Alaskan 
beluga whales from those that occur in Hudson Strait, Baffin Bay and the St. Lawrence River, 
with the Cook Inlet population demonstrating the strong evidence of genetic isolation from the 
other Alaskan populations and other populations demonstrating weak to moderate evidence of 
genetic isolation (O'Corry-Crowe 2008; O'Corry-Crowe et al. 2010; O'Corry-Crowe et al. 2007). 

Distribution.  Beluga whales are observed year-round in Cook Inlet although less is known 
about their winter movements than summer movements (Hobbs et al. 2008).  Data from satellite 
tagging studies suggest that movements of Cook Inlet beluga whales during summer months are 
short and largely focused around river estuaries and inlets (e.g., Chickaloon Bay, Turnagain Arm, 



54  

Susitna River, and Knik Arm in the upper inlet and in many cases the animals exhibited very 
little movement for weeks during the summer (Hobbs et al. 2005).  Dense groupings in these 
areas during June and July are the focus of NMFS aerial surveys, but numbers drop substantially 
in the upper inlet by November (Hobbs et al. 2005).  Outside of Cook Inlet in the Gulf of Alaska 
beluga whale sightings are extremely rare (Laidre et al. 2000).  Hobbs et al. (2005) found that 
tagged beluga whales moved to farther offshore during winter months, but remained within Cook 
Inlet.  However travel distance appeared to increase during winter months, and exhibited more 
widely dispersed patterns both within and among individuals (Hobbs et al. 2005).  Distribution 
during all months is likely influenced by prey distribution, where salmon and eulachon are 
concentrated in river mouths during summer months and other prey like sand lance are found in 
mid and bottom waters of the inlet during winter months, albeit in more dispersed patterns 
leading to the wider dispersal of the whales.   

Based on past studies of the summer distribution of beluga whales in Cook Inlet, it appears that 
the population has experienced a contraction in its overall distribution (Hobbs et al. 2008; Rugh 
et al. 2010; Speckman and Piatt. 2000).  Aerial surveys in the 1970s indicated that at least 10% 
of the population used areas south of Kenai River and Kalgin Island (mid- to lower Cook Inlet) 
during summer months, whereas more recent surveys (1993-2007) observed more than 90% of 
the beluga whales in upper Cook Inlet in shallow waters.  According to Hobbs et al. (2008) 90% 
of the whales in the 1970s were observed within 70 nmi of the western tip of Anchorage (Point 
Woronzof), whereas more recently (1998-2007) 90% were detected within 20 nmi.  Although the 
precise reason for the range contraction is not known, the shrinking summer distribution likely 
reflects the reduction in the population size over the same intervals and the beluga whales’ 
preference for dense aggregations of preferred prey species.  Through the distribution has shrunk 
since the 1970s, possibly due to human hunting in excess of 50 individuals per year in the 
northern portions of Cook Inlet (where human disturbance is highest; city and port of 
Anchorage), surviving individuals seemed to re-occupy this habitat and abandon southern habitat 
(Rugh et al. 2010).  This suggests that the northern reaches of Cook Inlet is superior habitat to 
southern areas, even with the anthropogenic stressors present there (Rugh et al. 2010).  Overall, 
Cook Inlet beluga whale range has shrunk from greater than 7,000 km2 to less than 3,000 km2 
(Rugh et al. 2010). 

Habitat.  During spring and summer months, beluga whales in Cook Inlet are typically 
concentrated near northern river mouths (Rugh et al. 2000).  Cook Inlet experiences some of the 
most extreme tidal fluctuations in the world (see Hobbs et al. (2008) for a discussion), and beluga 
whales in the inlet have adapted to these tidal cycles and seemingly take advantage of them, 
although the precise causal reasons are not well known.  Presumably, the feeding opportunities 
these tidal cycles proffer the beluga whale are a contributing factor.  Beluga whales move further 
into inlets and arms during tidal floods and move back out during ebb tides in a relatively 
predictable manner, although highly-localized differences do exist (Ezer 2010).  Tidal state is 
also believed to influence travel and milling behavior (Garner and Mckee. 2010).  Aerial surveys 
and predictive models of habitat us indicate that beluga whale movement patterns are closely 
correlated to tidal patterns, flow accumulation and mudflats, with a preference for medium and 
high flow inlets of larger river basins (Ezer et al. 2008; Goetz et al. 2007).  More information, 
however, is needed to link these habitat attributes to causative reasons for this preference.  
Besides feeding, studies have suggested this preference for tidal mudflats may also be attributed 
to calving and breeding, molting, or shelter from predators like killer whales (Calkins 1989a; 
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Huntington 2000b; Moore et al. 2000b; Shelden et al. 2003).  Individual movements suggest 
utilization of a variety of areas, with little to no limitation to specific areas over time (Mcguire et 
al. 2010b).  

Reproduction.  Sexual maturity is believed to be attained at 4 to 10 years for females and at 8 to 
15 for males (Nowak 1991; Suydam et al. 1999).  Females typically produce a single calf every 2 
to 3 years following a 14-month gestation.  Of ten adult females examined after stranding, seven 
showed evidence of lactation, post-partum condition, or pregnancy when they died (Burek et al. 
2010).  Calving in Cook Inlet is assumed to occur from mid-May to mid-July, with some 
occurrences in April and August (Calkins 1983; Huntington 2000a; Mcguire et al. 2010a).  Areas 
specific to calving and rearing have thus far not been identified, but movement to different areas 
within Cook Inlet has been noted; calves and their mothers appear to use the same habitats as 
other conspecifics (Mcguire et al. 2010a; Mcguire et al. 2010b).  Alaska natives describe calving 
areas within Cook Inlet as the northern side of Kachemak Bay in April and May, off the mouths 
of the Beluga and Susitna Rivers in May, and in Chickaloon Bay and Turnagain Arm during the 
summer.  According to surveys by LGL (Funk et al. 2005) cow/calf pairs also make extensive use 
of Knik Arm in the summer and fall.  Neonates are often not seen until June in Cook Inlet (Burns 
and Seaman 1986a).  The warmer waters from rivers may help keep newborns warm relative to 
cooler inlet waters (Calkins 1989b; Katona et al. 1983).  Mating follows the calving period.   

Calculation of beluga whale age is based on growth layers in teeth.  Some debate exists as to 
whether a beluga whale tooth contains two growth layer groups (GLG) per year or one growth 
layer per year (Hobbs et al. 2008).  Due to this ambiguity, Hobbs et al. (2008) summarized life 
history parameters according to tooth growth layers rather than years (Table 6 from (Hobbs et al. 
2008)).  

Table 6.  Review of Female beluga life history parameters found in the published literature 
(Hobbs et al. 2008); GLG=growth layer groups). 

Parameter Data Sources 
Age at sexual maturity 8-15 GLG (Braham 1984a; Brodie 1971; Burns 

and Seaman 1986b; Ognetov 1981; 
Seaman and Burns. 1981; Sergeant 
1973) 

 0% at 8-9 GLGs (Burns and Seaman 1986b)a 
 33% at 10-11 GLGs  
 94% at 12-13 GLGs  
 9.1 +/- 2.8 GLGs (Robeck et al. 2005) 
Age at 1st conception 54% at 8-9 GLGs (Burns and Seaman 1986b)b 
 41% at 10-11 GLGs  
 94% at 12-13 GLGs  
Age at senescence 42-43 GLGs (Brodie 1971) 
Pregnancy and birth rates Small fetuses: (Burns and Seaman 1986b) 
 0.055 at 0-11 GLGs  
 0.414 at 12-21 GLGs  
 0.363 at 22-45 GLGs  
 0.267 at 46-57 GLGs  
 0.190 at 58-77 GLGs  
 With full-term fetuses/neonates:  
 0.000 at 0-11 GLGs  
 0.326 at 12-21 GLGs  
 0.333 at 22-45 GLGs  
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Parameter Data Sources 
 0.278 at 46-51 GLGs  
 0.182 at 52-57 GLGs  
 0.125 at 58-77 GLGs  
Lifespan >60 GLGs (Oldest female estimated at 

70+ GLGs) 
(Burns and Seaman 1986b) 

 64-65 GLGs (Khuzin 1961; Ohsumi 1979) 
 60-61 GLGs (Brodie 1971) 
 50-51 GLGs (Sergeant 1973) 
Adult annual survival 0.96-0.97 (Beland et al. 1992) 
 0.955 (based on pilot whale data) (Brodie 1971) 
 0.935 (Lesage and Kingsley. 1998) 
 0.91-0.92 (Allen and Smith. 1978) 
 0.906 (includes natural & human-caused 

mortality) 
(Burns and Seaman 1986b) 

 0.84-0.905 (based on body length and 
lifespan 

(Ohsumi 1979) 

Immature annual survival  0.905 (for neonates in first half year) (Sergeant 1973) 
Reproductive rate 0.010-012 (Perrin 1982)c 
 0.11d  (Burns and Seaman 1986b) 
 0.13d  (Sergeant 1973) 
 0.09d  (Brodie 1971) 
 0.09-0.12 d (Braham 1984a) 
 0.09-0.14e (Braham 1984a) 
 0.12 e (Ray et al. 1984; Sergeant 1973) 
 0.08-0.14e (Davis and Evans 1982) 
 0.06-0.10e (Davis and Finley. 1979) 
 0.08-0.10e (Brodie et al. 1981) 
 0.08 (unknown) (Breton-Provencher 1980) 
Calving Interval <3 years (Burns and Seaman 1986b)f 
 2 yrs and 3 years (Sergeant 1973)g 

aAlaska sample (52 whales).  Sampling occurring in June when most Alaskan beluga whales are born.  Hobbs et al. (2008) note that it is possible 
that non-pregnant 8-9 GLGs beluga whales would have conceived before their 10-11 GLG birth date. 
bAlaska sample of 22 whales. 
cBased on literature review and adopted by the International Whaling Commission 
dBased on annual calf production rates 
eBased on calf counts 
fFor some female beluga whales.  This was a tentative conclusion based on high conception rates noted in some females between the ages of 12-13 
GLGs and 44-45 GLGs. 
gTwo-year intervals were for 25% of mature female belugas in eastern Canada (seven of 29 sampled); presumed after noting pregnancies occurred 
during lactation.  Three-year intervals were for 75% of mature females in eastern Canada.  Sergeant (1973) concluded that the “overlap of 
pregnancy and previous lactation is infrequent so that calving occurs about once in three years.” 

Lifespan.  Lifespan is known to exceed 30 years of age (Burns and Seaman 1986a). 

Feeding.  Analyses of beluga whale stomach contents indicate that beluga whales are 
opportunistic feeders (including including octopi, squids, crabs, shrimps, clams, mussels, snails, 
sandworms, and fishes such as capelin, cod, herring, smelt, flounder, sole, sculpin, lamprey, 
lingcod, salmon, trout, whitefish, northern pike, grayling, and tomcod (Fay et al. 1984; Haley 
1986; Huntington 2000a; Klinkhart 1966; Perez 1990)), but specific species form the bulk of the 
prey when they are seasonally abundant (Hobbs et al. 2008).  For instance, eulachon 
(Thaleichthys pacificus) also known as smelt or candlefish, are a small anadromous fish return 
that their natal rivers in spring for spawning.  In the Susitna River, the eulachon spawning 
migration has a bimodal peak, with fish entering the estuary in May and again in June, and 
represents a significant biomass of prey, with estimates of several thousand fish entering the river 
in the first wave and several million entering the river in June (Calkins 1989a).  The common 
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name candlefish is derived from the fact the fish is so high in fat content during spawning, with 
up to 15% of total body weight as fat, that when caught and dried and strung on a wick the fish 
could be burned like a candle (Payne et al. 1999).  This high fat content confers a significant 
source of energy for beluga whales, including calving whales that occur in the upper inlet during 
the same period (Calkins 1989a).  The stomach contents of one beluga whale harvested in upper 
Cook Inlet in 1998 near the Susitna River contained only eulachon.  Based on stomach sample 
analyses from 2002-2007 fish compose the majority of the prey species, with gadids (cod and 
walleye pollock) and salmonids composing the majority of the fish eaten (Hobbs et al. 2008).  
Anadromous salmonids begin concentrating at the river mouths and intertidal flats in upper Cook 
Inlet in late spring and early summer as emigrating smolts and immigrating adult spawners (Fried 
et al. 1979; Hazard 1988).  Like eulachon, salmon are another source of lipid-rich prey for the 
beluga whale and represent the greatest percent frequency of occurrence of the prey species found 
in Cook Inlet beluga whale stomachs(Hobbs et al. 2008).  As salmonid numbers dwindle in the 
fall and winter, beluga whales return to feed on nearshore or deeper water species including cod, 
sculpin, flounder, sole, shrimp, crab and others (Hobbs et al. 2008).  Feeding frequently occurs 
collaboratively.  Significantly, it appears that Cook Inlet beluga whales have switched diets 
during 1965 to 2007(Quakenbush and Nelson. 2010).  Although the exact nature of this switch is 
unknown, it appears that individual whales are currently feeding at a lower trophic level than 
they formerly did(Quakenbush and Nelson. 2010). 

Status and trends.  On October 22, 2008, NMFS listed the Cook Inlet beluga whale as 
endangered (73 FR 62919).  The Cook Inlet population is relatively isolated compared to other 
beluga whale stocks and the Alaska Peninsula is likely an effective physical barrier to genetic 
exchange, perhaps for thousands of years (Laidre et al. 2000; Murray and Fay 1979; O’Corry-
Crowe et al. 1997).  As such, this population may be particularly sensitive to decline.  Because 
few robust data are available prior to the 1990s, historical population size is based upon surveys 
lacking strong statistical confidence (Table 7).  These estimates range from 150 to 450 
individuals between 1963 and 1988 (Calkins 1984; Hazard 1988; Klinkhart 1966; Murray and 
Fay 1979; Sergeant and Brodie 1975).  However, the most robust survey prior to 1994 occurred 
in 1979 and estimated Cook Inlet to contain 1,293 individuals and may have been an 
underestimate of the population (Calkins 1989b).  Based upon this survey, the maximum stable 
size of the Cook Inlet population is believed to be 1,300 individuals and this value is used for 
management purposes. 

Table 7.  Estimated abundance of Cook Inlet beluga whales with coefficient of variation and 
95% confidence intervals.   

Year Estimate1 CV 95% CI2 
Lower Upper 

1979 1,293    
1994 653 0.43 291 1464 
1995 491 0.44 215 1120 
1996 594 0.28 347 1018 
1997 440 0.14 335 578 
1998 347 0.29 199 606 
1999 367 0.14 279 482 
2000 435 0.23 279 679 
2001 386 0.087 326 458 
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2002 313 0.12 248 396 
2003 357 0.107 290 440 
2004 366 0.2 290 440 
2005 278 0.18 196 394 
2006 302 0.16 221 412 
2007 375 0.14 285 492 
2008 375 0.23 240 585 
20092 321 0.18 226 456 

1All estimates, except 1979 estimate, reported in Hobbs & Shelden (2008).  The 1979 estimate is from Calkins (1989a) as cited in NMFS 2008.   
2Data from R. Hobbs, pers. comm., to A. Garrett, Apr. 2010.  
 

Systematic aerial surveys of beluga whales throughout Cook Inlet began in 1993.  Surveys each 
June from 1999 to 2005 have estimated abundance between 278 and 435 individuals, with a 
sharp 47% decline between 1994 and 1998 proceeding that (Hobbs et al. 2000, NMFS 
unpublished data).  Data from June 2006 surveys supported an abundance of 302 individuals 
(Angliss and Outlaw 2007a).  Trends support a 71% probability that the population is declining 
and this trend is likely to continue (Hobbs et al. 2006; Lowry et al. 2006). 

Between 1979 and 1994, according to above noted population estimates, Cook Inlet beluga 
whales declined by 50%, with another 50% decline observed between 1994 and 1998.  Using a 
growth fitted model Hobbs et al. (2008) observed an average annual rate of decline of -2.91% 
(SE = 0.010) from 1994 to 2008, and a -15.1% (SE=0.047) between 1994 and 1998.  A 
comparison with the 1999-2008 data suggests the rate of decline at -1.45% (SE=0.014) per year 
(Hobbs et al. 2008).  Reasons for population decline are somewhat nebulous, but mortality 
pressures include native harvests, strandings, and killer whale predation (Angliss and Outlaw 
2007a; Mahoney and Shelden 2000).  However, Cook Inlet harvests have been severely restricted 
(1-2 whales annually) since 1999, which coincides with a significant trend in the stabilization of 
the beluga whale population.  Despite this, the population has not yet shown signs of recovery to 
historical numbers.  Although not currently factors, disease and habitat disturbance have the 
potential to significantly impact the Cook Inlet population.  According to the best available 
population viability analysis, there is an 80% probability that the population is declining, a 26% 
probability that the population will be extinct in 100 years (by 2108) and a 70% probability that 
the population will be extinct within 300 years (by 2308).   

Natural threats.  Cook Inlet beluga whales have significant natural mortality from a variety of 
sources (NMFS 2006c).  According to Hobbs et al. (2008), over 700 beluga whales have stranded 
in Cook Inlet since 1988.  Although many of these strandlings survive and refloat with the next 
tide, a portion do not (Mahoney et al. 2010).  Killer whales are known to prey upon beluga 
whales in Cook Inlet and although exact removal numbers are unknown, small reductions in a 
small population can limit recovery (Burek et al. 2010; Mahoney et al. 2010).  Herpes virus, 
meningoencephalitis, and parasites have been identified as diseases in Cook Inlet beluga whales 
(Burek et al. 2010).  However, the significance of disease and other causes of death is difficult to 
estimate due to the poor condition in which most dead-stranded beluga whales are found in Cook 
Inlet (Burek et al. 2010).  Loss of genetic variability has been raised as a possible reason for the 
failure of Cook Inlet beluga whales to recover; studies to evaluate this possibility are currently 
underway (Bechdel et al. 2010). 
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Anthropogenic threats.  Cook Inlet beluga whales have been exposed to anthropogenic 
pressures in the past, including incidental takes in gillnet fisheries of roughly three to six 
individuals per year (Burns and Seaman 1986a; Murray and Fay 1979).  During the early 1900s 
there was a short-lived commercial whaling company, The Beluga Whaling Company, which 
operated at the Beluga River in upper Cook Inlet.  The Company during its 5 years of operation 
harvest 151 belugas from 1917-1921 (Mahoney and Shelden. 2000). Although evidence does not 
presently exist for harassment of belugas, areas of high beluga use coincide with regions of 
lowest ambient sound and have been known to evacuate high-use areas of humans (Huntington 
2000a).  Significant behavioral changes have been observed in Cook Inlet belugas in response to 
small boat proximity (NMFS 2006c).  Propeller scars are observed on belugas, although direct 
mortality has not been verified.   

Although belugas in the St.  Lawrence Seaway and Canadian Arctic have high contaminant 
burdens and subsequent biological impairments (such as cancer), belugas in Cook Inlet have been 
found to have low concentrations of PCBs, organochlorines, and heavy metals (Becker et al. 
2000a; Kelly et al. 2009a; Mcaloose and Newton. 2009; Tomy et al. 2009), although in situ 
concentrations of some organic pollutants have increased over the past 20 years (Becker 2010).  
However, copper is two to three times higher in Cook Inlet beluga whales than beluga whales 
from the eastern Beaufort Sea and the eastern Chukchi Sea, but is similar concentrations found in 
Hudson Bay beluga whales (Becker et al. 2000b).  Studies indicate that PCBs and chlorinated 
pesticide concentrations are higher in male St.  Lawrence Seaway beluga whales than females, 
reflecting the transference of body loads to the offspring that occurs during gestation and 
lactation (Becker et al. 2000b).  However, discharges from industrial activities that do not enter 
municipal treatment systems (petroleum, seafood processing, ship ballast, dredging), discharges 
from municipal wastewater treatment systems, runoff from urban areas, mining operations, 
military sites, airports and agricultural areas, and accidental spills or discharges of petroleum and 
other products remain concerns for stock recovery (Moore et al. 2000a; NMFS 2006c).  Selenium 
from tooth samples has been found to be a good predictor of selenium levels in liver and muscle 
(selenium can be a predictor of mercury levels) (Kinghorn et al. 2008).  Mercury levels also vary 
by age, as individuals grow older and switch dietary preferences (Loseto and Ferguson 2008).   

Critical habitat.  NMFS proposed critical habitat for the Cook Inlet beluga whale on December 
2, 2009 (74FR 63080).  Two areas specific areas are proposed comprising 7,809 square 
kilometers of marine habitat.   Area 1 encompasses 1,918 square kilometers (741 sq. mi.) of 
Cook Inlet northeast of a line from the mouth of Threemile Creek (61º 08.5’N., 151 º 04.4’ W.) 
to Point Possession (61º 02.1’N., 150 º 24.3’ W.).  This area is bounded by Anchorage, the 
Matansuska-Susitna Borough, and the Kenai Peninsula Borough.  This area contains shallow 
tidal flats, river mouths, or estuarine areas and is important as foraging and calving habitats.  
Area 1 also has the highest concentrations of beluga whales in the spring through fall as well as 
the greatest potential for adverse impact from anthropogenic threats.  Area 1 contains many rivers 
with large eulachon and salmon runs, including two rivers in Turnagain Arm (Twenty-mile River 
and Placer River) which are visited by beluga whales in the early spring.  Use declines in the 
summer and increases again in August through the fall, coinciding with Coho salmon returns.  
Also included in Area 1 are Knik Arm and the Susitna delta.  Area 2 consists of 5,891 square 
kilometers (2,275 sq. mi.) of Cook Inlet, located south of Area 1, north of a line at 60º 25.0’N., 
and includes nearshore areas south of 60º 25.0’N along the west side of the Inlet and Kachemak 
Bay on the east side of the lower inlet.  Area 2 is used by Cook Inlet beluga whales in a dispersed 
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fashion for fall and winter-feeding and as transit waters.  Area 2 includes near and offshore areas 
of the mid and upper Inlet, and nearshore areas of the lower Inlet.  Area 2 includes Tuxedni, 
Chinitna, and Kamishak Bays on the west coast and a portion of Kachemak Bay of the east coast. 
 Dive studies indicate that beluga whales in this area dive to deeper depths and are at the surface 
less frequently than they are when they inhabit Area 1.  The primary constituent elements 
essential to the conservation of Cook Inlet beluga whales are:  (1) intertidal and subtidal waters 
of Cook Inlet with depths <30 ft. (MLLW) and within 5 miles of high and medium flow 
accumulation anadromous fish streams; (2) primary prey species consisting of four species of 
Pacific salmon (Chinook, Coho, sockeye, and chum salmon), Pacific eulachon, Pacific cod, 
walleye pollock, saffron cod, and yellowfin sole; (3) the absence of toxins or other agents of a 
type or amount harmful to beluga whales; (4) Unrestricted passage within or between the critical 
habitat areas; and (5) absence of in-water noise at levels result in the abandonment of habitat by 
Cook Inlet beluga whales.  The comment period on this proposed rule closed on February 1, 
2010.   

Pinnipeds 

Steller sea lion 

Description of the species.  Steller sea lions are distributed along the rim of the North Pacific 
Ocean from San Miguel Island (Channel Islands) off Southern California to northern Hokkaido, 
Japan (Loughlin et al. 1984; Nowak 2003).  Their centers of abundance and distribution are in 
Gulf of Alaska and the Aleutian Islands, respectively (NMFS 1992).  In the Bering Sea, the 
northernmost major rookery is on Walrus Island in the Pribilof Island group.  The northernmost 
major haul-out is on Hall Island off the northwestern tip of St.  Matthew Island.  Their 
distribution also extends northward from the western end of the Aleutian chain to sites along the 
eastern shore of the Kamchatka Peninsula.  For management purposes, two stocks have been 
designated, but which represent a single population.  These stocks likely have some taxonomic 
basis at the sub-species level in both genetics and skull morphology (Phillips et al. 2009). 

Distribution.  The eastern DPS of Steller sea lions includes animals east of Cape Suckling, 
Alaska (144°W) south to California waters (55 FR 49204).  The western DPS of Steller sea lion 
includes animals west of Cape Suckling, Alaska (144°W; 62 FR 24345).  Most adult Steller sea 
lions occupy rookeries during the pupping and breeding season and exhibit a high level of site 
fidelity.  During the breeding season, some juveniles and non-breeding adults occur at or near the 
rookeries, but most are on haulouts (sites that provide regular retreat from the water on exposed 
rocky shoreline, gravel beaches, and wave-cut platforms or ice; (Ban 2005; Call and Loughlin 
2005; Rice 1998a).  Adult males may disperse widely after the breeding season.  Males that breed 
in California move north after the breeding season and are rarely seen in California or Oregon 
except from May through August (Mate 1973).  During fall and winter many sea lions disperse 
from rookeries and increase use of haulouts, particularly on terrestrial sites but also on sea ice in 
the Bering Sea.  The rookeries off southern Oregon are located along the coast at Rogue and 
Orford reefs near 42º25’ and 42º45’N and 124º30’W, respectively (Bonnell et al. 1992).  Counts 
of adults and juveniles in Oregon have shown a gradual increase from 1486 in 1976 to 3648 in 
2001 (Angliss and Outlaw 2005b). 

Reproduction.  Female Steller sea lions reach sexual maturity and first breed between three and 
eight years of age and the average age of reproducing females (generation time) is about 10 years 
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(Calkins and Pitcher 1982; Pitcher and Calkins 1981; York 1994).  They give birth to a single 
pup from May through July and then breed about 11 days after giving birth.  Females normally 
ovulate and breed annually after maturity although there is a high rate of reproductive failures.  
The gestation period is believed to be about 50 to 51 weeks (Pitcher and Calkins 1981).  The 
available literature indicates an overall reproductive (birth) rate on the order of 55% to 70% or 
greater (Gentry 1970; Pike and Maxwell 1958; Pitcher and Calkins 1981).  However, natality was 
reported to be low in the western DPS in recent years (2003-2009; 69%) versus earlier years 
(43%); (Maniscalco et al. 2010).  Survival through the first three weeks can be less than 50% at 
some sites, while others can be over 90% (Kaplan et al. 2008).  Twinning has been reported 
(Maniscalco and Parker. 2009). 

Males reach sexual maturity at about the same time as females (three to seven years of age, 
reported in (Loughlin et al. 1987), but generally do not reach physical maturity and participate in 
breeding until about eight to ten years of age (Pitcher and Calkins 1981).  The sex ratio of pups at 
birth is assumed to be about 1:1 or biased toward slightly greater production of males, but non-
pups are biased towards females (Calkins and Pitcher 1982; NMFS 1992; Pike and Maxwell 
1958; Trites and Larkin 1992; York 1994).   

Mothers with newborn pups will make their first foraging trip about a week after giving birth, but 
trips are short in duration and distance at first, then increase as the pup gets older (Maniscalco et 
al. 2006; Merrick and Loughlin 1997; Milette 1999; Milette and Trites 2003; Pitcher et al. 2001). 
 Females attending pups tend to stay within 20 nm of the rookery (Calkins 1996; Merrick and 
Loughlin 1997).  Newborn pups are wholly dependent upon their mother for milk during at least 
their first three months of life, and observations suggest they continue to be highly dependent 
upon their mother through their first winter (Porter 1997; Scheffer 1945; Trites et al. 2006).  
Generally, female Steller sea lion will nurse their offspring until they are one to two years old 
(Calkins and Pitcher 1982; Gentry 1970; Pitcher and Calkins 1981; Sandegren 1970; Trites et al. 
2006). 

Habitat.  Steller sea lions are not known to make regular migrations but do move considerable 
distances.  Adult males may disperse hundreds of miles after the breeding season (Calkins 1986; 
Calkins and Pitcher 1982; Loughlin 1997).  Adult females may travel far out to sea into water 
greater than 3,300 feet deep (Merrick and Loughlin 1997).  Studies on immature Steller sea lions 
indicate three types of movements: long-range trips (greater than 9.3 miles and greater than 20 
hours), short-range trips (less than 9.3 miles and less than 20 hours), and transits to other sites 
(NMFS 2007b).  Long-range trips started around 9 months of age and likely occur most 
frequently around the time of weaning, while short-range trips happen almost daily.  Young 
individuals generally remain within 300 miles of rookeries their first year before moving further 
away in subsequent years (Raum-Suryan et al. 2004).  Many animals also use traditional rafting 
sites, which are places where they rest on the ocean surface in a tightly packed group (Bigg 
1985)NMFS unpublished data).  Frontal features with small-scale temperature gradients appear 
to be attractive foraging sites for juvenile Steller sea lions (Lander et al. 2010). 

Feeding.  Steller sea lions are generalist predators that eat various fish (arrowtooth flounder, 
rockfish, hake, flatfish, Pacific salmon, Pacific herring, Pacific cod, sand lance, skates, cusk eel, 
lamprey, walleye, Atka mackerel), squids, and octopus and occasionally birds and marine 
mammals (Brown et al. 2002; Calkins and Goodwin 1988; Daniel and Schneeweis 1992; Jones 
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1981; McKenzie and Wynne 2008; Olesiuk et al. 1990b; Pitcher and Fay 1982; Sinclair and 
Zeppelin 2002; Womble and Conlon. 2010).  Diet is likely strongly influenced by local and 
temporal changes in prey distribution and abundance (McKenzie and Wynne 2008; Sigler et al. 
2009).  Haulout selection appears to be driven at least in part by local prey density (Winter et al. 
2009). 

Diving.  Diving activity is highly variable in Steller sea lion by sex and season.  During the 
breeding season, when both males and females occupy rookeries, adult breeding males rarely, if 
ever, leave the beach (Loughlin 2002).  However, females tend to feed at night on one to two day 
trips and return to nurse pups (NRC 2003a).  Female foraging trips during winter are longer (80 
miles) and dives are deeper (frequently greater than 820 feet).  Summer foraging dives, however, 
are closer to shore (about 10 miles) and shallower (330 to 820 feet; (Loughlin 2002; Merrick and 
Loughlin 1997).  As pups mature and start foraging for themselves, they develop greater diving 
ability until roughly 10 years of age (Pitcher et al. 2005).  Juveniles usually make shallow dives 
to just over 50 feet, but much deeper dives in excess of 1,000 feet are known (Loughlin et al. 
2003).  Young animals also tend to stay in shallower water less than 330 feet deep and within a 
dozen miles from shore (Fadely et al. 2005). 

Status and trends.  Steller sea lions were originally listed as threatened under the ESA on 
November 26, 1990 (55 FR 49204), following a decline in the U.S. of about 64% over previous 
three decades.  In 1997, the species was split into two separate populations based on 
demographic and genetic differences (Bickham et al. 1996; Loughlin 1997), and the western 
population was reclassified to endangered (62 FR 24345) while the eastern population remained 
threatened (62 FR 30772).  The Steller sea lion is also listed as endangered on the 2007 IUCN 
Red List (Group 1996). 

Loughlin et al.(1984) estimated the worldwide population of Steller sea lions was between 
245,000 and 290,000 animals (including pups) in the late 1970s.  Though the genetic differences 
between the eastern and western DPSs were not known at the time, Loughlin et al. (1984) noted 
that 90% of the worldwide population of Steller sea lions was in the western DPS in the early 
1980s (75% in the U.S. and 15% in Russia) and 10% in the eastern DPS.  Loughlin et al. (1984) 
concluded that the total worldwide population size (both DPSs) was not significantly different 
from that estimated by Kenyon and Rice (1961) for the years 1959 and 1960, though the 
distribution of animals had changed.  Steller sea lions collected in the Gulf of Alaska during the 
early 1980s showed evidence of reproductive failure and reduced rates of body growth that were 
consistent with nutritional limitation (Calkins et al. 1998; Calkins and Goodwin 1988; Pitcher et 
al. 1998).  After conducting a range-wide survey in 1989, Loughlin et al. (1992) noted that the 
worldwide Steller sea lion population had declined by over 50% in the 1980s, to approximately 
116,000 animals, with the entire decline occurring in the range of the western DPS. 

Western DPS-The western stock appears to be in decline.  Between late 1970s and the mid-
1990s, counts of the western population of sea lions fell from 109,880 animals to 22,167 animals, 
a decline of 80% (Hauser et al. 2007; NMFS 1995).  The 1996 count was 27% lower than the 
count in 1990.  Fritz and Stinchcomb (2005) estimate that from 1991 to 2000, the number of 
adults and juvenile sea lions in the western population declined by about 38%.  Surveys by Fritz 
and Stinchcomb (2005) indicate that the current number of non-pups in the western population is 
29,037.  NMFS combined this number with the number of pups in 2004-2005 (9,951) to reach 
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the current minimum population estimate of 38,988 of Steller sea lion in the western U.S. (the 
western stock); when combined with data on Steller sea lions in Russia the minimum population 
estimate is 44,780 (Angliss and Outlaw 2007a).   

A number of population models have been developed for Steller sea lions (Gerber and 
VanBlaricom 2001; Goodman 2006; Holmes and York 2003; Pascual and Adkison 1994; 
Winship and Trites 2006; York et al. 1996).  According to several population models the western 
DPS has significant chance of going extinct within the next 100 years (Goodman 2006; Winship 
and Trites 2006; York et al. 1996), while many individual rookeries (breeding aggregations) 
however, have a much higher risk of extinction (e.g., western Aleutian island rookeries and Gulf 
of Alaska) (Winship and Trites 2006).   

Eastern DPS-The eastern stock seems to be more optomistic than the western stock.  Trend 
counts in Oregon were relatively stable in the 1980s, showing a gradual increase in numbers 
since 1976 (NMFS 2005d).  Numbers in California, however, have declined to less than 2,000 
non-pups, from counts between 1927 and 1947 that were as high as 7,000 non-pups (NMFS 
2005d).  The count from Central California in 2000, reached the second lowest count of 349 non-
pups (in 1992 the count was as low as 276 non-pups).  In Southeast Alaska, counts of non-pups 
at trend sites increased by 56% from 1979 to 2002 from 6,376 animals to 9,951 (NMFS 2005d; 
Sease et al. 2001).  Counts of non-pups at British Columbia trend sites increased nearly 260% 
between 1982 and 2002 (NMFS 2005d).   

NMFS considers this population to be increasing, and multiplies pup counts by a factor of 4.5 
(based on (Calkins and Pitcher 1982) or 5.1 (Trites and Larkin 1996) to estimate the total 
population size (Angliss and Outlaw 2008).  Pup count data from 2002 through 2005 from across 
the range of the eastern population, multiplied by a factor of 4.5 or 5.1 results in a population 
estimate of 48,519 or 54,989 animals.  In 2005, 5,510 pups were counted in Alaska, 3,318 pups 
were counted in British Columbia in 2002, 1,136 pups were counted in Oregon in 2002, and 818 
counted in California in 2004.  The current minimum population estimate is 44,584 animals.  
NMFS calculates this estimate by adding non-pup counts taken in 2002 in Southeast Alaska, to 
counts of animals in Washington in 2002 as well as counts of pups and non-pups in Canada in 
1998, Oregon in 2002, California in 2004, and southeastern Alaska in 2005 (Angliss and Outlaw 
2008).  

Off Oregon and Washington, nearly 90% of Steller sea lion sightings have occurred within 21 km 
of shore and none further out than 40 km or in waters greater than 200 m deep (Bonnell et al. 
1992).  In the fall (September and November surveys), mean density was 0.011/km2 (Bonnell et 
al. 1992). 

Estimated annual mortality is 0.22 for ages 0-2, dropping to 0.07 at age 3, then increasing 
gradually to 0.15 by age 10 and 0.20 by age 20 (York 1994).  Population modeling suggested that 
decreased juvenile survival likely played a major role in the decline of sea lions in the central 
Gulf of Alaska during 1975-1985 (Holmes and York 2003; Pascual and Adkison 1994; York 
1994). 

Natural threats.  Killer whale predation, particularly on the western DPS under reduced 
population size, may cause significant reductions in the stock (NMFS 2008g).  Sleeper sharks are 
also significant predators of Steller sea lions.  Frid et al. (2009) suggested that risk of predation in 



64  

nearshore waters by killer whales and offshore predation risk by sleeper sharks limited the use of 
Pacific herring in deep water and walleye Pollock in shallow water. 

Steller sea lions have tested positive for several pathogens, but disease levels are unknown (FOC 
2008).  Similarly, parasites in this species are common, but mortality resulting from infestation is 
unknown.  However, significant negative effects of these factors may occur in combination with 
stress, which reduces immune capability to resist infections and infestations.  If other factors, 
such as disturbance, injury, or difficulty feeding occur, it is more likely that disease and 
parasitism can play a greater role in population reduction. 

Anthropogenic threats.  Steller sea lions were historically and recently subjected to substantial 
mortality by humans, primarily due to commercial exploitation and both sanctioned and 
unsanctioned predator control, (Atkinson et al. 2008; Bigg 1988; Bonnot 1928; Bonnot and 
Ripley 1948; NMFS 2008g; Pearson and Verts 1970; Rowley 1929; Scheffer 1945; Scheffer 
1950).  Several dozen individuals may become entangled and drown in commercial fishing gear 
(Atkinson et al. 2008; NMFS 2008g).  Several hundred individuals are removed by subsistence 
hunters annually in controlled and authorized harvests.  Occasional harvest occur in Canada 
(FOC 2008).  Additional mortality (362 from 1990 to 2003) has occurred from shooting of sea 
lions interfering in aquaculture operations along British Columbia (FOC 2008).  Marine debris is 
also concerning for the health of Steller sea lion populations.  It is estimated that 0.26% of Steller 
sea lions have marine debris around their necks or are hooked by fishing gear (0.07%) (FOC 
2008; Raum-Suryan et al. 2009). 

Significant concern also exists regarding competition between commercial fisheries and Steller 
sea lions for the same resource: stocks of pollock, Pacific cod, and Atka mackerel.  Significant 
evidence exists that supports the western DPS declining as a result of change in diet and resulting 
declines in growth, birth rates, and survival (Atkinson et al. 2008; Calkins et al. 1998; Calkins 
and Goodwin 1988; Pitcher et al. 1998; Trites and Donnelly 2003).  As a result, limitations on 
fishing grounds, duration of fishing season, and monitoring have been established to prevent 
Steller sea lion nutritional deficiencies as a result of inadequate prey availability. 

Behavioral disruption occurs as a result of human disturbance (FOC 2008).  Research efforts to 
collect scats, count and weigh pups, and other human activities on or near rookeries can lead to 
stampedes into the water.  Mortality can occur directly due to pup trampling, separating from 
mothers, or drowning.  If disturbance is too frequent, haulouts may be completely abandoned.  
Although habituation to some activities, such as boating, can occur, unusual activities and 
sounds, such as blasting or demolition, can remotely trigger stampedes.   

Contaminants are a considerable issue for Steller sea lions.  Roughly 30 individuals died as a 
result of the Exxon Valdez oil spill and contained particularly high levels of PAH contaminants, 
presumable as a result of the spill.  Blood testing confirmed hydrocarbon exposure.  
Subsequently, premature birth rates increased and pup survival decreased (Calkins et al. 1994; 
Loughlin et al. 1996).  Organochlorines, including PCBs and DDT  (including its metabolites), 
have been identified in Steller sea lions in greater concentrations than any other pinniped during 
the 1980s, although levels appear to be declining (Barron et al. 2003; Hoshino et al. 2006).  The 
levels of PCBs have been found to have twice the burden in individuals from Russia than from 
western Alaska (4.3 ng/g wet weight versus 2.1 ng/g wet weight; (Myers et al. 2008).  Levels of 
DDT in Russian pups were also on average twice that in western Alaska pups (3.3 ng/g wet 
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weight blood versus 1.6 ng/g wet weight).  The source of contamination is likely from pollack, 
which have been found to contain organochlorines throughout the Gulf of Alaska, but higher in 
regions occupied by the eastern DPS of Steller sea lions (NMFS 2008g).  Heavy metals, 
including mercury, zinc, copper, metallothionien, and butyltin have been identified in Steller sea 
lion tissues, but are in concentrations lower than other pinnipeds (Beckmen et al. 2002; Castellini 
1999; Kim et al. 1996; NMFS 2008g; Noda et al. 1995).  Mercury may be of higher significance, 
with liver levels being measured at levels above those necessary to impact fish (Holmes et al. 
2008).  However, contaminants leading to mortality in Steller sea lions have not been identified 
(NMFS 2008g).  Contaminant burdens are lower in females than males, because contaminants 
are transferred to the fetus in utero as well as through lactation (Lee et al. 1996; Myers et al. 
2008).  However, this means that new generations tend to start with higher levels of 
contaminants than their parents originally had.  Concerns over Steller sea lion contaminants are 
of additional concerns because contaminants in the body tend to be mobilized as fat reserves are 
used, such as when prey availability is low; a situation that is likely occurring for Steller sea lions 
today. 

Critical habitat. Critical habitat was designated on August 27, 1993 for both eastern and 
western DPS Steller sea lions in California, Oregon, and Alaska (58 FR 45269).  Steller sea lion 
critical habitat includes all major rookeries in California, Oregon, and Alaska and major haulouts 
in Alaska.  Essential features of Steller sea lion critical habitat include the physical and biological 
habitat features that support reproduction, foraging, rest, and refuge, and include terrestrial, air 
and aquatic areas.  Specific terrestrial areas include rookeries and haul-outs where breading, 
pupping, refuge and resting occurs.  More than 100 major haulouts are documented.  The 
principal, essential aquatic areas are the nearshore waters around rookeries and haulouts, their 
forage resources and habitats, and traditional rafting sites.  Air zones around terrestrial and 
aquatic habitats are also designated as critical habitat to reduce disturbance in these essential 
areas.  Specific activities that occur within the habitat that may disrupt the essential life functions 
that occur there include:  (1) wildlife viewing, (2) boat and airplane traffic, (3) research activities, 
(4) timber harvest, (5) hard mineral extraction, (6) oil and gas exploration, (7) coastal 
development and pollutant discharge, and others.   

In addition, British Columbia has established protective areas in which Steller sea lion rookeries 
occur at Triangle Island and Cape St.  James (Canada 2008).  Several other haul-out sites occur 
within Canadian national and provincial parks.  Further, the Canadian government is moving to 
establish a marine wildlife area for the Scott Islands, where Steller sea lions haul-out and breed. 

Proposed species 
False killer whale-Hawaiian insular DPS 

Description of the species.  Hawaiian insular false killer whales (HIFKWs) are genetically 
unique compared to the pelagic form in surrounding Pacific waters; at a broader level, 
individuals inhabiting the Central Pacific are genetically different from those in the Eastern 
Pacific (Chivers et al. 2010; Chivers et al. 2007).  Genetic data suggest little immigration into the 
HIFKW population.  Additional data are being collected to identify whether other false killer 
whale groups are part of the Hawaiian insular population. 

Distribution.  HIFKWs move widely and rapidly among the main Hawaiian Islands, traveling up 
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to 112 km from shore over a total range of 77,600 km2 (Baird 2009; Baird et al. 2008; Baird et al. 
2005a; Baird et al. 2010; Forney et al. 2010; Oleson et al. 2010).  Individuals can move between 
islands within a matter of days (Oleson et al. 2010).  However, they do not appear to move 
broadly within the ocean basin, as is generally assumed for false killer whales.  Part of HIFKW 
range overlaps with pelagic forms of false killer whales between 42 and 112 km from shore 
(Baird et al. 2010; Forney et al. 2010).  

Growth and reproduction.  False killer whales generally reach sexual maturity at 8-11 years of 
age for females and 8-10 years for males (Kasuya 1986; Odell and McClune. 1999; Stacey et al. 
1994).  Individuals grow to 40-50% of adult body length in their first year, but males continue to 
grow faster and to a larger size thereafter (Kasuya 1986).  This leads to a degree of sexual 
dimorphism, with males larger in size than females, the degree of which varies around the world; 
in Japan, females are about 84% the length of males (Ferreira 2008; Kitchener et al. 1990).  
Maximum body size appears to vary at different locations, although growth appears to end after 
20-30 years of age (Ferreira 2008; Kasuya 1986). Data from Japanese drive fisheries found a 
nearly 2:1 sex bias towards females (Ferreira 2008). 

There is debate regarding false killer whale mating systems, which may be polygamous or 
matrilinear (Ferreira 2008).  Females ovulate at least annually, apparently at random, and calving 
can occur year-round (Stacey et al. 1994).  Ovulation rates decrease with age to the point that 
females over the age of 44 years are considered reproductively senescent (Ferreira 2008; Kasuya 
1986) rates for false killer whales have been estimated at 14-21% of females annually, although 
this has been found to vary (11.4% in Japan and 2.2% in South Africa)(Kasuya 1986; Perrin and 
Reilly 1984b).  Gestation lasts 11-16 months in captivity (Brown et al. 1966).  Lactation lasts 18-
24 months (Perrin and Reilly 1984b).  Calving intervals have been estimated at roughly 7-9 years 
in Japan (Ferreira 2008; Stacey et al. 1994), relatively long for cetaceans.  However, this varies, 
with 4.5 years in South Africa (Ferreira 2008). 

Maximum lifespan for false killer whales has been reported as 63 years for females and 58 for 
males (Kasuya 1986).  Some individuals have been resighted in Hawaiian waters over a 21-year 
time span (Baird et al. 2008). 

Behavior.  False killer whale group sizes can vary widely.  Group sizes average 10-30 
individuals based upon aerial and vessel surveys, but groups stranding on shore are generally 
much larger, frequently numbering from 100 to more than 800 individuals (Baird 2009; Baird et 
al. 2008; Baird et al. 2010; Ferreira 2008; Ross 1984; Wade and Gerrodette 1993).  It has been 
proposed that groups seen during surveys are a part of larger aggregations maintaining acoustic 
contact (Baird et al. 2010).  Indeed, larger dispersed aggregations of false killer whales have been 
noted during surveys (Baird 2009; Carretta et al. 2007b; Reeves et al. 2009b; Wade and 
Gerrodette 1993)  that can move in a coordinated fashion (Baird et al. 2008). HIFKWs form 
strong long-term bonds (Baird et al. 2008) 

Diving is not well-known in false killer whales, but individuals are believed capable of reaching 
500 m in depth and possibly 700 m (Cummings and Fish. 1971; Oleson et al. 2010).  However, 
most dives are significantly shallower.  HIFKWs occasionally dive to 150 m (apart from the 
possible 700 m dive), with frequent dives to 5-20 m during daytime and 30-40 m during 
nighttime, with durations for nighttime dives running 6-7 minutes (Oleson et al. 2010).  Some 
prey, such as mahi-mahi, occur most prevalently in the top 100 m of the water column, while 
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others, such as tuna and swordfish, may occur down to several hundred meters (Boggs 1992; 
Carey and Robinson 1981).  

Feeding.  HIFKWs are unique within their taxon as they are the only known group to exclusively 
exploit a shallow, productive coastal habitat versus ranging through oligotrophic waters, which 
may lead to the observation that HIFKWs have a relatively high density in nearshore Hawaiian 
waters versus false killer whales exploiting pelagic habitats (Acevedo-Gutierrez et al. 1997; 
Oleson et al. 2010).  The primary prey of false killer whales are large pelagic fishes (Baird 2009; 
Baird et al. 2008; Baird et al. 1989; Brown et al. 1966; Bullis and Moore. 1956; Evans and 
Awbrey 1986; Kasuya 1985; Peacock 1936; Scheffer and Slipp 1948; Shallenberger 1981a; Silas 
et al. 1984; Tsutsumi et al. 1961), although marine mammals and squid may be predated upon 
(Baird et al. 1989; Bullis and Moore. 1956; Deraniyagala 1945; Hernandez-Garcia 2002; Hoyt 
1983; Palacios and Mate 1996; Perryman and Foster. 1980; Rinaldi et al. 2007; Ross 1984).  
Some false killer whales shift diets seasonally (Tsutsumi et al. 1961).  Few data are available to 
address which specific species HIFKWs target, but jacks, mahimahi, filefish, rainbow runner, 
amberjack, wahoo, tuna, marlin, moonfish, swordfish, lustrous pomfret, and others may be 
significant (Baird 2009; Baird et al. 2008; Brown et al. 1966; Oleson et al. 2010; Shallenberger 
1981a).  False killer whales have been known to remove large fishes on longlines (reports 
indicate tuna of 50-100 kg and one marlin >227 kg), leaving only the heads (Yuen 1977; 
Zimmerman 1983) and have been observed to capture free-swimming, highly-evasive mahimahi 
estimated at 8-9 kg (Brown et al. 1966).  Attacks on large, highly mobile fishes, such as 
yellowfin tuna and broadbill swordfish have also been observed (Baird et al. 2008). 

Feeding likely occurs cooperatively (Oleson et al. 2010) and prey sharing also has been 
documented (Baird et al. 2008; Connor and Norris 1982).  Foraging occurs throughout the day 
and night (Baird et al. 2008; Evans and Awbrey 1986).  Energetic requirements from captive 
individuals (probably less energetically demanding than free-ranging individuals) has been found 
to range between 2.9-6.1% of body weight daily (Baird et al. 2009; Kastelein et al. 2000; 
Sergeant 1969; Van Dyke and Ridgway 1977). 

Habitat.  Habitats that HIFKWs may occur in include a wide range of depths (<50 to >4,000 m) 
(Baird et al. 2010).  Movement patterns suggest individual-based island preferences for periods 
of days followed by wide-ranging movements to short-term residencies in other locations, 
possibly in association with prey density and movement (Baird 2009). 

Status and trends.  The HIFKW was proposed for listing as endangered on November 17, 2010 
(75 FR 70169).  No historical levels of HIFKW population size are known.  Estimates based 
upon assumed biological parameters have suggested possible historical levels of 769-2,461 
individuals (Oleson et al. 2010).  Data from 1993-1998 support a population estimate of 121 
individuals, which is likely negatively biased (Mobley Jr. et al. 2000; Oleson et al. 2010).  The 
best available estimate of population size is 123 individuals, but this estimate is somewhat dated 
(Baird et al. 2005a).  It is not known whether two groups of false killer whales who have not 
been seen to associate with insular false killer whales are a part of the population or part of a 
separate population.  Current estimates of population size are 151 individuals without these 
groups and 170 with them (Oleson et al. 2010). 

Aerial survey data suggest that the population has been in decline since at least 1989.  During this 
year, three groups were seen near Hawaii (outside of the known range of any population except 
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the insular population) numbering an estimated 380, 460, and 470 individuals, respectively 
(Reeves et al. 2009a).  Aerial surveys since this time through 2003 have encountered gradually 
fewer individuals (Baird 2009; Mobley 2004; Mobley Jr. et al. 2000).  Resighting rates have also 
been low during this time.  Findings of surveys are supported by genetic analyses, which suggest 
a recent population decline (Chivers et al. 2010). 

Natural threats.  Reduced genetic diversity may be a natural, but partially anthropogenically 
induced factor leading to HIFKW decline (Oleson et al. 2010).  Only a single instance of 
depredation on false killer whales has been documented, where killer whales attacked, killed, and 
consumed a false killer whale calf off New Zealand (Heithaus 2001; Visser et al. 2010).  
Parasitic infections have risen to levels thought to contribute to the deaths of some false killer 
whales, but these were from stranded individuals and it is unknown whether other health issues 
allowed for unhealthy levels of parasitism to develop (Andrade et al. 2001; Hernandez-Garcia 
2002; Morimitsu et al. 1987; Odell et al. 1980; Sedlak-Weinstein 1991; Stacey et al. 1994; 
Zylber et al. 2002). 

Anthropogenic threats.  Several threats have been identified that may have or continue to lead 
to the decline of HIFKWs.  These include competition with fisheries for prey, bioaccumulation of 
contaminants, live captures for aquaria, and injury from longline fisheries (Oleson et al. 2010).  
False killer whales in Hawaiian waters have been seen to take catches from longline and trolling 
lines (Nitta and Henderson 1993; Shallenberger et al. 1981).  Interactions with longline and troll 
fishery operations appear to result in disfigurement to dorsal fins, with roughly 4% of the 
population showing this injury, as well as entanglement and hooking (Baird and Gorgone 2005; 
Forney and Kobayashi. 2007; McCracken and Forney 2010; Nitta and Henderson 1993; 
Shallenberger et al. 1981; Zimmerman 1983).  Carretta et al. (2009) estimated that 7.4 
individuals per year are killed or seriously injured during the course of fishing operations in the 
Hawaiian EEZ.  In this area, false killer whales are the most frequently hooked or entangled 
cetacean species, with most interactions occurring in tuna-targeting longline operations (Forney 
and Kobayashi. 2007; McCracken and Forney 2010).  In total, 31 observations of serious injury 
or mortality have been documented from 1994-2008, which has led to an estimated 13 false killer 
whales killed or seriously injured throughout the Hawaiian longline fishery (Forney and 
Kobayashi. 2007; McCracken and Forney 2010).  It is noteworthy that most interactions occurred 
well beyond the range known for HIFKWs (0.6 HIFKWs were estimated to have been killed or 
serious injured from 2003-2008)(McCracken and Forney 2010).  In addition, false killer whales 
depredate on catches from shortline fisheries at least off northern Maui, with deliberate shootings 
occurring in some cases (Nitta and Henderson 1993; NMFS 2009a; Schlais 1985; TEC 2009). 

Overfishing of some pelagic fishes, including bigeye and yellowfin tuna, may be adversely 
affecting HIFKWs.  Catch weights for mahimahi have also declined since 1987 (NMFS 2009c).  
These changes may limit the prey quantity or quality available for HIFKWs. 

Bioaccumulation of particularly organic contaminants may be more of a concern for false killer 
whales than for many other cetaceans due to the high trophic level at which false killer whales 
feed.  The only available study of HIFKW contaminant burden found PCBs and DDT present, 
with adult females carrying lower burdens than subadults or adult males (likely due to 
contaminants being unloaded into fetuses and milk during lactation) (Aguilar and Borrell. 1994; 
Krahn et al. 2009b; Ylitalo et al. 2009).  PCB levels were high enough that biological effects 
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would be experienced in other mammals (Kannan et al. 2000).  Persistent organic pollutant levels 
are similar between false killer whales sampled in Taiwan and Japan, but smaller (some much 
smaller) than samples from British Columbia (Chou et al. 2004; Haraguchi et al. 2006; Ylitalo et 
al. 2009).  Although these pollutants are believed to typically be sequestered in blubber, 
individuals undergoing metabolic stress mobilize fat tissue, resulting in pollutants being 
mobilized into other body tissues (Aguilar et al. 1999).  False killer whales from Australia and 
Japan have been found to have relatively high body burdens of mercury, lead, and cadmium 
(Endo et al. 2010; Kemper et al. 1994). 

Bearded seal-Beringia and Okhotsk DPSs 

Description of the species.  Two subspecies of bearded seals are recognized by the NMFS: 
Erignathus barbatus nauticus in the Pacific and Erignathus barbatus barbatus in the Atlantic 
(Burns 1981; Davis et al. 2008b; Manning 1974; Rice 1998c).  The two subspecies are delineated 
at 112º W and 145º E longitude (Cameron et al. 2010).  Only Erignathus barbatus nauticus has 
been proposed for listing, in two segments: the Beringia and Okhotsk DPSs. 

Distribution.  Bearded seals proposed for listing in the Pacific and Arctic oceans are distributed 
from 85º N south to Sakhalin Island (45º N), including the Bering and Okhotsk Seas (Allen 
1880b; Heptner et al. 1976a; King 1983; Manning 1974; Ognev 1935; Scheffer 1958a).  Bearded 
seals from the two DPSs have not been documented through satellite telemetry or other means to 
move between DPS regions (Cameron et al. 2010). 

Growth and reproduction.  Singleton pups and rarely twins are born on ice flows from March 
to May with a peak in April (Burns 1981; Cameron et al. 2010; Heptner et al. 1976a; Johnson 
1966; Kovacs et al. 1996; Krylov et al. 1964a; Reeves et al. 1992).  Females give birth away 
from conspecifics (Heptner et al. 1976a; Kovacs et al. 1996).  Pups are led away from the 
birthing flow soon after birth (Lydersen and Kovacs. 1999).  Pups enter the water within hours of 
birth (Burns 1967; Gjertz et al. 2000b; Holsvik 1998; Kovacs et al. 1996; Tikhomirov 1966).  
Erignathus barbatus nauticus pups are weaned by 24 days, during which time females are mostly 
in water (split evenly between diving/foraging and activities near the surface) and pups are 
hauled-out, diving, or active near the surface (Burns 1981; Holsvik 1998; Krafft et al. 2000; 
Lydersen et al. 1994; Lydersen et al. 1996; Lydersen and Kovacs. 1999; Watanabe et al. 2009).  
Mothers nurse one to four times daily (usually between mid-morning and late-evening) and travel 
an average of 48 km per day (Krafft et al. 2000).  During this time, mothers lose weight rapidly 
(4.5 kg/day) (Andersen et al. 1999; Heptner et al. 1976a; Krafft et al. 2000; Krylov et al. 1964a; 
Lydersen and Kovacs. 1999).  Pups appear to accompany mothers on foraging dives and traveling 
(Gjertz et al. 2000b; Hammill et al. 1994; Lydersen et al. 1994; Lydersen and Kovacs. 1999; 
Watanabe et al. 2009).  Stomach contents analyses support independent foraging prior to 
weaning (Burns 1981; Chapskii 1938).  Growth during the first two years is rapid, with standard 
length increasing 9- 26% in the first year and 12-15% in the second, with growth slowing to 4% 
by the fourth year (Burns 1981; Burns and Frost 1983).  Seasonal changes occur in body tissues, 
with individuals being leanest during summer after molting; the best available data indicate 
females lose roughly 9% of their body weight between late-winter and summer, while males lose 
much larger more (37%), with significance decreases in blubber thickness (Burns 1967; Burns 
1981; Burns and Frost 1983).  Females can appear larger than males in some areas, but 
measurements have thus far not resulted in significant differences (Benjaminsen 1973; Burns 



70  

1981; Chapskii 1938). 

Aspects of breeding are almost entirely unknown, as significant portions of breeding and 
copulation likely occur underwater out of view of researchers (Cameron et al. 2010; Stirling 
1983).  Mating may be monogamous or promiscuous (Budelsky 1992; Stirling 1983; Stirling and 
Thomas. 2003).  Adult females ovulate after lactation (Atkinson 1997; McLaren 1958b; Potelov 
1975a).  Examination of ovaries indicate ovulation occurs from March to June, with a peak in 
April to May (Burns 1967; McLaren 1958b; Potelov 1975a; Tikhomirov 1966).  Breeding 
behavior is thought to occur during the parturition/nursing period.  Following fertilization, 
implantation of the embryo is delayed by 2-2.5 months until between June and mid-August 
(Burns 1967; Burns 1981; Chapskii 1938; McLaren 1958b).  Gestation lasts roughly nine months 
(Burns 1967). 

Adult males engage in extensive underwater calling (apparently the only sex that vocalizes 
underwater) and territory defense (Burns 1967; Burns 1981; Cameron et al. 2010; Chapskii 1938; 
Cleator et al. 1989; Cleator and Stirling. 1990; Davies et al. 2006; Dubrovskii 1937; Freuchen 
1935; Poulter 1968; Ray et al. 1969; Risch et al. 2007; Stirling et al. 1983; Van Parijs and Clark. 
2006; Van Parijs et al. 2001a; Van Parijs et al. 2003a; Van Parijs et al. 2004).  Calling peaks after 
weaning (Wollebaeck 1927).  Males appear to defend single territories of less than 12 km2 within 
and between years, although roaming over larger areas while calling has also been documented 
(Cleator et al. 1989; Cleator and Stirling. 1990; Risch et al. 2007; Van Parijs et al. 2003b; Van 
Parijs et al. 2004).  Use of one or the other strategies is thought to be largely influenced by sea 
ice conditions, with areas having more predictable sea ice conditions associated with more 
territorial males (Burns 1967; Van Parijs 2003; Van Parijs et al. 2004).  Breeding season in the 
Bering Sea is generally in May and June (Braham et al. 1981; Fiscus et al. 1976). 

Migration and movements.  Bearded seals move northward in late-spring and summer and 
southward during fall in association with preferred sea ice conditions (Burns 1967; Burns 1981; 
Burns and Frost. 1979; Fay 1974; Frost et al. 2008; Heptner et al. 1976a; Johnson 1966; Nelson 
1981; Potelov 1969; Simpkins et al. 2003).  Although these conditions are dynamic (particularly 
in recent years with dramatic changes in Arctic ice conditions), adults in the Bering Sea likely 
move through the Bering Strait during spring where they summer along the edge of the Bering 
and Chukchi Sea pack ice and multiyear ice (Burns 1981; Burns and Frost. 1979; Fay 1974; 
Heptner et al. 1976a; Nelson et al. 1984).  Other individuals (mostly juveniles) stay closer to 
shore, including bays, brackish water estuaries, river mouths, and even up rivers during summer 
and early-fall (Burns 1967; Burns 1981; Heptner et al. 1976a).  As ice reforms during fall and 
winter, seals remain with the edge of the ice and move back south through the Bering Strait, 
although this movement is less predictable than the northward migration (Burns 1981; Burns and 
Frost. 1979; Cameron and Boveng 2007; Cameron and Boveng 2009; Frost et al. 2005; Frost et 
al. 2008; Kelly 1988a).  The central and northern Bering Sea appear to have the highest density 
of bearded seals at this time (Burns 1981; Burns and Frost. 1979; Fay 1974; Heptner et al. 1976a; 
Nelson et al. 1984)(Braham et al. 1981).  Late-winter and early-spring is a time of diffuse 
occurrence for bearded seals, with individuals ranging along the ice front in the Chukchi and 
Bering Seas; young-of-the-year seals are particularly widely traveled, occurring as far south as 
the southern Kamchatka Peninsula (Burns 1967; Burns and Frost. 1979; Cameron 2006; Frost et 
al. 2008).  However, individuals appear to maintain residence in their same general locations for 
weeks to months, likely exploiting local feeding areas (Cameron and Boveng 2009; Cameron 
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2005).  In the Sea of Okhotsk, seasonal movements and preferences are similar to those 
previously described, but are of shorter distance (Fedoseev 1966; Fedoseev 2000b; Heptner et al. 
1976a).  In areas where sea ice completely disappears, some individuals haul-out on land in late 
summer and early-fall until sea ice reappears along the coast; this is most common in the Sea of 
Okhotsk, where tens to hundreds of individuals may occupy rookeries (Burns 1981; Chugunkov 
1970; Heptner et al. 1976a; Krylov et al. 1964a; Tavrovskii 1971; Tikhomirov 1961b).  Haul-
outs are often low, pebbly banks or sandy shoals of bays and river mouths (Heptner et al. 1976a). 
 Seal residency in nearshore waters versus following the receding ice may be influenced by ice 
receding into waters that are too deep for effective foraging or complete disappearance of sea ice 
(Burns 1981; Burns and Frost. 1979). 

Vocalization and hearing.  Males are the more vocal of the sexes, producing underwater 
frequency-modulated calls up to 1 min in duration that can be heard over 30 km away generally 
associated with breeding or display (Cleator et al. 1989; Van Parijs 2003; Van Parijs and Clark. 
2006; Van Parijs et al. 2001b; Van Parijs et al. 2003b; Van Parijs et al. 2004). 

Behavior.  Limited observations of free-ranging bearded seals have been conducted and those 
that are available characterize relatively small areas and few individuals (Cameron et al. 2010).  
Individuals in the Sea of Okhotsk appear to haul-out more frequently in the afternoon and 
evening (late-May to July time frame), while individuals in the Bering and Chukchi Seas and 
Kotzebue Sound, Alaska rarely hauled-out at all (July to April), suggesting a lack of sea ice as 
necessary habitat during much of the year (Cameron et al. 2010; Frost et al. 2008; Heptner et al. 
1976a).  However, younger individuals may haul-out later in the day (evening) than adults 
(afternoon)(Frost et al. 2008).  Mothers tolerate a greater level of threat to remain with or reunite 
with pups than other ice seals (Burns and Frost. 1979; Hammill et al. 1994; Krylov et al. 1964a; 
Lydersen et al. 1994).   

Most diving data stem from nursing mothers and pups (Cameron et al. 2010).  Diving behavior 
largely reflects local bathymetry, with relatively shallow (<100 m), short dives (<10 min) that are 
likely associated with bottom feeding (Gjertz et al. 2000b; Krafft et al. 2000).  Pups appear to be 
capable of diving to the depths of adults within six weeks (Gjertz et al. 2000b).  Maximum dives 
can exceed 300 m and pups can apparently dive to nearly 500 m (Cameron and Boveng 2009; 
Gjertz et al. 2000b; Kovacs 2002). 

Bearded seals are capable of making and maintaining holes to enter, exit, and breath in areas of 
ice where breaks are not otherwise available (Burns 1967; Burns 1981; Burns and Frost. 1979; 
Cleator and Smith 1984; Fay 1974; Fedoseev 1965a; Nelson et al. 1984; Smith 1981b). 

Feeding.  Bearded seals feed on a wide variety of species, including benthic invertebrates, 
demersal fishes, and occasionally, schooling fishes (Antonelis et al. 1994; Burns 1967; 
Eschmeyer et al. 1983; Finley and Evans. 1983; Johnson 1966; Lowry et al. 1980b; Mecklenberg 
et al. 2002).  Individuals likely switch prey to suit the available diet, sometimes on a seasonal and 
long-term basis (Dehn et al. 2007; Kosygin 1971).  However, a few prey items seem to constitute 
the bulk of bearded seal diets, including bivalve mollusks, crabs, shrimp, sculpin, as well as 
Arctic, saffron, and polar cod (Allen 1880b; Antonelis et al. 1994; Bukhtiyarov 1990; Burns 
1967; Burns and Frost. 1979; Chapskii 1938; Chugunkov 1970; Dehn et al. 2007; Dunbar 1941b; 
Fedoseev and Bukhtiyarov 1972; Finley and Evans. 1983; Frost et al. 1977; Heptner et al. 1976a; 
Hjelset et al. 1999; Johnson 1966; Kenyon 1962; Lowry et al. 1979; Lowry et al. 1980b; Nelson 
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et al. 1984; Nikolaev and Skalkin 1975; Ognev 1935; Pikharev 1941; Vibe 1950; Wilke 1954).  
In the Bering Sea and Sea of Okhotsk, crabs, shrimps, worms, and clams are the major prey items 
(Antonelis et al. 1994; Burns 1967; Burns and Frost. 1979; Frost et al. 1977; Kenyon 1962; 
Kosygin 1971; Lowry et al. 1979; Lowry et al. 1980b; Nelson et al. 1984).  Juveniles appear to 
feed on more isopods, shrimp, and saffron cod than adults, while clams, crabs, sculpins, and 
flatfishes are of greater significance in the diets of older individuals (Burns and Frost. 1979; 
Lowry et al. 1980b; Nelson et al. 1984).  Age-specific differences in feeding also include 
temporal differences, with younger animals feeding earlier in the day than older individuals 
(Frost et al. 2008; Kosygin 1971). 

Bearded seals are thought to scan the bottom with their highly-innervated whiskers and burrow 
only in pursuit of prey (Marshall et al. 2006).  Bearded seals use suction to draw the soft tissues 
of their mollusk prey from their shells (Burns 1981; Marshall et al. 2008). 

Habitat.  As bearded seals forage on benthic organisms year-round, they occur in waters where 
they can dive to the bottom (Burns 1981; Burns and Frost. 1979; Fedoseev 1984; Fedoseev 
2000b; Heptner et al. 1976a; Kosygin 1971; Kovacs 2002; Nelson et al. 1984).  Bearded seals 
generally prefer areas where they do not need to make and maintain holes in ice (Fedoseev 1984; 
Heptner et al. 1976a; Nelson et al. 1984).  Aerial survey sightings in Pacific and Canadian waters 
suggest a preference for waters <100 m deep with open ice cover (Kingsley et al. 1985; Stirling 
et al. 1977; Stirling et al. 1982; Tarasevich 1963).  Sexual segregation by depth may occur in 
some areas, with males occurring in areas with deeper water (Tarasevich 1963).  Bearded seals 
are dependent upon sea ice for molting, pupping, and nursing, as well as for resting and 
thermoregulation, although they can occur on a variety of ice types and sizes (Burns 1981; Burns 
2002; Burns and Frost. 1979; Fay 1974; Feltz and Fay. 1966; Lydersen and Kovacs. 1999; 
Nelson et al. 1984).  They avoid unbroken, drifting, heavy ice as well as multi-year ice (Burns 
1981; Burns and Frost. 1979; Burns and Harbo. 1977; Fedoseev 1965a; Fedoseev 1984; Kingsley 
et al. 1985; Nelson et al. 1984; Smith 1981b).  In the Bering Sea, bearded seals were seen most 
frequently when ice coverage was greater than 75%; the same has been observed elsewhere 
(Kingsley et al. 1985; Simpkins et al. 2003; Ver Hoef et al. In review).  Seals move with 
changing ice conditions, apparently maintaining this preference (Burns and Frost. 1979; Heptner 
et al. 1976a). 

Status and trends.  Beringia and Okhotsk DPSs of bearded seals were proposed for listing on 
December 10, 2010 (75 FR 77469).  Bearded seals are born at a roughly even male to female sex 
ratio, but older age classes may exhibit a small bias towards females (Johnson 1966).  Pup 
mortality has been found to be about 60% the first year, dropping to 19% by age 1, reaching lows 
of 8% from ages 6-20 before increasing with age (Burns and Frost. 1979; Nelson et al. 1984).  
Roughly 20% of pups survive to sexual maturity.  Females reach sexual maturity at ages 5-6, 
with males following at an average of one year later (Andersen et al. 1999; Burns 1967; Burns 
and Frost. 1979; McLaren 1958b; Smith 1981b; Tikhomirov 1966).  Although ovulation may 
occur as early as three years of age, pregnancy generally does not occur until age five (Cleator 
1996; Fedoseev 2000b; Heptner et al. 1976a; Nelson et al. 1984; Potelov 1975b; Quakenbush et 
al. 2010; Smith 1981b; Tikhomirov 1966).  Pregnancy rates for females six years old and older 
are 80% or higher (Burns 1967; Burns 1981; Burns and Eley 1978; Cleator 1996; Popov 1976; 
Potelov 1975b; Quakenbush et al. 2010; Smith 1981b; Tikhomirov 1966).  The species is not 
known to become reproductively senescent (Burns and Frost. 1979; Cleator 1996).  Bearded seals 
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live to an age of 20-25 years, with maximum longevity of 30 years (Andersen et al. 1999; 
Benjaminsen 1973; Burns and Frost. 1979; Kovacs 2002; Smith 1981b).   

No accurate estimates of any bearded seal grouping are believed to exist due to issues in being 
able to accurately count seals (Cameron et al. 2010).  However, estimates do exist.  Overall, 
bearded seals of both subspecies have been estimated to number 500,000-1,000,000 combined by 
various authors (Blix 2005; Bychkov 1971; Kovacs 2002; Stirling and Archibald. 1979).   

Bychkov’s original estimate included roughly 450,000 individuals in the range of Erignathus 
barbatus nauticus (Bychkov 1971).  Burns (1981) estimated 300,000 individuals in the Bering 
and Chukchi Seas a decade later.  A variety of regional surveys in the Bering Sea have been 
conducted, but few data are available to estimate population size.  The NMFS biological review 
team recommended setting current estimates at 125,000 for the Bering Sea and 27,000 for the 
Chukchi Sea based upon the most recent aerial surveys in these areas (Cameron et al. 2010). 

Aerial surveys in the Sea of Okhotsk were the basis of original population estimates for this 
region, numbering 233,000-253,000 individuals (Fedoseev 1970; Fedoseev 1971).  Fedsoseev 
(2000b) provided similar estimates using data collected from 1968-1990, with an estimated 
200,000-250,000 individuals inhabiting the region.  However, the NMFS biological review team 
recommended setting current estimates at 95,000 individuals based upon the last surveys 
conducted in the region (Cameron et al. 2010). 

As population estimates are so imprecise, detecting changes in them over time is not 
quantitatively possible at this time (Cameron et al. 2010).  Even qualitative estimates, such as 
querying local hunters in Alaska, have failed to detect any clear trends in population abundance 
(Cameron et al. 2010).  Therefore, we have no means to determine whether bearded seal DPSs 
are declining, increasing, or stable.  However, bearded seals are considered to still occupy the full 
extent of their range (Cameron et al. 2010) 

Natural threats.  Bearded seals are known to be predated upon by polar and brown bears, killer 
whales, and possibly walrus and Greenland sharks, with polar bears being the primary predator 
(Cameron et al. 2010; Cleator 1996; Fay 1960; Heptner et al. 1976a; Kelly 1988a; Lowry and Fay 
1984; Lowry et al. 1987; Zenkovich 1938).  Pups and subadults may be more vulnerable to polar 
bear predation than other age classes (Stirling and Archibald. 1977). 

Anthropogenic threats.  Both bearded seal DPSs were proposed for listing due to the potential 
impact that a warming climate may have on the biology of species, specifically the availability of 
ice and prey abundance and distribution, as well as possible impacts of ocean acidification on the 
marine food chain (Cameron et al. 2010).   

Subsistence hunting of bearded seals has likely occurred for hundreds if not thousands of years in 
northern communities (Cameron et al. 2010; Krupnik 1984; Riewe 1991).  Monitoring from 
1966-1979 support annual harvests of roughly 1,700 individuals from the Bering, Chukchi, and 
East Siberian Seas, although a peak of 4,750-6,308 individuals occurred in 1977 (Burns 1981; 
Matthews 1978).  From 1990-1998, levels had risen to a mean harvest of 6,788 individuals 
annually; these levels are believed to persist to the present day (Allen and Angliss 2010; 
Cameron et al. 2010; Coffing et al. 1998; Georgette et al. 1998; Wolfe and Hutchinson-
Scarbrough 1999).  However, correcting for individuals not recovered (bodies sink when in 
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water) results in estimates of 8,485-10,182 (Cameron et al. 2010).  Subsistence hunting on the 
Chukchi Peninsula support annual average harvests of 629 individuals from 1941-1960 that 
declined through the 1960’s and 1970’s to an average harvest of 427 individuals, likely due to 
excessive harvest by commercial sealing and additional focus on walrus hunting (Cameron et al. 
2010; Krupnik 1984).  Total subsistence harvests from the Russian Bering and Chukchi Seas 
during the 1970’s averaged 1,600 animals, with years possibly as high as 2,300, but decreasing to 
about 900 seals between 1981 and 1983 (Burns and Frost. 1979; Cameron et al. 2010; Fedoseev 
2000b).  Subsistence harvest levels in the Sea of Okhotsk are generally unknown (Cameron et al. 
2010) .  

Beginning in 1961, Soviet commercial sealing in the Bering and Chukchi Seas began, peaking in 
the late 1960’s at over 7,000 individuals killed annually, after which levels dropped in response 
to overexploitation (Burns and Frost. 1979; Krylov et al. 1964a; Popov 1976; Popov 1982a).  
This sealing was suspended from 1970-1975.  Commercial exploitation continued during 1981-
1983 at far lower levels (average of 719 individuals)(Mineev 1984).  Commercial harvests of 
bearded seals in the Sea of Okhotsk began in the early 1940’s and quickly reached 6,000 
individuals killed annually (Cameron et al. 2010).  In 1957, a peak of 13,229 individuals was 
reached after the depletion of eastern Sakhalin Island and a shift to Shelikov Bay (Popov 1976).  
Harvests continued to fluctuate between 5,000 and 9,000 individuals for several years as 
exploited areas were depleted and hunts moved to new territory (Fedoseev 1984).  From 1969-
1980, harvests dropped dramatically to an average of 1,334.  Commercial exploitation is now 
regulated and is set at 6,250 individuals for the Russian Bering and Chukchi Seas, Chukotka 
Peninsula, and eastern Siberia and 2,100 for the Sea of Okhotsk (Russian Federal Fisheries 
Agency 2009).  Significantly, reported numbers were not corrected for struck and lost animals; 
depending upon hunting technique, estimates are likely 20-70% higher (Burns 1967; Davis et al. 
1980; Fedoseev 2000b; Riewe and Amsden 1979; Smith and Taylor. 1977). 

Organochlorine compounds have been found in bearded seals throughout their range and appear 
to be ubiquitous in the Arctic marine food chain (Bang et al. 2001b; Burrell 1981; Clausen 1978; 
Galster and Burns 1972; Galster 1971; Hoekstra et al. 2003; Kovacs 2007b; Muir et al. 2003; 
Norstrom and Muir. 1994; O'Hara and Becker. 2003; Quakenbush et al. 2010; Quakenbush and 
Citta. 2008; Smith and Armstrong. 1978; Wiberg et al. 2000).  Levels of DDT in bearded seals 
from the Beaufort and Bering seas were higher than other Arctic marine mammals, although PCB 
levels were similar between Arctic pinnipeds (Galster and Burns 1972; Kelly 1988a) 

Low bycatch and mortality (up to four individuals) has been reported for the Bering Sea/Aleutian 
Islands (BSAI) groundfish trawl fishery (Allen and Angliss 2010; Angliss and Allen 2009; 
Angliss and Lodge 2002).  Bottom trawling also causes significant changes to the benthic 
environment which can impact bearded seals and the prey they rely upon (Cameron et al. 2010). 

Ringed seal-Arctic, Baltic, Ladoga, and Okhotsk DPSs and Saimaa seal 

Description of the species.  Ringed seals may consist of up to ten subspecies based upon skull 
morphology, coat coloration, behavior, and genetics, but the NMFS currently recognizes five 
(Arctic, Baltic, Ladoga, Okhotsk, and Saimaa) with the understanding that additional information 
which is currently lacking may find additional classifications within the Arctic subspecies (Allen 
1880a; Amano et al. 2002; Anderson 1934; Chapskii 1955; Davis et al. 2008a; Fedoseev 1984; 
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Hyvärinen and Nieminen 1990; Kelly et al. 2010b; Kelly et al. 2009b; King 1983; Ognev 1935; 
Palo 2003; Rice 1998b; Scheffer 1958b; Sell 2008). 

Distribution.  Ringed seal occurrence is circumpolar as well as in three lakes as remnants from 
glacial periods (King 1983).  Arctic ringed seals occur as far south as Newfoundland and Baffin 
Bay in the Atlantic and the Bering Sea in the Pacific (King 1983; Mansfield 1967).  Sea of 
Okhotsk ringed seals occur as far south as the Sea of Japan (King 1983).  Arctic ringed seals do 
not come ashore, but rely entirely upon ice as a substrate for nursing, resting, and cover (Kelly 
1988b; Kelly et al. 2010a).  In areas where ice disappears entirely (all other subspecies), land is 
used for some of these functions (Härkönen et al. 1998; Kunnasranta 2001; Lukin et al. 2006; 
Ognev 1935; Trukhin 2000)  

Growth and reproduction.  For all subspecies, parturition occurs in late-winter to early-spring 
(February-April) in subnivean lairs (Arctic, Baltic, Ladoga, and Saimaa subspecies) or shoreline 
ice (lake subspecies) during maximal snow depth; Sea of Okhotsk pups are born in moving pack 
ice either in lairs or in the open (Belikov and Boltunov 1998; Chapskii 1940; Fedoseev 1965a; 
Fedoseev 1972; Fedoseev 1975; Finley and Evans 1983; Freuchen 1935; Helle 1979; Heptner et 
al. 1976b; Kelly 1988b; Krylov et al. 1964b; Kunnasranta 2001; Kunnasranta et al. 2001; Lukin 
et al. 2006; Lukin and Potelov 1978; Lydersen 1998; McLaren 1958a; Ognev 1935; Rautio et al. 
2009; Sinisalo et al. 2008; Sipilä and Hyvärinen 1998; Smith 1987; Tikhomirov 1961a).  Nursing 
continues for an average of 39 days post partum, but can vary from 3-9 weeks (Fedoseev 1975; 
Hammill et al. 1991; Käkelä and Hyvärinen 1993; Lydersen and Hammill 1993b).  Pups spend 
about half of their time in water during the nursing period, diving up to 89 m deep and for as long 
as 12 minutes (Lydersen and Hammill 1993b).  Just after weaning, pups shed their fetal coat for 
an adult-type coat (Kelly 1988b; Lydersen and Hammill 1993b).  For all individuals, molting 
occurs from mid-May to mid-July with some regional variation in timing; individuals spend long 
periods out of the water and metabolism decreases by nearly 20% (Ashwell-Erickson et al. 1986; 
Kelly et al. 2010a; Kelly and Quakenbush 1990; Kunnasranta et al. 2002; McLaren 1958a; Smith 
1973; Smith and Hammill. 1981).  However, molting can be deferred until August if suitable ice 
is not available (Bychkov 1965; McLaren 1958a).  Sexual maturity occurs at 4-8 years of age for 
females and 5-7 years for males in the Arctic and Sea of Okhotsk, although individual body 
condition and population structure can influence the timing (Burns and Fay 1970; Frost and 
Lowry 1981; Holst et al. 1999; Kelly 1988b; Kovacs 2007a; Lydersen and Gjertz 1987; 
Mansfield 1967; McLaren 1958a; Reeves 1998; Sipilä 2003; Sipilä and Hyvärinen 1998; Sipila 
et al. 1999; Smith 1973; Smith and Stirling 1975; Tikhomirov 1968).  Females and males may 
mature more quickly in the Baltic (5 and 3-4 years, respectively), Lake Ladoga (4-5 and 6-7 
years, respectively), and Lake Saimaa (4-5 and 4 years, respectively)(Curry-Lindahl 1975; 
McLaren 1958a; Popov 1979; Sipilä and Hyvärinen 1998).  Pregnancy or ovulation rates in the 
Arctic have been found to vary between 0.45 and 0.86, although later revisions eliminating young 
individuals reduced much of the variability, with averages between 0.63 and 0.81 in various 
locations (Hammill 1987; Johnson et al. 1966; Nazarenko 1965; Reeves 1998; Smith 1987; 
Smith et al. 1979).  However, Baltic levels were much lower (0.28), apparently due to a uterine 
pathology unique to the region (Helle 1980a; Reeves 1998).  Lake Saimaa ringed seals have been 
reported to have pregnancy rates of between 0.7 and 0.83 between the 1980s and 1990s (Sipilä 
2003; Sipilä et al. 1990).  Ringed seals live to between 15 and 28 years of age on average, with 
maximum lifespan measured at 48 years (Frost and Lowry 1981; Helle 1980a; Holst et al. 1999; 
Lydersen and Gjertz 1987; McLaren 1958a; Sipilä and Hyvärinen 1998; Sipila et al. 1999; Smith 
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1973).  Data from Russian harvests in the Sea of Okhotsk between 1960-1965 suggest a majority 
of individuals were less than 10 years old (Fedoseev 1968).  Mortality rates derived from harvest 
data suggest a mortality rate of 30-41% for pups, dropping to 10% annually by sexual maturity 
and slowly increasing after age 15 (Kelly 1988b).  Body condition changes drastically with 
season, with extensive blubber loss during spring and early summer due to reduced foraging, 
molting, and increased involvement with breeding and/or rearing of young (Fedoseev 1965b; 
Hammill et al. 1991; Johnson et al. 1966; Kelly et al. 2010b; Lowry et al. 1980a; Lydersen 1995; 
Lydersen and Hammill 1993a; Lydersen and Kovacs 1999; McLaren 1958a; Pikharev 1946; Ryg 
et al. 1990; Ryg and Øritsland 1991; Smith 1987).  Females have been found to lose 19% of their 
body weight between March and June while males lost 12% (Ryg et al. 1990).  These body 
reserves are replaced during the rest of the year (Kelly et al. 2010b). 

The ringed seal mating system is believed to polygamous, with males defending territories they 
mark with a strong scent (particularly around breathing holes and adjacent snow) (Chapskii 1940; 
Hardy et al. 1991; Kelly et al. 2010a; Kelly et al. 2010b; Ognev 1935; Ryg et al. 1992; Smith 
1981a; Smith 1987; Stirling 1977).  Males in the Arctic rut from late-March to mid-May, with 
regional peaks in activity (Bakulina 1989; McLaren 1958a).  Adult and subadult males appear to 
have bite marks and engage in aggressive behavior during the breeding season, a time when 
underwater vocalizations are documented to increase (Rautio et al. 2009; Smith 1987; Smith and 
Hammill. 1981; Stirling et al. 1983).  Males may guard territories or mates underneath the sea 
ice, based upon interpretations of shallow dive depths and restricted movements of males versus 
females during the breeding season (Kelly et al. 2010a; Kelly et al. 2010b; Kelly and Wartzok 
1996; Rautio et al. 2009; Stirling 1973; Stirling et al. 1983).  Although size does not appear to 
correlate to the number of female neighbors, male age does and may influence reproductive 
success for individual males (Krafft et al. 2007).  Mating has not been observed to date, but is 
thought to occur underwater near the females’ lair (Kelly 1988b; Kelly et al. 2010b).  Arctic 
females ovulate in May and early-June shortly after parturition, although ovulation can be 
suppressed if body condition is insufficient (Harwood et al. 2000; Johnson et al. 1966; Kelly et 
al. 2010b; Smith 1973; Smith 1987).  Implantation is delayed by 3-3.5 months, followed by an 
approximate eight-month gestation for a single pup or, rarely, twins (Fedoseev 1975; McLaren 
1958a; Smith 1987).  Births occur at a 1:1 sex ratio (Fedoseev 1975; Frost and Lowry 1981; 
Helle 1980a; Lydersen and Gjertz 1987; McLaren 1958a; Sipilä et al. 1990; Sipila et al. 1999; 
Smith 1973). 

Behavior.  Arctic ringed seals are strongly driven by ice cover, with a typical year broken-up into 
three “ecological seasons”: August to October as an open water or feeding period when intensive 
feeding occurs, an early-winter to March or May period when seals are resting in subsurface 
caves, and a breeding/molting period once ice begins to melt and break-up (Born et al. 2004; 
Kelly et al. 2010a) (Kelly et al. 2010b).   

Arctic ringed seals in the Beaufort and Chukchi Seas spend most of their time either in water or 
in snowy lairs (90% August-November, 20% December-March), except during the spring molt 
(May-June) when they spend an average of 55% of their time basking on ice (Kelly et al. 2010a; 
Smith and Stirling 1975).  Similar general observations have occurred in Baffin Bay and the 
Baltic Sea (Born et al. 2002; Harkonen et al. 2008; Teilmann et al. 1999).  Arctic ringed seals 
rest in their lairs from April to mid-May (mostly at night)(Kelly et al. 2010a).  Ringed seals 
spend more time on ice once spring temperatures warm and lairs start becoming exposed (late-



77  

March to early April in the Sea of Okhotsk, late-April in Lake Ladoga, March to early June in the 
Bering and Chukchi Seas)(Heptner et al. 1976b; Kelly and Quakenbush 1990; Kunnasranta et al. 
2002; Lowry et al. 1980a; Tikhomirov 1961a).  Basking while molting reaches a peak in the 
Arctic during June (Born et al. 2002; Carlens et al. 2006; Harwood et al. 2007; Kelly et al. 
2010a; Moulton et al. 2002; Smith 1987; Smith and Hammill. 1981).  Individuals frequently 
return to the water, with pups entering and exiting more frequently than adults (Carlens et al. 
2006).  However, time out of water increases in June (Kelly et al. 2010a).  When hauled out, 
individuals are vigilant and oriented for quick reentry into the breathing hole and/or facing 
downwind (Finley 1979; Kingsley and Stirling 1991).  As sea ice breaks up, individuals spend 
more time in water (Kelly et al. 2010b). 

Ringed seals are able to dive to depths in excess of 500 m for 39 minutes or more, although most 
dives are less than 10 minutes in duration and extend to whatever depth the ocean bottom is 
(Born et al. 2004; Gjertz et al. 2000a; Harkonen et al. 2008; Kelly and Wartzok 1996; 
Kunnasranta et al. 2002; Lydersen 1991; Teilmann et al. 1999).  Diving ability improves with 
body size (Kelly 1997; Kelly and Wartzok 1996; Teilmann et al. 1999).  Diving and resting 
patterns appear to be seasonally influenced, with more time spent out of water during the day and 
diving at night from spring to early-summer (breeding and molting) and the opposite true at all 
other times (Carlens et al. 2006; Kelly et al. 2010a; Kelly and Quakenbush 1990; Kunnasranta et 
al. 2002; Lydersen 1991; Teilmann et al. 1999). 

Migration and movements.  Movements can be most wide-ranging during the “open water” 
period from summer to fall, with individuals potentially ranging several hundred kilometers in 
the Arctic subspecies; some individuals may undergo much more limited movement (Bailey and 
Hendee 1926; Gjertz et al. 2000a; Harkonen et al. 2008; Harwood and Smith. 2003; Heide-
Jørgensen et al. 1992; Kapel et al. 1998; Kelly and Wartzok 1996; Smith 1976; Smith et al. 1973; 
Smith and Stirling 1978; Teilmann et al. 1999).  Following the period of open water foraging, 
adults of Arctic, Ladoga, and Saimaa subspecies return to the same areas they came from the 
previous winter (Kelly et al. 2010a; Koskela et al. 2002; Krafft et al. 2007; Kunnasranta et al. 
2001; Sipilä et al. 1996; Smith and Hammill. 1981).  Movements are more limited in late-fall and 
winter, ranging over just a few square kilometers unless they have access to leads in ice, in which 
case individuals can range over thousands of square kilometers (Born et al. 2004; Harwood et al. 
2007; Kelly et al. 2010a; Kelly and Quakenbush 1990).  As temperatures warm and snow melts 
in late-spring and early-summer, ice remains largely intact but seals spend extensive time basking 
in the sun during the molt (Finley 1979; Kelly et al. 2010a; Smith 1973).  As Arctic individuals 
complete molting, they spend more and more time in the water (Kelly et al. 2010a). 

Feeding.  Ringed seals are catholic feeders predating at several trophic levels with regional and 
seasonal differences (Bradstreet and Cross 1982; Bradstreet and Finley 1983; Chapskii 1940; 
Dehn et al. 2007; Dunbar 1941a; Fedoseev 1965b; Gjertz and Lydersen 1986; Holst et al. 2001; 
Johnson et al. 1966; Labansen et al. 2007; Lowry et al. 1980a; McLaren 1958a; Nazarenko 1967; 
Pikharev 1946; Siegstad et al. 1998; Smith 1987; Söderberg 1971; Stenman and Pöyhönen 2005; 
Tormosov and Rezvov 1978; Wathne et al. 2000; Węsławski et al. 1994).  However, preferred 
prey tend to be dense, schooling small fishes, although larger prey may be eaten (Kovacs 2007a; 
Smith 1977).  Arctic ringed seals prey preferentially on gadid fishes (particularly Arctic, polar, 
and saffron cod as well as navaga) from late-autumn to early-spring (Belikov and Boltunov 1998; 
Bradstreet and Finley 1983; Chapskii 1940; Fedoseev 1965b; Gjertz and Lydersen 1986; Holst et 
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al. 2001; Johnson et al. 1966; Kovacs 2007a; Labansen et al. 2007; Lowry et al. 1980a; McLaren 
1958a; Siegstad et al. 1998; Smith 1987; Wathne et al. 2000; Węsławski et al. 1994).  Other 
regionally significant prey species include sculpins, capelin, redfish, snailfish, pricklebacks, and 
sand lance (Johnson et al. 1966; Labansen et al. 2007; Siegstad et al. 1998; Vincent-Chambellant 
2010; Węsławski et al. 1994).  Sea of Okhotsk ringed seas also prey extensively on herring and 
smelt during this time (Fedoseev 1965b).  Baltic Sea ringed seals feed on herring, smelt, sculpins, 
Atlantic salmon, sticklebacks, and ruffe (Sinisalo et al. 2008; Sinisalo et al. 2006; Söderberg 
1971; Tormosov and Rezvov 1978).   

During the open water period, invertebrates tend to constitute more of an individual’s diet, 
particularly of younger animals (Bradstreet and Finley 1983; Dunbar 1941a; Fedoseev 1965b; 
Holst et al. 2001; Johnson et al. 1966; Lowry et al. 1980a; Siegstad et al. 1998; Smith 1987; 
Węsławski et al. 1994).  Prey include large amphipods, mysids, euphausiids, shrimps, and squids 
(Bradstreet and Finley 1983; Chapskii 1940; Dehn et al. 2007; Dunbar 1941a; Fedoseev 1965b; 
Gjertz and Lydersen 1986; McLaren 1958a; Siegstad et al. 1998; Smith 1987; Söderberg 1971; 
Węsławski et al. 1994). 

In freshwater, European perch and smelt, common roach, vendace, and ruffe are important prey 
species for Lake Saimaa ringed seals, with invertebrates being of lesser importance (Kunnasranta 
et al. 1999).  Lake Ladoga ringed seals feed on smelt, vendace, ruffe, burbot, stickleback, perch, 
roach, European whitefish, brown trout, fourhorn sculpin, and occasionally river lamprey and 
crayfish (Tormosov and Filatov 1979).   

No sex-based differences in prey choice are known to exist (Bradstreet and Finley 1983; Gjertz 
and Lydersen 1986; Holst et al. 2001; Johnson et al. 1966; Lowry et al. 1980a).  However, 
younger seals may prefer crustaceans over fish, a trend seen to reverse in older individuals 
(Bradstreet and Cross 1982; Bradstreet and Finley 1983; Fedoseev 1965b; Lowry et al. 1980a; 
Siegstad et al. 1998; Smith 1987).  Arctic ringed seals feed extensively upon cod just before 
waters freeze, likely to build-up energy reserves for the breeding, estrus, and lactation period 
(Harwood and Stirling 1992; Kelly et al. 2010b; Smith 1987). 

Habitat.  Ringed seals haul out on ice year-round to rest, although they may also use rocky reefs, 
islands, shorelines, and sand bars when ice is unavailable (Harkonen et al. 2008; Hyvärinen et al. 
1995; Krylov et al. 1964b; Lukin et al. 2006; Sipilä et al. 1996).  Ringed seals are particularly 
adept at scrapping and clawing breathing holes (even in heavy winter ice up to two meters thick) 
as well as subnivean (within snow pack) lairs over these holes (Bailey and Hendee 1926; 
Hammill and Smith 1989; Kelly 1996; Kelly et al. 2010b; Lukin and Potelov 1978; Ognev 1935; 
Smith and Stirling 1975).  As snow accumulates above holes, ringed seals excavate lairs for 
resting, nursing, thermoregulation, predator avoidance, and parturition (Bengtson et al. 2005; 
Burns 1970; Finley and Evans 1983; Hammill and Smith 1991; Kelly et al. 2010b; McLaren 
1958a; Smith et al. 1991; Wiig et al. 1999).  Snow depth is rarely sufficient over open ice on 
lakes Ladoga and Saimaa and occurs only along the shoreline, which is where ringed seal lairs 
are found (Sipilä and Hyvärinen 1998).  Models of thermoregulation suggest that pups could not 
thermoregulate effectively in some areas without the thermal refuge that lairs provide (Kelly 
1988b; Smith et al. 1991; Taugbøl 1982). 

Status and trends.  Arctic, Sea of Okhotsk, Baltic Sea and Lake Ladoga DPSs of ringed seals 
were proposed for listing as threatened on December 10, 2010 (75 FR 77476).  The Siamaa seal 
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was listed as endangered on July 28, 1993 (58 FR 40538).  As with other ice seals, data for 
estimating abundance and trends is extremely difficult to obtain and no comprehensive studies 
exist.  Worldwide estimates have been suggested at several million individuals (Reeves 1998; 
Stirling and Calvert. 1979).   

The Arctic subspecies, due to its wide distribution, is believed to be the most abundant 
subspecies of ringed seal.  Estimates at various Greenland and Baffin Bay locations include: 
200,000 near Svalbard (Jødestøl and Ugland 1994), 7,585 near Spitsbergen (Carlens et al. 2006), 
more than 28,000 in Kong Oscars Fjord, Scoresby Sound (Born et al. 1998) , 67,000 in 
northeastern along the shore of Baffin Bay and 417,000 within the pack ice (Finley and Evans 
1983) , 97,800 for eastern Baffin Bay (Miller et al. 1982) , and 787,000 on pack ice of Canada 
and Greenland (Finley and Evans 1983).  This last estimate is the only comprehensive estimate 
for the region and abundance has been suggested to be stable (Kelly et al. 2010b).  Hudson Bay 
has also been surveyed frequently, with estimates including 455,000 in western Hudson Bay 
(Smith 1975), 280,000 for the same region a quarter century later (Lunn et al. 1997), 73,170 in 
2007 and 33,701 in 2008 (Ferguson and Secretariat 2009).  The BRT concluded that a mean 
between these two last estimates (53,436) was most reasonable; no estimate of trend is available 
(Kelly et al. 2010b).  Early estimates of ringed seals in the Alaskan Beaufort Sea estimated 
40,000 seals during the winter months (Burns and Harbo 1972).  Bengtson et al. (2005) estimated 
252,488 individuals in 1999 and 208,857 in 2000 for the Alaskan Chukchi Sea.  Estimates of 
250,000 individuals in the shorefast ice and 1-1.5 million individuals in the pack ice for the 
combined Beaufort and Chukchi Seas have been made (Frost 1985).  An estimated 30,900 
individuals occurred in the Amundsen Gulf in 1981 and 70,500 in 1982 (Kingsley and Lunn 
1983).  The BRT estimated that at least one million individuals inhabit the Beaufort and Chukchi 
Seas (Kelly et al. 2010b).  Estimates from the White, Barents, Kara, and East Siberian Seas are 
generally lacking, although these areas encompass half of the Arctic subspecies’ habitat, but 
some estimates have been put forth, the largest being 2-2.5 million for the eastern Barents Sea to 
the Bering Sea (Heptner et al. 1976b).  Estimates for the Barents Sea include 35,000-50,000 
individuals from 1988-1994 as well as 24,000-30,000 individuals in the White Sea from the 
1970s-1980s (Ognetov 2002).  The Kara Sea has been estimated to support 90,000-150,000 
individuals (Ognetov 2002). 

Early (1968-1970) estimates of the Sea of Okhotsk DPS suggest a population size of 800,000 
individuals, including 130,000 around Sakhalin Island; both numbers were likely higher due to 
uncounted seals in the water (Fedoseev 1970; Fedoseev 1971; Shustov 1972).  However, this is 
probably a good estimate for pre-commercial hunting abundance (Kelly et al. 2010b).  More 
recent surveys in 1986 estimated 7,490 individuals (Lagarev 1988).  Feoseev (2000) estimated 
676,000-855,000 individuals in the Sea of Okhotsk between 1998 and 1990; the BRT estimates 
that the lower bound of this estimate is the best available current population size for the DPS 
(Kelly et al. 2010b). 

The Baltic Sea may once have been home to 50,000-450,000 ringed seals in 1900 (Harding and 
Härkönen 1999; Kokko et al. 1999).  However, by the 1940s, hunting had reduced population 
numbers to 25,000 individuals (Harkonen et al. 2008).  Abundance appeared to have stabilized 
thereafter until 1965, when populations again declined, this time to 5,000 individuals by the late 
1970s, due to organochlorine contamination and subsequent ringed seal sterility (Bergman and 
Olsson 1985; Harding and Härkönen 1999; Helle 1980b).  The greatest concentration of ringed 
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seals occurred in Bothnian Bay, where 2,000-3,000 individuals were estimated to live in the 
1970s, after which abundance declined through the mid-1980s (Härkönen and Lunneryd 1992; 
Helle 1990).  About 2,500 individuals were estimated in counts from 1988-1990 in this region 
(Härkönen and Lunneryd 1992).  Currently, about 75% of Baltic Sea ringed seals are believed to 
occur in Bothnian Bay (6,100 individuals) and growth rate here is estimated at 4.5% annually 
(Karlsson et al. 2008; Kelly et al. 2010b).  In addition to Bothnian Bay, 149-173 individuals are 
currently believed to occur in the Gulf of Finland, where population growth is stable (Härkönen 
et al. 1998).  The Gulf of Riga was estimated to have 1,407 individuals in 1996 (Härkönen et al. 
1998).  Härkönen et al. (1998) estimated 5,510 individuals for the entire Baltic Sea. 

Lake Ladoga may once have hosted 20,000 individuals in the 1930s; this estimate decreased to 
between 5,000 and 10,000 by the 1960s (Kelly et al. 2010b; Zheglov and Chapskii 1974).  
Zheglov and Chapskii (1974) observed 2,200 seals and 5,100 holes in aerial surveys during the 
early 1970s.  Another subsequent aerial survey during the same decade estimated 3,500-4,700 
individuals.  In 2001, aerial surveys estimated 2,000 individuals basking on the ice.  The latest 
estimate of abundance for the population is 3,000-5,000 individuals (Agafonova et al. 2007). 

Lake Saimaa is believed to have supported 4,000-6,000 individuals 5,000 years ago (Sipilä 2006; 
Sipilä and Hyvärinen 1998).  However, in 1893, the population was estimated at 100-1,300 
individuals (Kokko et al. 1999).  Sipilä et al. (1990) estimated that the population declined from 
250 individuals in 1971 to 140 in 1984.  Currently, fewer than 300 individuals are believed to 
survive (Kelly et al. 2010b; Sipilä 2006).  Trends suggest that the northern and southern regions 
of the lake have experienced significant declines in abundance, whereas the central portion has 
remained relatively stable (Kelly et al. 2010b).  Mean growth rate suggests some recovery 
between 1990 and 2004 (Kelly et al. 2010b; Sipilä 2006). 

Natural threats.  Predators are the main natural threat of ringed seals and include polar and 
brown bears, Arctic and red foxes, gray wolves, lynx, European mink, walruses, killer whales, 
Greenland sharks, common ravens, and glaucous gulls (Burns and Eley 1976; Fay et al. 1990; 
Heptner et al. 1976b; Melnikov and Zagrebin 2005; Sipilä 2003).  Ringed seals are one of the 
primary prey species for polar bears, with ringed seals composing 80-98% of polar bear diet in 
the Beaufort Sea and Hudson Bay region during some periods (Derocher et al. 2004; Heptner et 
al. 1976b; Stirling and Parkinson. 2006).  From 8-44% of pup production may be removed by 
polar bear predation (Hammill and Smith 1991).  Ringed seals are particularly vulnerable to 
predation from polar bears as they spend more time on ice molting as well as when lairs 
disintegrate earlier than expected, such as from rainfall or low snowfall (Hammill and Smith 
1991; Messier et al. 1992; Stirling 1974).  Early lair exposure can also expose pups to avian 
predation (Gjertz and Lydersen 1983; Kumlien 1879; Lydersen 1998; Lydersen and Gjertz 1987; 
Lydersen et al. 1987; Lydersen and Ryg 1990; Lydersen and Smith 1989).  Along with polar 
bears, Arctic foxes can exert regionally high levels of predation on newborn pups from the Arctic 
ringed seal subspecies (Kelly and Quakenbush 1990; Kelly et al. 1986; Lydersen and Gjertz 
1984; Smith 1976).   

Anthropogenic threats.  Arctic, Ladoga, Baltic, and Sea of Okhotsk DPSs were proposed due to 
the potential impact that a warming climate may have on the biology of the species, specifically 
the availability of ice and prey abundance and distribution, as well as possible impacts of ocean 
acidification on the marine food chain (Kelly et al. 2010b).  As ringed seals rely upon lairs for 
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resting, nursing, thermoregulation, predator avoidance, and parturition, early spring break-ups 
can adversely impact growth, condition, and survival of pups (Harwood et al. 2000; Lukin et al. 
2006; Stirling and Smith 2004).  The ringed seal BRT expects early breakups to occur more 
frequently as a result of warming temperatures and adversely impact ringed seal productivity and 
abundance via pup survival (Ferguson et al. 2005; Kelly 2001; Kelly et al. 2010b; Smith and 
Hammill 1980; Stirling and Smith 2004).  Prey distribution, particularly of Arctic cod, may also 
shift as a result of temperature changes (Kelly et al. 2010b). 

Ringed seals have been hunted for subsistence for 1000s of years, a practice which continues 
presently (ACIA 2005; Hovelsrud et al. 2008; Kovacs 2007a; Krupnik 1988).  Alaskan harvests 
killed 7,000-15,000 individuals annually from 1962-1972, but declined to 3,000-6,000 during 
1973-1977 and 2,000-3,000 by 1979 (Frost 1985).  Currently, 9,500 individuals are estimated to 
be harvested annually in Alaska (Allen and Angliss 2010).  In Canada, harvests may have been as 
high as 100,000 individuals annually during the 1960s and 1970s, leading to local depletion 
(Mansfield 1970; Reeves et al. 1998b).  Harvests declined through the 1980s and 1990s to the 
50,000-65,000 range (60,000-80,000 accounting for killed and lost animals)(Reeves et al. 
1998b).  Greenland hunts likely took about 43,000 individuals during the 1950s, 45,000-75,000 
animals annually in the 1960s, rising to near 100,000 individuals annually in the 1970s before 
declining to roughly 70,000 annually during the 1980s and 1990s (Teilmann and Kapel 1998).  
Catches from 1995-2006 averaged 82,421 animals and have included both subsistence and 
commercial components (Greenland Home Rule 2009).  Harvests here focused on younger age 
classes.  Russian catches numbered in the few thousands (up to 13,200) annually in the White 
and Barents Seas, respectively (Belikov and Boltunov 1998; Krupnik 1993; Nazarenko 1969; 
Timoshenko 1984).  Most of these areas experienced declines in harvest between the 1960s and 
1970s into the 1980s due to decreased commercial demand (Belikov and Boltunov 1998; 
Timoshenko 1984).  A few thousand individuals were also harvested in the Russian Bering Sea 
between 1961 and 1969, which likely continued through 1990 (Fedoseev 2000a).  By far the 
largest Russian harvests of ringed seals occurred in the Russian Bering and Chukchi Seas by 
subsistence hunters.  Native harvests are estimated at 25,000 in the late 1930s, 23,500 by the 
1940s, and 15,500 by the late 1950s (Heptner et al. 1976b).  Harvests along the Bering Sea were 
30,000-35,000 after World War II, but decreased to 10,000-12,000 annually (Popov 1982b).  
Fedoseev (1984) estimated the combined harvest along the Bering, Chukchi, and East Siberian 
Seas was 40,000 individuals between 1940 and 1954.  However, shore-based harvests have been 
restricted to 2,000-3,000 individuals since 1970 (Popov 1982b).  Harvests reportedly numbered 
991-3,607 individuals along the Bering and Chukchi Seas between 1979 and 1983 (Mineev 1981; 
Mineev 1984).  The decline in harvests was likely due to native peoples shifting to a modern 
lifestyle (Fedoseev 1984).  Sea of Okhotsk harvests likely depleted the population, with 
subsistence harvests amounting to 25,000-30,000 individuals before 1950 and increasing to an 
average of 70,000 individuals annually in the 1950s and 1960s, not accounting for killed but lost 
seals (Fedoseev 1984; Fedoseev 2000a; Heptner et al. 1976b; Krylov et al. 1964b; Popov 1982b). 
 This extensive hunting likely altered the age structure of the population (Fedoseev 1984; Krylov 
et al. 1964b).  Harvest regulation began in 1969, with levels decreasing to 32,742 that year and 
25,000 in 1974 (Popov 1982b).  Average harvests declined to 4,834 individuals per year from 
1976-1980 (Fedoseev 1984).  Ship-based harvests from 1990-1994 averaged 12,664 individuals 
(Grachev 2006).   

Hunting has also been significant for other ringed seal subspecies.  Hunting in the Baltic Sea was 
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conducted such that hundreds of thousands of individuals were reduced to 6,000-10,000 by the 
1980s (Almkvist 1982; Helle 1986).  Dramatic declines in Lake Ladoga were also caused by 
excessive hunting (Sipilä and Hyvärinen 1998).  Here, 436-1,278 individuals were harvested 
annually between 1909 and 1918 (Heptner et al. 1976b).  An additional 950 individuals were 
killed in the northern portion of the lake from 1924-1939 (Jääskeläinen 1942).  From 10,000 to 
20,000 individuals were killed as part of bounties from 1950 to 1974 (Agafonova et al. 2007; 
Verevkin et al. 2006).  Hunting was banned shortly thereafter.  Bounties were also given for Lake 
Saimaa ringed seals from 1882 to 1948 (Metsähallitus 2009).  A total of 246 seals were killed 
from 1893 to 1905 and an additional 140 were shot from 1909 to 1918; 278 were killed between 
1928 and 1947 (Kilkki and Marttinen 1984; Kokko et al. 1998).  Since a ban on their killing in 
1955, only two cases of poaching are known (Ashley et al. 2008; Sipilä 2003; Sipilä and 
Hyvärinen 1998; Wilson et al. 2001).   

A variety of contaminants have been identified in ringed seals, some to the point of causing 
sterility.  Organic contaminants have also been identified in ringed seals, including DDT, DDE, 
and PCBs (Addison et al. 2005; Addison and Smith 1974; Bang et al. 2001a; Helle et al. 1983; 
Helle et al. 1976a; Helle et al. 1976b; Helle and Stenman 1984; Kostamo et al. 2000; Kucklick et 
al. 2002; Nakata et al. 1998; Nyman et al. 2002; Riget et al. 2006; Sipilä and Hyvärinen 1998).  
Levels in the Baltic Sea were correlated with ringed seal reproductive failure (Helle et al. 1976a; 
Helle et al. 1976c).  Perflourinated compounds  have also been identified in ringed seals, with 
little understanding of their significance (Bossi et al. 2005; Butt et al. 2007; Kannan et al. 2002; 
Kannan et al. 2001; Martin et al. 2004; Quakenbush and Citta. 2008). 
Heavy metals, including mercury, cadmium, lead, selenium, arsenic, zinc, chromium and nickel 
have been found to accumulate in ringed seal liver and kidney (Atwell et al. 1998; Gaden et al. 
2009; Helle 1981; Hyvärinen et al. 1998; Koeman et al. 1975; Quakenbush and Sheffield 2007; 
Riget et al. 2005; Smith and Armstrong 1978; Sonne et al. 2009; Wagemann 1985; Wagemann 
1989; Wagemann et al. 1996).  Mercury and selenium accumulate with age (Dietz et al. 1998; 
Helle 1981; Hyvärinen et al. 1998; Medvedev et al. 1997; Riget et al. 2005; Smith and 
Armstrong 1978).  Cadmium peaked at 5-10 years of age and declined thereafter (Dietz et al. 
1998).  Mercury has been found to be higher in Baltic females than males (Helle 1981).  Nickel 
might play a role in stillborn pup mortality (Hyvärinen and Sipilä 1984). 

Fisheries bycatch is a significant issue for Baltic Sea, Lake Saimaa, and Lake Ladoga ringed 
seals.  An estimated 80 seals are bycaught in nets annually along the Swedish coast (Lunneryd et 
al. 2005).  Of the 182 carcasses examined from 1977 to 2000, more than half were determined to 
have died from drowning in fishing nets (Sipilä 2003).  Measures to reduce bycatch likely 
resulted in a decrease mortality rate of 1-3 individuals annually by the late 1990s (Sipilä and 
Hyvärinen 1998).  Annual mortality of Lake Ladoga ringed seals was estimated at 200-400 
individuals as a result of fisheries interaction in the late 1980s and early 1990s; however, changes 
in the fishing industry have resulting in much reduced bycatch here (Sipilä and Hyvärinen 1998; 
Sipilä et al. 2002). 

Critical habitat.  Critical habitat has not been proposed for ringed seals. 

Environmental Baseline 

By regulation, environmental baselines for Opinions include the past and present impacts of all 
state, federal, or private actions and other human activities in the action area, the anticipated 
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impacts of all proposed federal projects in the action area that have already undergone formal or 
early section 7 consultation, and the impact of state or private actions that are contemporaneous 
with the consultation in process (50 CFR §402.02).  The Environmental baseline for this Opinion 
includes the effects of several activities affecting the survival and recovery of ESA-listed whale 
species in the action area. 

Climate change 

In general, based on forecasts made by the Intergovernmental Panel on Climate Change (IPCC), 
climate change is projected to have substantial effects on individuals, populations, species, and 
the structure and function of marine, coastal, and terrestrial ecosystems in the near future (IPCC 
2000; IPCC 2001a; IPCC 2001b; IPCC 2002).  From 1906 to 2006, global surface temperatures 
have risen 0.74º C and continue to rise at an accelerating pace; 11 or the 12 warmest years on 
record since 1850 have occurred since 1995 and the past decade has been the warmest in 
instrumental history (Arndt et al. 2010; Poloczanska et al. 2009).  Furthermore, the Northern 
Hemisphere (where a greater proportion of ESA-listed species occur) is warming faster than the 
Southern Hemisphere, although land temperatures are rising more rapidly than over the oceans 
(Poloczanska et al. 2009).  Climate change will result in increases in atmospheric temperatures, 
changes in sea surface temperatures, patterns of precipitation, and sea level.  Sea levels have 
risen an average of 1.7 mm/year over the 20th century and 3.3 mm/year between 1993 and 2006 
due to glacial melting and thermal expansion of ocean water; this rate will likely increase, which 
is supported by the latest data from 2009 (Arndt et al. 2010; Hoegh-Guldberg and Bruno 2010; 
Wilkinson and Souter 2008).  Oceanographic models project a weakening of the thermohaline 
circulation resulting in a reduction of heat transport into high latitudes of Europe, an increase in 
the mass of the Antarctic ice sheet, and a decrease in the Greenland ice sheet, although the 
magnitude of these changes remain unknown.  Reductions in ozone and subsequent increases in 
ultraviolet radiation have been linked to possible skin damage and blistering in blue, fin, and 
sperm whales in the Gulf of California (Martinez-Levasseur et al. 2010). 

Climate change has been linked to changing ocean currents as well.  Rising carbon dioxide levels 
have been identified as a reason for a poleward shift in the Eastern Australian Current, shifting 
warm waters into the Tasman Sea and altering biotic features of the area (Poloczanska et al. 
2009).  Similarly, the Kuroshio Current in the western North Pacific (an important foraging area 
for juvenile sea turtles and other listed species) has shifted southward as a result of altered long-
term wind patterns over the Pacific Ocean (Poloczanska et al. 2009). 

Climate change would result in changes in the distribution of temperatures suitable for whale 
calving and rearing, the distribution and abundance of prey, and abundance of competitors or 
predators.  For species that undergo long migrations, individual movements are usually 
associated with prey availability or habitat suitability.  If either is disrupted by changing ocean 
temperature regimes, the timing of migration can change or negatively impact population 
sustainability (Simmonds and Eliott. 2009).  Climate change can influence reproductive success 
by altering prey availability, as evidenced by high survival of northern elephant seal pups during 
El Niño periods, when cooler, more productive waters are associated with higher first-year pup 
survival (McMahon and Burton. 2005).  Reduced prey availability resulting from increased sea 
temperatures has also been suggested to explain reductions in Antarctic fur seal pup and harbor 
porpoise survival (Forcada et al. 2005; Macleod et al. 2007).  Primary production is estimated to 
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have declined by 6% between the early 1980s and 2010 partly as a result of climactic shifts, 
making foraging more difficult for marine species (Hoegh-Guldberg and Bruno 2010).  
Polygamous marine mammal mating systems can also be perturbated by rainfall levels, with the 
most competitive grey seal males being more successful in wetter years than in drier ones (Twiss 
et al. 2007).  Sperm whale females were observed to have lower rates of conception following 
unusually warm sea surface temperature periods (Whitehead 1997).  Marine mammals with 
restricted distributions linked to water temperature may be particularly exposed to range 
restriction (Issac 2009; Learmonth et al. 2006).  MacLeod (2009) estimated that, based upon 
expected shifts in water temperature, 88% of cetaceans would be affected by climate change, 
47% would be negatively affected, and 21% would be put at risk of extinction.  Of greatest 
concern are cetaceans with ranges limited to non-tropical waters and preferences for shelf 
habitats, such as North Atlantic right whales (Macleod 2009).  Variations in the recruitment of 
krill and the reproductive success of krill predators correlate to variations in sea-surface 
temperatures and the extent of sea-ice cover age during winter months.  Although the IPCC 
(2001b) did not detect significant changes in the extent of Antarctic sea-ice using satellite 
measurements, Curran et al. (2003) analyzed ice-core samples from 1841 to 1995 and concluded 
Antarctic sea ice cover had declined by about 20% since the 1950s.   

Foraging is not the only potential aspect that climate change could influence.  Acevedo-
Whitehouse and Duffus (2009) proposed that the rapidity of environmental changes, such as 
those resulting from global warming, can harm immunocompetence and reproductive parameters 
in wildlife to the detriment of population viability and persistence.  Altered ranges can also result 
in the spread of novel diseases to new areas via shifts in host ranges (Simmonds and Eliott. 
2009).  It has been suggested that increases in harmful algal blooms could be a result of increases 
in sea surface temperature (Simmonds and Eliott. 2009).  Warming temperatures are forecasted 
to open the Northwest Passage to shipping, introducing large amounts of shipping noise and 
potential for ship strike to arctic and subarctic regions that presently experience little vessel 
traffic (Alter et al. 2010). 

Species that are shorter-lived, have larger body sizes, or are generalist in nature are liable to be 
better able to adapt to climate change over the long term versus those that are longer-lived, 
smaller-sized, or rely upon specialized habitats (Brashares 2003; Cardillo 2003; Cardillo et al. 
2005; Issac 2009; Purvis et al. 2000).  Climate change is likely to have its most pronounced 
effects on species whose populations are already in tenuous positions (Isaac 2008).  As such, we 
expect the risk of extinction to listed species to rise with the degree of climate shift associated 
with global warming. 

Naturally-occurring climatic shifts, such as the Pacific Decadal Oscillation, El Niño, and La Niña 
can strongly influence marine productivity, including marine mammals and the prey they rely 
upon (Beamish et al. 1999; Benson and Trites. 2002; Francis et al. 1998; Hare et al. 1999; 
Mantua et al. 1997).  Cooler periods appear to promote coastal biological productivity in the 
action area and warmer phases have the opposite effect (Hare et al. 1999; NMFS 2008e).  
Changes in ocean temperature also directly influence salmon abundance in the Strait of Juan de 
Fuca and the vicinity of the San Juan Islands.  In years when ocean conditions are cooler than 
usual, the majority of sockeye salmon returning to the Fraser River do so via this route, but when 
warmer conditions prevail, migration patterns shift to the north through Johnstone Strait, altering 
the value of foraging habitat for southern resident killer whales from year-to-year (Groot and 



85  

Quinn 1987). 

Habitat degradation 

A number of factors may directly or indirectly affecting listed species in the action area by 
degrading habitat; perhaps most significant among them is anthropogenic noise in the ocean.  
Natural sources of ambient noise include: wind, waves, surf noise, precipitation, thunder, and 
biological noise from marine mammals, fishes, and crustaceans.  Anthropogenic sources of 
ambient noise include: transportation and shipping traffic, dredging, construction activities, 
geophysical surveys, and sonars.  In general, it has been asserted that ocean background noise 
levels have doubled every decade for the last six decades in some areas, primarily due to shipping 
traffic (IWC 2004b).  The acoustic noise that commercial traffic contributes to the marine 
environment is a concern for listed species because it may impair communication between 
individuals (Hatch et al. 2008).  Shipping and seismic noise generally dominates ambient noise at 
frequencies from 20 to 300 Hz (Andrew et al. 2002; Hildebrand 2009; Richardson et al. 1995c).  
Background noise has increased significantly in the past 50 years as a result of increasing vessel 
traffic, and particularly shipping, with increases of as much as 12 dB in low frequency ranges and 
20 dB versus preindustrial periods (Hildebrand 2009; Jasny et al. 2005; McDonald et al. 2006; 
NRC 1994; NRC 2003b; NRC 2005; Richardson et al. 1995c).  Over the past 50 years, the 
number of commercial vessels has tripled, carrying an estimated six times as much cargo 
(requiring larger, more powerful vessels) (Hildebrand 2009).  Seismic signals also contribute 
significantly to the low frequency ambient sound field (Hildebrand 2009).  Baleen whales may be 
more sensitive to sound at those low frequencies than are toothed whales.  Dunlop et al. (2010a) 
found that humpback whales shifted from using vocal communication (which carries relatively 
large amounts of information) to surface-active communication (splashes; carry relatively little 
information) when low-frequency background noise increased due to increased sea state.  Sonars 
and small vessels also contribute significantly to mid-frequency ranges (Hildebrand 2009). 

Commercial shipping in the Gulf of Alaska is dominated by cargo transports, container freight, 
crude oil tankers, and barges.  Military vessels, ferries, and other commercial and recreational 
fishing vessels also converge in the Gulf of Alaska. Two primary shipping lanes radiate from the 
Gulf of Alaska to Honolulu and San Francisco.  Important Alaskan ports include Kodiak, 
Alaska’s largest commercial fishing port, and Valdez, the southern terminus of the 1,300 km 
trans-Alaska pipeline.  Additional minor ports are located throughout the region and include: 
Anchorage, Cordova, Homer, Kodiak, Nikiski, Seward, Whittier, and Yakutat. 

The Puget Sound and nearby waters experience very high levels of vessel traffic from both 
commercial and recreational sources, producing the potential for ship strike, high ambient noise 
levels, and behavioral harassment of southern resident killer whales.  Commercially, a quarter 
million vessels move within the Puget Sound region annually, with the Ports of Seattle and 
Tacoma combining to be the third largest port in the U.S. (www.washingtonports.org).  These 
vessels include tankers, tugs, cargo containers, ferries, and a variety of other vessel types.  
Several cruise ships are also based out of Seattle.  Recreationally, 244 marinas, nearly 40,000 
moorage slips, and 331 boat launches are located within the Pacific Northwest, servicing 180,000 
registered recreational vessels and countless vessels not requiring registration (WSDE 2006).  
Haro Strait, one of the regions primary shipping lanes, is frequently used by southern resident 
killer whales. 

http://www.washingtonports.org
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Several major ports occur further south along the U.S. west coast, including Portland, San 
Francisco, Los Angeles, Long Beach, and San Diego (DoT 2005).  These ports service a wide 
variety of vessels, including cargo, tug and barges, small ships, liquid bulk, dry bulk, break bulk, 
intermodal (container, roll-on/roll-off, lighter aboard ship), ferry, tourist passenger vessels 
(sailboats, ferry, party-boat fishing, whale watching) and cruise ships.  Long Beach is among the 
largest ports in the U.S., accounting for 6% of the total cargo entering the U.S., and increasing 
rapidly (growing 122% between 2003 and 2006) (DoT 2007a; DoT 2007b).  Los Angeles is also 
the fifth largest cruise ship terminal in the U.S.  A shipping lane runs along the U.S. west coast 
south to southern California and additional shipping lanes extend westward from San Francisco 
and near Santa Barbara Island. 

The northeastern U.S. hosts some of the busiest commercial shipping lanes in the world, 
including those leading into Boston, Providence, Newark, and New York (MARAD 2011).  In 
addition, the Boston cruise ship terminal is growing rapidly and is currently one of the busiest 
cruise ship ports in the U.S. {Massport, 2002 #6}.  In addition to vessel traffic, marine 
construction activities occur in the Cape Cod area (liquefied natural gas terminal construction, 
pile driving, offshore wind farm construction, dredging, cable laying, drilling, and others) that 
contributes to local and regional background sound levels. 

In-water construction activities (e.g., pile driving associated with shoreline projects) in both 
inland waters as well as coastal waters in the action area can produce sound levels sufficient to 
disturb marine mammals under some conditions.  Pressure levels from 190-220 dB re 1 μPa were 
reported for piles of different sizes in a number of studies (NMFS 2006b). The majority of the 
sound energy associated with pile driving is in the low frequency range (<1,000 Hz) (Illingworth 
and Rodkin Inc. 2001; Illingworth and Rodkin Inc. 2004; Reyff 2003). Dredging operations also 
have the potential to emit sounds at levels that could disturb marine mammals.  Depending on the 
type of dredge, peak sound pressure levels from 100 to 140 dB re 1 μPa were reported in one 
study (Clarke et al. 2003). As with pile driving, most of the sound energy associated with 
dredging is in the low-frequency range, <1000 Hz (Clarke et al. 2003). 

Several measures have been adopted to reduce the sound pressure levels associated with in-water 
construction activities or prevent exposure of marine mammals to sound.  For example, a six-
inch block of wood placed between the pile and the impact hammer used in combination with a 
bubble curtain can reduce sound pressure levels by about 20 dB (NMFS 2008e). Alternatively, 
pile driving with vibratory hammers produces peak pressures that are about 17 dB lower than 
those generated by impact hammers (Nedwell and Edwards 2002). Other measures used in the 
action area to reduce the risk of disturbance from these activities include avoidance of in-water 
construction activities during times of year when marine mammals or listed salmon may be 
present; monitoring for marine mammals during construction activities; and maintenance of a 
buffer zone around the project area, within which sound-producing activities would be halted 
when marine mammals enter the zone (NMFS 2008e).  

Marine features in the central and northeastern Pacific are also subject to degradation.  The 
continental shelf off Oregon and Washington is cut by numerous submarine canyons, which tend 
to trap sediments and pollutants associated with discharges stemming from coastal development 
(Airamé et al. 2003).  Seamounts are hotspots for marine biodiversity, particularly for large 
pelagic species (Morato et al. 2010).  These areas are sensitive to fishery impacts due to the high 
level of endemism characteristic of this habitat.  Species that inhabit seamounts tend to be long-
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lived and do not move widely between seamounts, meaning that their recovery can be very slow 
(Johnston and Santillo 2004; Richer de Forges et al. 2000).  As several listed species appear to be 
drawn to seamounts, apparently due to prey availability there, the deterioration of the habitat 
could have significant effects on listed species. 

Oil spills could have a significant deleterious effect on marine mammals that are exposed to 
them.  Exposure can occur via skin contact, ingestion of oil directly or through contaminated 
prey, or inspired while at the surface (Geraci 1990).  This exposure could result in displacement 
of marine mammals from an impacted area or produce toxic effects.  Perhaps the most famous 
shipwreck of all time occurred in the Gulf of Alaska when, in 1989, the Exxon Valdez released at 
least 11 million gallons of Alaskan crude oil into one of the largest and most productive estuaries 
in North America.  The spill was the worst in U.S. history until the Deepwater Horizon event in 
2010.  The Alaska Department of Environmental Conservation estimated that 149 km of 
shoreline was heavily oiled and 459 km were at least lightly oiled.  Oil spills, both small and 
large, occur widely along U.S. shores at refining and transfer facilities and extraction sites. 

Ingestion of marine debris can have fatal consequences even for large whales.  In 1989, a 
stranded sperm whale along the Mediterranean was found to have died from ingesting plastic that 
blocked its’ digestive tract (Viale et al. 1992).  A sperm whale examined in Iceland had a lethal 
disease thought to have been caused by the complete obstruction of the gut with plastic marine 
debris (Lambertsen 1990).  The stomach contents of two sperm whales that stranded separately in 
California included extensive amounts of discarded fishing netting (NMFS 2009).  A fifth 
individual from the Pacific was found to contain nylon netting in its stomach when it washed 
ashore in 2004 (NMFS 2009).  Further incidents may occur but remain undocumented when 
carcasses do not strand.  North Pacific sperm whales may be exposed to high levels of marine 
debris due to trash accumulation in the North Pacific Gyre, which is estimated to contain 90.7 
million metric tons of marine debris (Marks and Howden 2008). 

Entrapment/entanglement in fishing gear and shooting 
Fisheries interactions are a significant problem for several marine mammal species and 
particularly so for humpback (Figure 6).  Aside from the potential of entrapment and 
entanglement, there is also concern that many marine mammals that die from entanglement in 
commercial fishing gear tend to sink rather than strand ashore, thus making it difficult to 
accurately determine the frequency of such mortalities.  Entanglement may also make whales 
more vulnerable to additional dangers, such as predation and ship strikes, by restricting agility 
and swimming speed.  Between 1998 and 2005, observers identified 12 humpback whales 
injured or killed by fisheries off the U.S. west coast (NMFS, unpublished data).  An estimated 78 
rorquals were killed annually in the offshore southern California drift gillnet fishery during the 
1980s (Heyning and Lewis. 1990).  From 1996-2000, 22 humpback whales of the Central North 
Pacific population were found entangled in fishing gear (Angliss and Lodge. 2004).  In 1996, a 
vessel from the Pacific Missile Range Facility in Hawaii rescued an entangled humpback, 
removing two crabpot floats from the whale. 
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Figure 6.  A humpback whale entangled in fisheries gear off Hawaii (Credit: NOAA, Hawaiian 
Islands Humpback Whale National Marine Sanctuary, ESA permit number 932-1489). 

There are no observer program records of bowhead whale mortality incidental to commercial 
fisheries in Alaska (Angliss and Allen. 2009).  However, some bowhead whales have historically 
had interactions with crab pot gear and there are several documented cases of bowheads having 
ropes or rope scars (Angliss and Allen. 2009).  NMFS Alaska Region stranding reports document 
three bowhead whale entanglements between 2001 and 2005 (Angliss and Allen. 2009).  In 2003, 
a bowhead whale was found dead in Bristol Bay entangled in line around the peduncle and both 
flippers; the origin of the line is unknown (Angliss and Allen. 2009).  In 2004, a bowhead near 
Point Barrow was observed with fishing net and line around the head (Angliss and Allen. 2009).   

Recent reports of entanglement are unknown, but Sheffer and Slipp (1948) documented several 
deaths of killer whales caught in gillnets between 1929 and 1943 in Washington State waters.  
Typically, killer whales are able to avoid nets by swimming around or underneath them 
(Jacobsen 1986; Matkin 1994).  Recreational fishing also has the potential to affect fish habitats 
because of the large number of participants and the intense, concentrated use of specific habitats. 
 Historically, killer whales have commonly been subject to shooting (some likely fatal) by 
fisherman due to perceived competition for target fish resources (Baird 2001b; Haley 1970; 
Olesiuk et al. 1990c; Pike and Macaskie. 1969; Scheffer and Slipp. 1948).  This practice has 
largely abated in the past few decades and unlikely to continue today (Carretta et al. 2001; Young 
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et al. 1993). 

Sperm whales are known to have been incidentally taken in drift gillnet operations, which killed 
or seriously injured an average of nine sperm whales annually from 1991-1995 (Barlow et al. 
1997).  Sperm whales have been bycaught in pelagic drift gillnets along the U.S. east coast and in 
artisanal gillnets targeting sharks and large pelagic fishes off the Pacific coasts of northwestern 
South America, Central America, and Mexico (Palacios and Gerrodette 1996; Waring et al. 
1997).  An individual was caught and released from gillnetting, although injured, on Georges 
Bank during 1990.  A second individual was freed, but injured, from gillnetting on George’s 
Bank in 1995.  In 1994, a sperm whale was disentangled from gillnet along the coast of Maine.  
Interactions between longline fisheries and sperm whales have been common over the past 
decade (Rice 1989; Hill and DeMaster 1999).  Between 1994 and 2002, one sperm whale was 
observed entangled within the Hawaiian Islands EEZ in the Hawaii-based longline fishery and 
was able to free itself without injury (Forney 2004).  In August 1993, a dead sperm whale, with 
longline gear wound tightly around the jaw, was found floating ~32 km off Maine.  

Acoustic harassment devices 

Acoustic harassment devices (AHDs) are another source of underwater sound that may occur in 
the action area and may be disruptive to southern resident killer whales.  AHDs used at salmon 
aquaculture farms emit "loud" signals intended to displace harbor seals and sea lions and thereby 
reduce depredation (NMFS 2008e; Petras 2003).  However, these signals can also cause strong 
avoidance responses in cetaceans (Olesiuk et al. 2002).  Morton and Symonds (2002) describe 
one AHD model that broadcasts a 10 kHz signal at 194 dB re 1 μPa at 1 m.  A large majority of 
these occur in Arctic waters during exploration for petroleum products, although other detectable 
above ambient levels in open water for up to 50 km.  Activation of AHDs at an aquaculture farm 
near northeastern Vancouver Island corresponded with drastic declines in the presence and use of 
nearby passages and inlets by both resident and transient killer whales (Morton and Symonds 
2002).  The only AHD still in use in Washington State operates at the Ballard locks in Seattle, 
where NMFS uses it to deter sea lions (NMFS 2008e). 

Seismic surveys and oil and gas production 

Numerous surveys have been conducted in the northeast Pacific, Arctic, and northwest Atlantic 
using seismic airguns, and have the potential to affect ESA-listed seismic surveys.  As a general 
mitigation measure, airguns are shutdown if marine mammals approach too closely, presumably 
avoiding the potential for temporary or permanent threshold shifts in their hearing.  However, 
some species (such as bowhead whales) appear to be particularly sensitive to seismic, vessel, and 
industrial sound sounds and may move rapidly away from the area at up to several kilometers 
from the sound source (Gallagher and Hall. 1993; George 2010; Greene 1982; Richardson et al. 
1995a; Richardson et al. 1985a; Richardson et al. 1990; Richardson et al. 2004b; Richardson and 
Williams 2003; Richardson and Williams 2004; Schick and Urban 2000; Streever et al. 2008; 
Wartzok et al. 1989).  Other baleen whales frequently do the same (Malme et al. 1984a; Malme 
et al. 1985; McCauley et al. 2000; McCauley et al. 1998a; McCauley et al. 1998b; Miller et al. 
1999a; Stone and Tasker 2006). 

The major sources of industrial underwater noise n the Arctic appear to be offshore oil, gas or 
mineral exploration and exploitation.  These activities increase vessel traffic, produce loud 
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sounds for seismic profiling, place structures in areas used by whales, and introduce noises from 
drilling and production into the environment (NMFS 1999; NMFS 2006f).  Malme et al. (1985) 
exposed feeding humpback whales in southeastern Alaska to noise from a single air gun or to 
playback of recorded sounds of oil drilling, production platforms and aircraft.  Whales showed 
no overall pattern of avoidance during 13 experiments, each of which included between 10 and 
40 different animals.  Whales startled as soon as the airgun was turned on in three experiments.  
These startle responses, which occurred at received sound levels between 150 to 169 dB (re 1 
mPa), were thought to be caused more by the novelty of the air gun sound than by its intensity.  
Oil and gas exploration and development are increasingly active in the Chukchi and Beaufort Sea 
inhabited by Western Arctic bowhead whales.  There are presently two offshore production 
facilities within state waters in the Beaufort Sea: Northstar and Endicott.  Multiple marine 
geophysical (seismic) projects are planned for the Beaufort and Chukchi Seas.   

Naval activities 

Naval activity, notably sonar use during training exercises, has gained notoriety for its 
coincidence with marine mammal strandings.  However, other activities (also during training 
exercises in designated naval operating areas and training ranges) also have the potential to 
adversely impact marine mammals.  The action area overlaps several naval training ranges or 
facilities listed below.  Listed individuals travel widely in the North Pacific and could be exposed 
to naval activities in several ranges. 

• Marianas Island Range Complex, where humpback and sei whales may or likely breed 
and give birth, 

• The Okinawa and Japan Range Complexes, 

• The Southern California Range Complex, where blue whales forage, 

• The Northwest Training Range Complex, where humpback whales forage and southern 
resident killer whales reside, 

• The Gulf of Alaska Operating Area, where several listed whale species are known to 
forage and Steller sea lions reside, and 

• The Hawaiian Islands Operating Area, where humpback whales regularly breed and give 
birth. 

Naval activities to which individuals could be exposed include, among others, vessel and aircraft 
transects, munition detonations, and sonar use.  Responses by marine mammals could include no 
response, short-term and long-term behavioral responses and changes (altered vocal activity, 
changes in swimming speed and direction, respiration rates, dive times, and social interactions), 
temporary or permanent hearing loss, debris ingestion, ship-strike injury, and death.  Death or 
injury is not expected to occur as a result of exposure to naval activities.  Several unusual 
incidents of stranding or milling have occurred in association with naval activities on the Hawaii 
Range complex, but such incidents from other training ranges have not been documented. 

Although naval ' vessels represent a small fraction of the total sound level and are designed to 



91  

operate quietly, these ships are large and equipped with high-output sonar equipment such as 
ANISQS-53C tactical sonar, which produces signals at source levels of 235 dB re 1 µParms at 1 
m.  The signals emitted from these devices have the potential to affect marine mammals in the 
action area; however, empirical data are limited.  An event that occurred in the Strait of Juan de 
Fuca and Haro Strait on May 5, 2003 demonstrates the potential for naval activities to impact 
southern resident killer whales.  The U.S. Navy guided missile destroyer U.S.S. Shoup passed 
through the strait operating its mid-frequency sonar during a training exercise.  Members of J pod 
(a family group of southern resident killer whales) were in the strait at the same time and 
exhibited unusual behaviors coincident with exposure to the sonar, as reported by local 
researchers (Commander U.S. Pacific Fleet 2003; NMFS 2005a; NMFS 2006b).  Based on the 
duration of exposure, the received levels experienced by the whales, and information on sound 
levels known to cause behavioral reactions in other cetaceans, NMFS concluded J pod was 
exposed to levels likely to cause behavioral disturbance, but not temporary or permanent hearing 
loss (NMFS 2005a; NMFS 2006b). Underwater detonations are sometimes performed at this site 
and there was an occasion when J pod was less than 1.5 km away when a blast occurred, which 
caused the whales to suddenly change their direction of travel (NMFS 2006b).  No stranding or 
mortality events have been documented in or around other operating areas or training ranges 
within the action area that appear linked to naval sonar, although five beaked whales were 
discovered stranded or floating dead coincident in time with the Alaska Shield/Northern Edge 
2004 exercise between June 17-19, 2004 in the Gulf of Alaska Operating Area.  However, no 
mid-frequency sonar or explosives were used during this exercise and evidence linking the 
exercise to mortalities is circumstantial at best.   

Subsistence and commercial harvest 

Eskimos have hunted bowhead whales along the coastlines of the Bering, Chukchi, and Beaufort 
Seas for at least 2,000 years (Stoker and Krupnik. 1993).  Bowheads are harvested by the Inupiat 
people in the Alaskan Beaufort, Bering, and Chukchi Seas.  In Alaska, 10 Native villages 
currently participate in subsistence whaling.  Rice (1964) estimated an annual average of 10 
bowhead whales killed and recovered each year, while another 3-4 whales were struck but lost 
for each one landed (40-50 strikes annually).  The total Alaskan subsistence harvest of bowheads 
since 1973 and 1991 ranged from 17 to 111, although a limit of 67 strikes has been set since 
1998 unless strikes from a previous year had not been used (up to 5 strikes per year in Russian 
waters and 77 by Alaska natives) (NMFS 2008b).  The average take of Western Arctic bowhead 
whales by Alaska Natives over the last ten years, not including those struck and lost, was 41.8 
(Suydam et al. 2007).  The harvest consists mostly of immature whales, approximately evenly 
distributed between sexes (Philo et al. 1993). 

Although the IWC protected sperm whales from commercial harvest in 1981, Japanese whalers 
continued to hunt sperm whales in the North Pacific until 1988 (Reeves and Whitehead 1997).  
In 2000, the Japanese Whaling Association announced plans to kill 10 sperm whales in the 
Pacific Ocean for research.  Although consequences of these deaths are unclear, the paucity of 
population data, uncertainly regarding recovery from whaling, and re-establishment of active 
programs for whale harvesting pose risks for the recovery and survival of this species.  Sperm 
whales are also hunted for subsistence purposes by whalers from Lamalera, Indonesia, where a 
traditional whaling industry has been reported to take up to 56 sperm whales per year. Japan also 
kills up to 101 sei whales annually (IWC 2008). 
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Subsistence hunting of Cook Inlet beluga whales has occurred since at least the 1700s and may 
occur in the future (Braund and Huntington. 2010).  In 1999 and 2000 there was a voluntary 
moratorium on subsistence harvest (Carter and Nielsen. 2010), and since substance harvest have 
been conducted under co-management agreements.  Since 2000, no more than 2 beluga whales 
have been taken in subsistence harvests in any one year (Hobbs et al. 2008).  Take levels have 
been as high as 20% in the 1990s, but hunts are now tightly regulated and based upon population 
dynamics. 

Vessel approaches – commercial and private marine mammal watching 

Although considered by many to be a non-consumptive use of marine mammals with economic, 
recreational, educational and scientific benefits, marine mammal watching is not without 
potential negative impacts.  Whale watching has the potential to harass whales by altering 
feeding, breeding, and social behavior or even injure them if the vessel gets too close or strikes 
the whale.  Another concern is that preferred habitats may be abandoned if disturbance levels are 
too high.  In the Notice of Availability of Revised Whale Watch Guidelines for Vessel 
Operations in the Northeastern United States (64 FR 29270; June 1, 1999), NMFS noted that 
whale watch vessel operators seek out areas where whales concentrate, which has led to numbers 
of vessels congregating around groups of whales, increasing the potential for harassment, injury, 
or even the death of these animals.  In addition to whale watching vessels, large cruise vessels 
also operate in waters off the coast of Alaska, and may pose a threat to humpback whales.  Whale 
watching, particularly of humpback whales, is extensive in Hawaiian waters during winter.  The 
interactions that individuals experience in these waters likely influence how they react to 
approaches by vessels in the future (Herman 1979).  

Several studies have specifically examined the effects of whale watching on marine mammals, 
and investigators have observed a variety of short-term responses from animals, ranging from no 
apparent response to changes in vocalizations, duration of time spent at the surface, swimming 
speed, swimming angle or direction, respiration rate, dive time, feeding behavior, and social 
behavior (NMFS 2006b).  Responses appear to be dependent on factors such as vessel proximity, 
speed, and direction, as well as the number of vessels in the vicinity (Au and Green. 2000; 
Corkeron 1995; Erbe 2002b; Magalhaes et al. 2002; Richter et al. 2003; Scheidat et al. 2004; 
Watkins 1986; Williams et al. 2002b; Williams et al. 2002d).  Foote et al. (2004b) reported that 
southern resident killer whale call duration in the presence of whale watching boats increased by 
10-15% between 1989-1992 and 2001-2003 and suggested this indicated compensation for a 
noisier environment.  Disturbance by whale watch vessels has also been noted to cause newborn 
calves to separate briefly from their mothers' sides, which leads to greater energy expenditures by 
the calves (NMFS 2006b).  Although numerous short-term behavioral responses to whale 
watching vessels are documented, little information is available on whether long-term negative 
effects result from whale watching (NMFS 2006b).   

It is difficult to precisely quantify or estimate the magnitude of the risks posed to marine 
mammals in general and southern resident killer whales specifically (who possibly have the 
greatest exposure to whale watching activities of any listed marine mammal) by whale watching 
and recreational vessels (NMFS 2008e).  Commercial whale watching in Washington State has 
increased dramatically from small scale operations during the late 1970s to early 1980s, to 13 
vessels by 1988, and a total of 76 vessels (and over 500,000 people) in 2006 (Koski 2006a; 
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Koski 2007b; NMFS 2008e; Osborne 1991).  Most companies belong to the Whale Watch 
Operators Association Northwest, which has established whale viewing guidelines for 
commercial operators (WWOANW 2007).  Currently, over 50% of vessels involved with whale 
watching are commercially owned, with the San Juan Islands and adjacent area also attracting 
large numbers of private boaters for recreational activities such as opportunistic viewing of killer 
whales (Koski 2007b; NMFS 2008e).  In addition, private floatplanes, helicopters, and small 
aircraft regularly take advantage of whale watching opportunities (MMMP 2002a).  Weather 
conditions in the Pacific Ocean in winter limit whale watching during winter months and activity 
is greatest during summer (NMFS 2008e).  From May to September 2005, an average of over 19 
boats (up to 94) surrounded southern resident killer whales on a daily basis (Koski 2006a).  In 
Washington State, southern resident killer whales are the primary target species, particularly in 
Haro Strait (Hoyt 2001; Hoyt 2002; NMFS 2008e). 

The increase in whale watching traffic over the past two decades has resulted in increased 
exposure of southern resident killer whales to vessel traffic and sound emitted by it.  Whale 
watching activities have the potential to affect southern resident killer whales in the action area, 
resulting in possible disturbance or displacement.  Increasing anthropogenic sound levels in the 
Puget Sound region have been associated with increased call duration by southern resident killer 
whales when vessels are present (Erbe 2002b; Foote et al. 2004b).  Vessels also appear to cause 
whales to alter their direction of travel (Williams et al. 2002b; Williams et al. 2002d).  
Furthermore, vessel presence has been linked to reduced foraging success and/or inhibiting 
foraging all together (Bain et al. 2006b; Williams et al. 2006).  Based on a study in Johnstone 
Strait, British Columbia, northern resident killer whales decreased feeding behaviors significantly 
and increased time engaging in behaviors which required less energy such as resting and 
socializing (Williams et al. 2006).  

Live-captures for aquaria 

Killer whales have been displayed in aquaria worldwide since the early 1960s.  For 15 years, 
killer whales were collected from the wild to populate display facilities; all but one individual 
came from Washington State or British Columbia until 1976, when local laws banned captures 
(Hoyt 1990; NMFS 2006b).  During this time, from 275-307 killer whales were captured, of 
which 55 were sent to aquaria, 12-13 died, and 208-240 were released or escaped.  Of the 
individuals captured and displayed or killed, 70% (47 or 48 individuals) were southern resident 
killer whales, including 17 immature males, 10 immature females, nine mature females, and 
seven or eight mature males; 15 individuals were from K pod, five from L, and one from J (Baird 
2001b; NMFS 2006b; Olesiuk et al. 1990c).  The selective removal of younger animals and 
males produced a skewed age and sex composition in the southern resident killer whale DPS, 
which probably affected its ability to recover (Olesiuk et al. 1990c). 

Ship-strike 

Ship-strike is a significant concern for the recovery of baleen whales in the region.  We believe 
the vast majority of ship-strike mortalities go unnoticed, and that actual mortality is higher than 
currently documented.  More humpback whales are killed in collisions with ships than any other 
whale species except fin whales (Jensen and Silber 2003a).  Along the Pacific U.S. coast, a 
humpback whale is known to be killed about every other year by ship-strikes (Barlow et al. 
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1997).  Two whales have been struck offshore of Japan (Jensen and Silber 2003a).  

Despite these reports, the magnitude of the risks commercial ship traffic poses to large whales in 
the proposed action areas has been difficult to quantify or estimate.  We struggle to estimate the 
number of whales that are killed or seriously injured in ship strikes within the U.S. Exclusive 
Economic Zone and have virtually no information on interactions between ships and commercial 
vessels outside of U.S. waters.  With the information available, we know those interactions occur 
but we cannot estimate their significance to whale species. 

Shipstrike is also a concern for balaenopterids (Figure 7).  In the California/Mexico stock of blue 
whales, annual incidental mortality due to ship strikes averaged one whale every 5 years, but we 
cannot determine if this reflects the actual number of blue whales struck and killed by ships (i.e., 
individuals not observed when struck and those who do not strand; Barlow et al. (1997)).  The 
vast majority of ship strike mortalities are never identified, and that actual mortality is higher 
than currently documented.  Jensen and Silber’s (2004) review of the NMFS’ ship strike database 
revealed fin whales as the most frequently confirmed victims of ship strikes (26% of the recorded 
ship strikes [n = 75/292 records]), with most collisions occurring off the east coast, followed by 
the west coast of the U.S. and Alaska/Hawaii.  Five of seven fin whales stranded along 
Washington State and Oregon showed evidence of ship strike with incidence increasing since 
2002 (Douglas et al. 2008).  From 1994-1998, two fin whales were presumed killed by ship 
strikes.  More recently, in 2002, three fin whales were struck and killed by vessels in the eastern 
North Pacific (Jensen and Silber 2003b). Ship strikes also present an emerging threat to sei and 
blue whales; in 2003, a sei whale was reported struck by a vessel, subsequently died, and 
stranded near Port Angeles, Washington (NMFS, unpublished data), and a blue whale was struck 
and killed off the coast of California in 2002 (Jensen and Silber 2003b). 

Among baleen whales, ship strikes are least common for bowhead whales, although they do 
occur.  Between 1976 and 1992, only three ship strike injuries were documented out of a total of 
236 bowhead whales examined from the Alaskan subsistence harvest (George et al. 1994).  Since 
that publication, the applicants note that six additional whales have been noted with ship strike 
injuries (1995-2002) out of approximately 180 examined whales, indicating that the rate of ship 
strikes may have increased slightly in recent years.  The low number of observed ship strike 
injuries suggests that bowheads either do not often encounter vessels or they avoid interactions 
with vessels.  It is likely that an unknown number of unobserved and unreported mortalities may 
occur after ship strikes.  However, given the steadily increasing population trend, the magnitude 
of this potential effect is likely to be small.   

There have not been any recent documented ship strikes involving sperm whales in the eastern 
North Pacific, although there are a few records of ship strikes in the 1990s.  Two whales 
described as “possibly sperm whales” are known to have died in U.S. Pacific waters in 1990 after 
being struck by vessels (Barlow et al. 1997).  There is an anecdotal record from 1997 of a fishing 
vessel that struck a sperm whale in southern Prince William Sound in Alaska, although the whale 
did not appear to be injured (Laist et al. 2001).  More recently in the Pacific, two sperm whales 
were struck by a ship in 2005, but it is not known if these ship strikes resulted in injury or 
mortality (NMFS 2009b).  The lack of recent evidence should not lead to the assumption that no 
mortality or injury from collisions with vessels occurs as carcasses that do not drift ashore may 
go unreported, and those that do strand may show no obvious signs of having been struck by a 
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ship (NMFS 2009b). Worldwide, sperm whales are known to have been struck 17 times out of a 
total record of 292 strikes of all large whales, 13 of which resulted in mortality (Jensen and 
Silber 2003a; Laist et al. 2001).  Given the current number of reported cases of injury and 
mortality, it does not appear that ship strikes are a significant threat to sperm whales (Whitehead 
2003). 

 

Figure 7.  A near collision between a blue whale and a commercial cargo vessel in the Santa 
Barbara Channel Traffic Separation Scheme.  Photo credit: NOAA Channel Islands National 
Marine Sanctuary, 2002 (Permit CINMS-2002-001). 

A total of six instances have been documented of northern and southern resident killer whales 
being struck by vessels since the 1990s, including lethal interactions (Baird 2001b; Carretta et al. 
2001; Carretta et al. 2004b; Visser 1999; Visser and Fertl. 2000). 

Scientific research and permits 

Scientific research permits issued by the NMFS currently authorize studies of listed species in the 
Pacific and Atlantic Oceans, many of which extend into portions of the action area.  Authorized 
research on ESA-listed whales includes close vessel and aerial approaches, biopsy sampling, 
tagging, ultrasound, and exposure to acoustic activities.  Research activities involve non-lethal 
“takes” of these whales by harassment, with none resulting in mortality.  Steller sea lions are 
exposed to approach, capture and restraint, biopsy, tagging, anesthesia or sedation, hot branding, 
lavage, ultrasound, blood or tissue sampling, tooth extraction, and authorized mortality.   
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Tables 8-19 describe the cumulative number of takes for each listed species in the action area 
authorized in scientific research permits. 

Table 8.  Blue whale takes in the North Pacific. 

Year Approach Biopsy Suction cup 
tagging 

Implantable 
tagging 

Acoustic 
playback 

2009 12,430 1,065 328 105 0 

2010 15,747 1,485 430 180 21 

2011 8,327 525 385 120 21 

2012 3,822 415 315 120 21 

2013 3,322 415 225 75 21 

Total 43,648 3,905 1,683 600 84 

Permit numbers: 1127-1921, 1071-1770, 727-1915, 540-1811, 731-1774, 781-1824, 1058-1733, 774-1714, 782-
1719, 808-1735, 14097, 14122, 14296, 14451, 14534, and 14585. 
 

 

 

Table 9.  Fin whale takes in the North Pacific. 

Year Approach Biopsy Suction cup 
tagging 

Implantable 
tagging 

Acoustic 
playback 

2009 16,860 1,975 150 55 0 

2010 21,273 2,975 410 130 80 

2011 7,773 1,075 305 85 80 

2012 4,468 1,015 265 75 80 

2013 4,468 1,015 265 75 80 

Total 54,842 8,055 1,395 420 320 

Permit numbers: 1127-1921, 1071-1770, 473-1700, 540-1911, 731-1774, 781-1824, 782-1719, 1058-1733, 965-
1821, 0642-1536, 1049-1718, 774-1714, 808-1735, 14097, 14122, 14296, 14451, and 14534. 
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Table 10.  Sei whale takes in the North Pacific. 

Year Approach Biopsy Suction cup 
tagging 

Implantable 
tagging 

2009  435 75 25 

2010 6,386* 730 250 100 

2011 2,491 320 200 75 

2012 2,271 310 180 75 

2013 2,271 310 180 75 

Total 17,589 2,105 885 350 

Permit numbers: 1127-1921, 540-1811, 731-1774, 782-1719, 1058-1733, 1049-1718, 774-1714, 0642-1536, 808-
1735, 14097, 14585, 14122, 14296, 14451, and 14534. 
 

 

 

 

 

Table 11.  North Pacific right whale takes in the North Pacific. 

Year Approach Biopsy Suction cup 
tagging 

Implantable 
tagging 

Acoustic 
playback 

2009 717 88 42 42 0 

2010 877 118 62 52 50 

2011 425 68 60 50 50 

2012 425 68 60 50 50 

2013 278 68 24 14 50 

Total 2,722 410 248 208 200 

Permit numbers: 1058-1733, 14097, 782-1719, 14122, 14296, and 14585. 
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Table 12.  Bowhead whale takes in the North Pacific. 

Year Approach Biopsy Suction cup 
tagging 

Implantable 
tagging 

2009 1,875 415 365 320 

2010 2,070 530 430 385 

2011 1,475 385 405 360 

2012 975 135 155 110 

2013 415 135 65 65 

Total 6,810 1,600 1,420 1,240 

Permit numbers: 1058-1733, 14097, 14610, 369-1757, 774-1714, and 782-1719. 

 

Table 13.  Humpback whale takes in the North Pacific. 

Year Approach Biopsy 
Suction 

cup 
tagging 

Implantable 
tagging Acoustic 

playback 

Exhalation 
sampling Ultrasound 

2009 44,399* 4,650 392 77 280 10 5 

2010 67,371 6,060 1,447 237 970 10 5 

2011 41,355 1,975 1,428 195 690 10 5 

2012 26,746 1,800 1,095 170 690 0 0 

2013 19,712 1,460 1,075 150 390 0 0 

Total 199,583 15,945 5,437 829 3,020 30 15 

 Permit numbers: 0642-1536, 0662-1661, 1049-1718, 1071-1770, 1120-1898, 473-1700, 532-1822, 
545-1761, 587-1767, 716-1705, 731-1774,753-1599, 774-1714, 781-1824, 782-1719,945-1776, and 
965-1821. 
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Table 14.  Humpback whale takes in the North Atlantic. 

Year Approach Biopsy Suction cup 
tagging 

Implantable 
tagging 

Acoustic 
playback 

2009 5,260 415 173 45 624 

2010 5,568 415 173 45 600 

2011 5,468 415 173 45 600 

2012 3,614 215 173 45 600 

2013 2,770 215 65 0 600 

Total 22,680 1,675 757 180 3,024 

Permit numbers:10014, 1036-1744, 1058-1733, 1121-1900, 1128-1922, 605-1904, 633-1778, 775-1875, 948-1692, 
981-1707, 14586, and 14451. 

 

 

 

Table 15.  Sperm whale takes in the North Pacific. 

Year Approach Biopsy Suction cup 
tagging 

Implantable 
tagging 

Acoustic 
playback 

2009 17,895 770 100 40 0 

2010 22,001 1,425 405 170 120 

2011 6,300 785 140 345 120 

2012 4,416 665 130 325 120 

2013 4,416 665 130 325 120 

Total 55,028 4,310 905 1,375 480 

Permit numbers: 14097, 14122, 14296, 14451, 14534, 727-1915, 14585, 1127-1921, 1071-1770, 473-1700, 540-
1811, 731-1774, 781-1824, 782-1719, 0642-1536, 1049-1718, and 774-1714. 
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Table 16.  Cook Inlet beluga whale takes in the North Pacific. 

Year Approach Biopsy Tagging Acoustic 
playback Ultrasound 

2009 585 0 0 0 0 

2010 585 0 0 0 0 

2011 0 0 0 0 0 

2012 0 0 0 0 0 

2013 0 0 0 0 0 

Total 1,170 0 0 0 0 

Permit numbers: 782-1719. 

 

 

 

 

Table 17.  Southern resident killer whale takes in the North Pacific. 

Year Approach Biopsy Suction cup 
tagging 

Exhalation 
sampling 

2009 3,050 45 45 105 

2010 3,214 55 45 105 

2011 2,174 35 45 105 

2012 284 10 0 0 

2013 284 10 0 0 

Total 9,006 155 135 305 

Permit numbers: 10045, 14097, 532-1822, 540-1811, 731-1774, 774-1714, 781-1824, 782-1719, 15483, 965-
1821, 15483, and 13430. 
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Table 18.  Steller sea lion (eastern DPS) takes in the North Pacific. 

Year Approach 
Capture/ 
restraint Biopsy External 

 tag Mortality Anaesthesia 
/drug 

Hot 
brand 

Lavage Ultrasound Blood/ 
tissue 

sample 

Tooth 
extraction 

2009 306,001 1,446 980 300 183 1,446 1,350 360 370 840 30 

2010 268,752 1,446 980 300 180 1,446 1,350 360 370 840 30 

2011 235,752 1,446 980 300 180 1,446 1,350 360 370 840 30 

2012 234,952 1,446 980 300 180 1,446 1,350 360 370 840 30 

2013 234,952 1,446 980 300 180 1,446 1,350 360 370 840 30 

Total 1,280,409 7,230 4,900 1,500 900 7,230 6,750 1,800 1,850 4,200 150 

 Permit numbers: 13430, 14097, 14325, 14326, 14336, 14337, 15483, 532-1822, 540-1811, 
715-1885, 774-1714, and 965-1821. 
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Table 19.  Steller sea lion (western DPS) takes in the North Pacific. 

Year Approach 
Capture/ 
restraint Biopsy External 

 tag Mortality Anaesthesia 
/drug 

Hot 
brand 

Lavage Ultrasound Blood/ 
tissue 

sample 

Tooth 
extraction 

2009 205,638 4,698 1,032 232 25 782 570 265 2,322 778 20 

2010 154,819 4,698 1,032 232 16 782 570 265 2,322 778 20 

2011 154,819 4,698 1,032 232 16 782 570 265 2,322 778 20 

2012 154,769 4,698 1,032 232 16 782 570 265 2,322 778 20 

2013 154,769 4,698 1,032 232 16 782 570 265 2,322 778 20 

Total 824,814 23,490 5,160 1,160 89 3,910 2,850 1,325 11,610 3,890 100 

 Permit numbers: 1118-1881, 1119-1882, 14296, 14324, 14325, 14326, 14327, 14329, 14335, 14336, 14337, 715-1885, and 965-1821. 
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Effects of the Proposed Action 

Pursuant to section 7(a)(2) of the ESA, federal agencies must ensure, through consultation with 
the NMFS, that their activities are not likely to jeopardize the continued existence of any listed 
species or result in the destruction or adverse modification of critical habitat.  The proposed 
issuance of permit 14245 would authorize “takes” by harassment of marine mammals during the 
proposed research by the NMML by directed and unintentional approach, satellite and sensory 
tagging, biopsy, and photoidentification.  In this section, we describe the potential physical, 
chemical, or biotic stressors associated with the proposed actions, the probability of individuals 
of listed species being exposed to these stressors based on the best scientific and commercial 
evidence available, and the probable responses of those individuals (given probable exposures) 
based on the available evidence.  As described in the Approach to the Assessment section, for any 
responses that would be expected to reduce an individual’s fitness (i.e., growth, survival, annual 
reproductive success, or lifetime reproductive success), the assessment would consider the risk 
posed to the viability of the population(s) those individuals comprise and to the listed species 
those populations represent.  The purpose of this assessment and, ultimately, of this Opinion is to 
determine if it is reasonable to expect the proposed action to have effects on listed species that 
could appreciably reduce their likelihood of surviving and recovering in the wild.  

For this consultation, we are particularly concerned about behavioral and physiological 
disruptions that may result in animals that fail to feed or breed successfully or fail to complete 
their life history because these responses are likely to have population-level consequences.  The 
ESA does not define harassment nor has the NMFS defined the term pursuant to the ESA 
through regulation.  However, the Marine Mammal Protection Act of 1972, as amended, defines 
harassment as any act of pursuit, torment, or annoyance which has the potential to injure a marine 
mammal or marine mammal population in the wild or has the potential to disturb a marine 
mammal or marine mammal population in the wild by causing disruption of behavioral patterns, 
including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering [16 
U.S.C. 1362(18)(A)].  The latter portion of this definition (that is, “...causing disruption of 
behavioral patterns including...migration, breathing, nursing, breeding, feeding, or sheltering”) is 
almost identical to the U.S. Fish and Wildlife Service’s regulatory definition of “harass”2

Our analysis considers that behavioral harassment or disturbance is not limited to the “take” 
definition and may in fact occur in many ways.  Fundamentally, if our analysis leads us to 
conclude that an individual changes its behavioral state (for example, from resting to traveling 
away from the approaching vessel or from traveling to evading), we consider the individual to 
have been harassed or disturbed, regardless of it has been approached closely enough to breach 
recommended stand-off boundaries established under authority of the MMPA.  In addition, 
individuals may respond in a variety of ways, some of which have more significant fitness 

 
pursuant to the ESA.  For this Opinion, we define harassment similarly: an intentional or 
unintentional human act or omission that creates the probability of injury to an individual animal 
by disrupting one or more behavioral patterns that are essential to the animal’s life history or its 
contribution to the population the animal represents. 

                                                 
2    An intentional or negligent act or omission which creates the likelihood of injury to wildlife by annoying it to  
      such an extent as to significantly disrupt normal behavior patterns which include, but are not limited to,   
      breeding, feeding, or sheltering (50 CFR 17.3) 
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consequences than others.  For example, evasion of an approaching vessel would be more 
significant than slow travel away from the same stressor due to increased metabolic demands, 
stress responses, and potential for habitat abandonment that this response could or would entail.  
As described in the Approach to the assessment, the universe of likely responses is considered in 
evaluating the fitness consequences to the individual and (if appropriate), the affected population 
and species as a whole to determine the likelihood of jeopardy. 

Potential stressors 
The assessment for this consultation identified several possible stressors associated with the 
proposed research activities, including  

1.  aerial transit during proposed activities 

2.  surface vessel transit during proposed activities  

3.  close approaches to listed whales and species proposed for listing by research vessels  

4.  application of telemetry tags 

5.  continued attachment of tags  

6.  collection of blubber biopsy samples 

Based on a review of available information, this Opinion determined which of these possible 
stressors would be likely to occur and which would be discountable or insignificant.   

The NMML proposes to conduct aerial surveys, vessel surveys, biopsy sampling, and tagging of 
cetaceans in waters of the Arctic, North Atlantic, and North Pacific oceans that would target 
numerous cetacean species, including listed blue, fin, sei, humpback, bowhead, North Pacific 
right, Cook Inlet beluga, southern resident killer, and sperm whales, as well as the proposed 
Hawaiian insular population of false killer whales.  Although proposed for direct research, 
individuals of these species could incidentally be exposed to stressors associated with the 
proposed action, such as the potential for shipstrike and acoustic noise exposure.  Operators and 
observers will search for marine mammals while underway and we feel confident in the ability of 
operators to locate, identify, and avoid direct contact with individuals.  While in close proximity 
to marine mammals in undertaking the proposed research, operators would be moving slowly and 
deliberately in ways in which the vessels would approach, but not physically contact listed or 
proposed marine mammals.  We do not expect that vessel transits pose a significant risk of 
shipstrike to listed proposed marine mammals under the proposed actions for reasons.  We 
therefore discount the potential for shipstrike in association with the proposed actions to target 
species. 

The research vessels would produce noise in the acoustic environment which has the potential to 
mask the vocalizations produced by these species or other significant acoustic information, 
introducing the possibility that important sounds may not be perceived by individuals near the 
research vessel (particularly when operating at high speed).  However, researchers would be 
visually searching for cetaceans and avoiding close approaches of all but target individuals.  
Exposure to masking sounds is expected to be brief and discountable to listed cetaceans. 
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Aerial surveys proposed by the applicant would co-occur with haul-out areas of some listed or 
proposed for listing pinnipeds, including both eastern and western DPSs of Steller sea lion, the 
Beringia DPS of bearded seals, and Arctic as well as Okhotsk DPSs of ringed seal, as well as co-
occur in time and space with North Atlantic right whales.  These species may respond to the sight 
or sound of the aircraft, causing them to at least temporarily abandon their haul-out or change 
their behavioral state.  Therefore, unintentional harassment of these listed or proposed for listing 
species is possible. 

Accordingly, this consultation focused on the following stressors likely to occur from the 
proposed seismic activities and may adversely affect ESA-listed species: Overflights of marine 
mammals by survey aircraft; close approaches to whales by research vessels; application and 
continued attachment of tags; continued attachment of tags; and collection of blubber biopsy 
samples. 

Exposure analysis 

The proposed action is to permit biopsy, suction-cup tag, satellite tag, close approach, photo-ID, 
and behavioral observations of marine mammals as outlined in Table 20.  

Table 20.  Number of animals proposed to be taken by species, life stage, and action under 
Permit 14245.   

Species-
population 

Life stage Proposed 
Number of 
individuals 

taken annually 

Action 

Blue whale 
(Balaenoptera 

musculus)-North 
Pacific 

All 4,000 Close approach-aerial 
2,010 Close approach-vessel 

Juvenile/adult 1,600 Close approach-vessel, 
biopsy, suction cup tagging 

150 Close approach-vessel, 
biopsy, any style tagging 

Non-neonate calf 
<6 months old 
primarily, >6 

months secondarily 

240 Close approach-vessel, 
biopsy, suction cup tagging 

Fin whale 
(Balaenoptera 

physalus)- North 
Pacific 

All 8,000 Close approach-aerial 
4,250 Close approach-vessel 

Juvenile/adult 2,000 Close approach-vessel, 
biopsy, suction cup tagging 

300 Close approach-vessel, 
biopsy, any style tagging 

Non-neonate calf 
<6 months old 
primarily, >6 

months secondarily 

450 Close approach-vessel, 
biopsy, suction cup tagging 

Sei whale All 1,000 Close approach-aerial 
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(Balaenoptera 
borealis)-North 

Pacific 

682 Close approach-vessel 
Juvenile/adult 300 Close approach-vessel, 

biopsy, suction cup tagging 
10 Close approach-vessel, 

biopsy, any style tagging 
Non-neonate calf 

<6 months old 
primarily, >6 

months secondarily 

8 Close approach-vessel, 
biopsy, suction cup tagging 

Humpback  
whale 

(Megaptera 
novaeangliae)-
North Pacific 

 

All 8,000 Close approach-aerial 
3,645 Close approach-vessel 

Juvenile/adult 3,000 Close approach-vessel, 
biopsy, suction cup tagging 

380 Close approach-vessel, 
biopsy, any style tagging 

Non-neonate calf 
<6 months old 
primarily, >6 

months secondarily 

525 Close approach-vessel, 
biopsy, suction cup tagging 

Humpback  
whale 

(Megaptera 
novaeangliae)-
North Atlantic 

 

All 
 

1,000 Close approach-aerial 
375 Close approach-vessel 

Juvenile/ adult 500 Close approach-vessel, 
biopsy, any style tagging 

50 Close approach-vessel, 
biopsy, suction cup tagging 

Non-neonate calf 
<6 months old 
primarily, >6 

months secondarily 

75 Close approach-vessel, 
biopsy 

Bowhead whale 
(Balaena 

mysticetus)-
Arctic 

All 11,000 Close approach-aerial 
650 Close approach-vessel 

Juvenile/ adult 1,000 Close approach-vessel, 
biopsy, suction cup tagging 

200 Close approach-vessel, 
biopsy, any style tagging 

Non-neonate calf 
<6 months old 
primarily, >6 

months secondarily 

150 Close approach-vessel, 
biopsy, suction cup tagging 

North Pacific 
right whale 
(Eubalaena 

glacialis)-North 
Pacific 

All 200 Close approach-aerial 
130 Close approach-vessel 

Juvenile/ adult 50 Close approach-vessel, 
biopsy, suction cup tagging 

10 Close approach-vessel, 
biopsy, any style tagging 
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Non-neonate calf 
<6 months old 
primarily, >6 

months secondarily 

10 Close approach-vessel, 
biopsy, suction cup tagging 

Sperm whale 
(Physeter 

macrocephalus)-
North Pacific 

All 8,000 Close approach-aerial 
2,500 Close approach-vessel 

Juvenile/ adult 2,000 Close approach-vessel, 
biopsy, suction cup tagging 

200 Close approach-vessel, 
biopsy, any style tagging 

Non-neonate calf 
<6 months old 
primarily, >6 

months secondarily 

300 Close approach-vessel, 
biopsy, suction cup tagging 

Cook Inlet 
beluga whale 

(Delphinapterus 
leucas)- Cook 

Inlet 

All 11,700 Close approach-aerial 
670 Close approach-vessel 

Juvenile/ adult 300 Close approach-vessel, 
biopsy, suction cup tagging 

False killer 
whale 

(Pseudorca 
crassidens)- 

Hawaiian insular 

All 100 Close approach-aerial 
90 Close approach-vessel 

Older than neonate 100 Close approach-vessel, 
biopsy, suction cup tagging 

Juvenile/ adult 10 Close approach-vessel, 
biopsy, any style tagging 

Southern resident 
killer whale 

(Orcinus orca)-
Southern resident 

All 500 Close approach-aerial 
490 Close approach-vessel 

Juvenile/ adult 10 Close approach-vessel, 
biopsy, suction cup tagging 

Steller sea lion 
(Eumetopias 

jubatus)-Eastern 
DPS 

All 10,000 Incidental disturbance via 
close approach-aerial 

Steller sea lion 
(Eumetopias 

jubatus)-Western 
DPS 

All 10,000 Incidental disturbance via 
close approach-aerial 

Bearded seal 
(Erignathus 

barbatus 
nauticus)-

Beringia DPS 

All 1,000 Incidental disturbance via 
close approach-aerial 
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Ringed seal 
(Phoca hispida 
hispida)-Arctic 

DPS 

All 2,000 Incidental disturbance via 
close approach-aerial 

The NMML expects that an individual of any age class or sex may be approached by vessel up to 
15 times per year under the proposed activities.  No neonates would be allowed to be biopsied, 
but juveniles, subadult, and adult age classes of any sex may be tagged with up to two tags that 
break the skin and one additional non-penetrating tag simultaneously.  The NMML expects that 
aerial surveys may conceivable overfly an individual 126 times per year (example: Cook Inlet 
beluga whales).  The permit would be conditioned to minimize harassment from tagging and 
biopsy activities to no more than three times per day.  However, the applicant expects that 
tagging and biopsy would be successful within two attempts for each activity; monitoring reports 
indicate misses for both activities are unusual to rare.  Large whale species would not carry more 
than three tags in a given year; smaller cetaceans would not be tagged more than once.  Permit 
conditions also stipulate that aerial surveys must be flown at altitudes above 229 m, but may 
briefly descend to 92 m and that if a response to aerial survey is observed, the survey aircraft 
must leave the area.  All biopsy tips must be disinfected prior to use.  Mothers with neonatal 
calves may not be tagged.  Tagging or biopsy attempts must be discontinued if repetitive strong 
reactions are found.  Calves, mothers with calves, and emaciated or otherwise unhealthy-looking 
individuals will not be targeted, so exposure to these groups is unlikely to occur. 

Although these activities are proposed to occur, we expect the level of exposure to these 
activities for most listed species to be much less than the levels of “take” requested above (Table 
20).  This is based upon annual monitoring reports of NMML activities from 1998-2010 that 
include activities similar or identical to those proposed permit.  Expected exposure levels for 
each species and activity were determined by calculating means and standard deviations for each 
activity to each species.  Four standard deviations were added to each mean for which sufficient 
data were available to encompass a reasonably likely maximum exposure to similar activities for 
each species in the future (Table 21).  In addition, we assume 4% annual population growth for 
all populations that are currently increasing in abundance.  We provisionally accept the levels of 
“take” as the level of exposure for species for which we lack data from NMML monitoring 
reports.  We expect these values, as well as the values estimated for previous activities, will be 
adjusted in the future based upon future NMML annual reports. 

Table 21.  Expected annual exposure levels for listed species to proposed activities. 

Species-
population 

Expected 
annual 

exposure 

Basis (AR= NMML annual 
reports; PA= provisionally accept 

“take” estimates; FR= field 
reports) 

Activity 

Blue whale 
(Balaenoptera 

musculus)-North 
Pacific 

0 AR Close approach-aerial, 
vessel 

0 AR Biopsy 

0 AR Tagging 
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Fin whale 
(Balaenoptera 

physalus)- North 
Pacific 

294 AR Close approach-aerial 

152 AR Close approach-vessel 

34 AR Biopsy 

4 AR Tagging 

Sei whale 
(Balaenoptera 
borealis)-North 

Pacific 

0 AR Close approach-aerial 

0 AR Close approach-vessel 

0 AR Biopsy 

0 AR Tagging 

Humpback  whale 
(Megaptera 

novaeangliae)-
North Pacific 

 

240 AR Close approach-aerial 

9,537 AR Close approach-vessel 

2,215 AR Biopsy 

26 AR Tagging 

Humpback  whale 
(Megaptera 

novaeangliae)-
North Atlantic 

 

1,000 PA Close approach-aerial 

375 PA Close approach-vessel 

75 PA Close approach-vessel, 
biopsy 

500 PA Close approach-vessel, 
biopsy, any style 

tagging 

50 PA Close approach-vessel, 
biopsy, suction cup 

tagging 
Bowhead whale 

(Balaena 
mysticetus)-Arctic 

2,198 AR Close approach-aerial 

34 AR Close approach-vessel 

29 AR Biopsy 

36 AR Tagging 

North Pacific 
right whale 
(Eubalaena 

15 AR Close approach-aerial 

8 AR Close approach-vessel 
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glacialis)-North 
Pacific 

9 AR Biopsy 

8 AR Tagging 

Sperm whale 
(Physeter 

macrocephalus)-
North Pacific 

0 AR Close approach-aerial 

106 AR Close approach-vessel 

35 AR Biopsy 

12 AR Tagging 

Cook Inlet beluga 
whale 

(Delphinapterus 
leucas)- Cook 

Inlet 

6,641 FR Close approach-aerial 

34 AR Close approach-vessel 

23 AR Close approach-vessel, 
biopsy 

30 AR Close approach-vessel, 
tagging 

False killer whale 
(Pseudorca 
crassidens)- 

Hawaiian insular 

100 PA Close approach-aerial 

90 PA Close approach-vessel 

100 PA Close approach-vessel, 
biopsy, suction cup 

tagging 

10 PA Close approach-vessel, 
biopsy, any tagging 

Southern resident 
killer whale 

(Orcinus orca)-
Southern resident 

500 PA Close approach-aerial 

500 PA Close approach-vessel 

10 PA Close approach-vessel, 
biopsy, suction cup 

tagging 
Steller sea lion 
(Eumetopias 

jubatus)-Eastern 
DPS 

249 AR Unintentional 
harassment 

Steller sea lion 
(Eumetopias 

jubatus)-Western 
DPS 

0 AR Unintentional 
harassment 
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Bearded seal 
(Erignathus 

barbatus 
nauticus)-

Beringia DPS 

0 AR Unintentional 
harassment 

Ringed seal 
(Phoca hispida 
hispida)-Arctic 

DPS 

0 AR Unintentional 
harassment 

Although the NMML is proposing significant levels of exposure to aerial/vessel approach, 
biopsy, and/or tagging activities for sei whales, western DPS Steller sea lions, Beringia bearded 
seals, and Arctic ringed seals, we do not expect that these species will be exposed to these 
activities under the proposed permit.  Although the NMML has engaged in extensive activities 
within the action area since 1998 similar to those currently proposed, the aforementioned species 
have not been documented to be sighted by the NMML during these activities (even less 
approached, biopsied, or tagged, which must be reported within annual reports per permit 
conditions).  Similarly, sperm whales have not been observed during aerial surveys and we do 
not expect their exposure here.  Blue whales have not been “taken,” and as far as we can tell 
exposed to approaches by the NMML for the last 12 years, but recent evidence regarding blue 
whale distribution supports the possibility that blue whales may co-occur with proposed activities 
with greater frequency (Calambokidis et al. 2009).  Therefore, we expect one or a few blue 
whales might be exposed to approaches during the life of the permit.   

Although the NMML estimated the number of exposures to individuals, the NMML cannot 
determine one individual from another in the field.  Therefore, we used a Poisson distribution to 
estimate the number of exposures a given individual would experience annually as well as over 
the life of the proposed permit based upon the levels of expected exposure (Table 22).  We do 
not have data to determine the likely exposure of populations not previously or extensively 
exposed to prior NMML research activities, such as Hawaiian insular false killer whales, 
southern resident killer whales, and humpback whales in the North Atlantic; for these 
populations, we provisionally accept the NMMLs estimates of individual exposure. 

Table 22. Expected exposures of proposed activities to individuals annually and over the 
permit’s duration. 

Species/activity Annual Over permit’s lifespan 
Expected 
individual 
exposure 

Range of 
individual 
exposures 

Expected 
individual 
exposure 

Range of 
individual 
exposures 

Blue whale (Balaenoptera musculus)-North Pacific 
Aerial approach 0 n/a 0 n/a 
Vessel approach 0 n/a 0 n/a 

Tagging 0 n/a 0 n/a 
Biopsy 0 n/a 0 n/a 

Fin whale (Balaenoptera physalus)- North Pacific 
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Aerial approach 1 0-2 1 0-2 
Vessel approach 1 0-2 1 0-2 

Tagging 1 0-1 1 0-1 
Biopsy 1 0-1 1 0-2 

Sei whale (Balaenoptera borealis)-North Pacific 
Aerial approach 0 n/a 0 n/a 
Vessel approach 0 n/a 0 n/a 

Tagging 0 n/a 0 n/a 
Biopsy 0 n/a 0 n/a 

Humpback  whale (Megaptera novaeangliae)-North Pacific 
Aerial approach 1 0-2 1 0-2 
Vessel approach 1 0-4 1 0-6 

Tagging 1 0-1 1 0-1 
Biopsy 1 0-2 1 0-3 

Bowhead whale (Balaena mysticetus)-Arctic 
Aerial approach 1 0-2 1 0-3 
Vessel approach 1 0-1 1 0-2 

Tagging 1 0-1 1 0-2 
Biopsy 1 0-1 1 0-2 

North Pacific right whale (Eubalaena glacialis)-North Pacific 
Aerial approach 1 0-2 1 0-3 
Vessel approach 1 0-2 1 0-2 

Tagging 1 0-2 1 0-2 
Biopsy 1 0-2 1 0-3 

Sperm whale (Physeter macrocephalus)-North Pacific 
Aerial approach 0 n/a 0 n/a 
Vessel approach 1 0-2 1 0-2 

Tagging 1 0-1 1 0-1 
Biopsy 1 0-1 1 0-2 

Cook Inlet beluga whale (Delphinapterus leucas)- Cook Inlet 
Aerial approach* 9 0-19 41 0-95 
Vessel approach 1 0-2 1 0-3 

Tagging 1 0-2 1 0-3 
Biopsy 1 0-2 1 0-3 

Steller sea lion (Eumetopias jubatus)-Eastern DPS 
Aerial approach 0 0-1 1 0-2 

Steller sea lion (Eumetopias jubatus)-Western DPS 
Aerial approach 0 n/a 0 n/a 

Bearded seal (Erignathus barbatus nauticus)-Beringia DPS 
Aerial approach 0 n/a 0 n/a 
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Ringed seal (Phoca hispida hispida)-Arctic DPS 
Aerial approach 0 n/a 0 n/a 

*Due to the large sample size and relatively high mean-to-variance ratio of these data, the Poisson distribution was 
not applied to aerial survey approaches of Cook Inlet beluga whales.  Instead, a normal distribution was calculated. 
Response analysis 
As discussed in the Approach to the assessment section of this Opinion, response analyses 
determine how listed resources are likely to respond after exposure to an action’s effects on the 
environment or directly on species themselves.  For the purposes of consultation, our assessments 
try to detect potential lethal, sub-lethal (physiological), or behavioral responses that might result 
in reducing the fitness of listed individuals.  Ideally, response analyses would consider and weigh 
evidence of adverse consequences as well as evidence suggesting the absence of such 
consequences.  

There is mounting evidence that wild animals respond to human disturbance in the same way that 
they respond to predators (Beale and Monaghan 2004; Frid 2003; Frid and Dill 2002; Gill et al. 
2001; Harrington and Veitch 1992; Lima 1998; Romero 2004).  These responses manifest 
themselves as stress responses (in which an animal perceives human activity as a potential threat 
and undergoes physiological changes to prepare for a flight or fight response or more serious 
physiological changes with chronic exposure to stressors), interruptions of essential behavioral or 
physiological events, alteration of an animal’s time budget, or some combinations of these 
responses (Frid and Dill 2002; Romero 2004; Sapolsky et al. 2000; Walker et al. 2005).  These 
responses have been associated with abandonment of sites (Sutherland and Crockford 1993), 
reduced reproductive success (Giese 1996; Mullner et al. 2004), and the death of individual 
animals (Bearzi 2000; Daan 1996; Feare 1976).  Stress is an adaptive response and does not 
normally place an animal at risk.  However, distress involves a stress response resulting in a 
biological consequence to the individual.  The mammalian stress response involves the 
hypothalamic-pituitary-adrenal (HPA) axis being stimulated by a stressor, causing a cascade of 
physiological responses, such as the release of the stress hormones adrenaline (epinephrine), 
glucocorticosteroids, and others (Busch and Hayward 2009)(Gulland et al. 1999; Morton et al. 
1995; St. Aubin and Geraci 1988; St. Aubin et al. 1996; Thomson and Geraci 1986).  These 
hormones subsequently can cause short-term weight loss, the liberation of glucose into the blood 
stream, impairment of the immune and nervous systems, elevated heart rate, body temperature, 
blood pressure, and alertness, and other responses (Busch and Hayward 2009; NMFS 
2006g)(Cattet et al. 2003; Delehanty and Boonstra 2009; Elftman et al. 2007; Fonfara et al. 2007; 
Kaufman and Kaufman 1994; Mancia et al. 2008; Moe and Bakken 1997; Noda et al. 2007; 
Thomson and Geraci 1986)(Dierauf and Gulland 2001; Omsjoe et al. 2009a).  In some species, 
stress can also increase an individual’s susceptibility to gastrointestinal parasitism (Greer et al. 
2008).  In highly-stressful circumstances, or in species prone to strong “fight-or-flight” 
responses, more extreme consequences can result, including muscle damage and death (Cowan 
and Curry 1998b; Cowan and Curry 2002; Cowan and Curry 2008; Herraez et al. 2007).  The 
most widely-recognized indicator of vertebrate stress, cortisol, normally takes hours to days to 
return to baseline levels following a significantly stressful event, but other hormones of the HPA 
axis may persist for weeks (Dierauf and Gulland 2001).  Mammalian stress levels can vary by 
age, sex, season, and health status (Gardiner and Hall 1997; Hunt et al. 2006; Keay et al. 2006; 
Kenagy and Place 2000; Nunes et al. 2006; Romero et al. 2008; St. Aubin et al. 1996).  Smaller 
mammals tend to react more strongly to stress than larger mammals (Peters 1983); a trend 
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reflected in data from Gauthier and Sears (1999) where smaller whale species tended to react 
more frequently to biopsy than larger whales.  Stress is lower in immature right whales than 
adults and mammals with poor diets or undergoing dietary change tend to have higher fecal 
cortisol levels (Hunt et al. 2006; Keay et al. 2006; Kitaysky and Springer 2004). 

Close approach-aerial surveys 

Few published data are available to evaluate the responses of listed marine mammals to aircraft 
overflights.  Malme et al. (1983a) made an opportunistic evaluation on a bowhead whale group.  
In this event, a circling single-engine aircraft descended from roughly 400 m (above the normal 
altitude generally used in proposed aerial surveys) to 60 m (well below the minimum altitude 
proposed for permitted aerial surveys).  Once the aircraft descended and approached the whales 
at its closest point, the group discontinued its behavior and split into two groups.  The groups 
rejoined and continued their prior behavior immediately after the departure of the aircraft.  
Richardson et al. (1985a) found bowheads to respond frequently to Islander survey aircraft 
approaches below 305 m, infrequently at 457 m, and not at all at 610 m; responses were normally 
hasty dives and sometimes gradual departure from the area.  Blow interval may also decrease 
upon aircraft descent.  He also cites Marquette et al. (1982) as bowheads rarely reacting in a 
negative manner to aircraft flying as low as 75 m.  Richardson et al. (1985a) further cites 
Ljungblad et al. (1980) and Ljungblad (1981) as bowhead responses being variable by date and 
whale activity, with mating whales being less responsive than when they were not.  Payne et al. 
(1983) found southern right whales to rarely react strongly to survey aircraft flying at 65-130 m.  
Richter et al. (2006) found sperm whales (specifically transient sperm whales) to briefly increase 
their time at the surface and take 20 seconds longer during their dives to start “clicking” 
(presumably related to prey detection), although they determined that their findings were not 
biologically meaningful.  They did note that habituation to both vessel and aerial approaches 
likely occurred in “resident” individuals.  Luksenburg and Parsons (2009) found that across 
cetacean species, most respond (when they respond) by diving.  Smaller groups respond strongly 
less often than do larger ones; individuals in shallow water respond more frequently than those in 
deep water, as do mothers with calves versus other group types, when individuals were initially 
resting or milling, and when aircraft fly at lower altitude.  Sperm whales responded in 28% (7 of 
25) cases to survey aircraft (mostly by diving) and false killer whales responded in <29% of 
overflights (Smultea et al. 2008).  Overflight and circling at 235-335 m above a sperm whale 
group by a Skymaster survey aircraft elicited appears to have elicited a group defensive 
formation from a sperm whale pod.  Bowhead whales responded in 2.2% of 507 observations to 
Twin Otter overflights, with most responses of short surfacing, abrupt dives, or heading away 
from the plane when the aircraft was flying at below 182 m and less than 250 m laterally from 
target individuals (Patenaude et al. 2002).  Beluga whales have been found to respond in 3.2% of 
760 overflights by immediately diving with a tail thrash, unusual turns or changes in heading, 
turning to look upwards, or other behavioral reactions.  Most responses were from the same 
aircraft type and at the same ranges previously mentioned for bowheads, with direct overflights 
causing the most conspicuous responses.  After measuring sound detected via hydrophone during 
aircraft overflights, it was determined that bowheads would likely hear a plane flying directly 
overhead at 150 or 300 m altitude, but belugas could perhaps just barely hear a plane at 300 m.  
An aircraft’s shadow may cause cetaceans to respond as well (Luksenburg and Parsons 2009). 

Fewer data are available regarding pinnipeds responses.  Southwell (2005) found that alert and 
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movements by seals increased once the survey aircraft was closer than 800 m away.  However, 
this was from a helicopter, which has much different speed and sound characteristics than does a 
survey plane.  The NMML has found that pinnipeds may be disturbed by entering the water when 
overflown, although this has been limited to two Steller sea lions.  These species may also or 
alternatively lift their heads to observe the aircraft.  The NMML has found that <10% of Steller 
sea lions, <20 of ringed seals, and <10% of bearded seals respond to aircraft overflights, with 
individuals in water responding at an even lower frequency. 

The NMML has been conducting aerial surveys similar or identical to those proposed under the 
present permit for over a decade.  As a result, the NMML has documented the numbers of 
individuals responding to overflights as part of their required documentation in annual reports.  
Analysis of response data from 1998-2010 for target species indicates that apparent response is 
rare.  Based upon methods previously described to calculate maximum likely exposure  and the 
paucity of documented response from available literature and expert opinion (Laura Morse, 
NMFS, pers. comm.; Trisia Naessig, pers. comm.), we do not anticipate fin, sei, humpback, 
North Pacific right, or sperm whales to respond to aerial surveys during the course of a year.  We 
also do not expect Arctic DPS ringed seals or western DPS Steller sea lions to respond to aircraft 
overflights.  We expect up to six bowhead and 25 Cook Inlet beluga whales to respond in ways 
documented in the literature, namely startle responses, rapid dives, changes in direction.  One or 
a few blue whales might respond in a similar manner to overflights as well based upon recently 
documented distributional shifts (Calambokidis et al. 2009).  Although data for Hawaiian insular 
false killer whales and southern resident killer whales is generally lacking, a few individuals may 
also respond to aircraft overflights in a similar manner.  We expect up to 25 eastern DPS Steller 
sea lions may respond to overflights with head lifts or entering the water.  Additional responses 
based upon additional exposures (identified in Table 22 on pages 113-114) are also possible; 
however, assuming individuals experience re-exposure, we expect responses necessarily will not 
occur with every re-exposure and will vary by individual and context. 

Close approaches-surface vessel 

Vessel approaches have the potential to induce behavioral and physiological changes in 
individuals being targeted.  The degree to which individuals are disturbed is highly variable.  
Whales may respond differently depending upon what behavior the individual or pod is engaged 
in before the vessel approaches (Hooker et al. 2001c; Wursig et al. 1998), the degree to which 
they have become accustomed to vessel traffic (Richter et al. 2006), and between species or 
individuals (Gauthier and Sears 1999).  Overall, reactions include little to no observable change 
in behavior to momentary changes in swimming speed, pattern, orientation, diving and time 
spent submerged, foraging, respiratory patterns, and may include aerial displays like breaching 
and lobtailing (Baker and Herman. 1989; Best et al. 2005; Brown et al. 1991b; Clapham and 
Mattila 1993; Jahoda et al. 2003).  Jahoda et al. (2003) found effects of more than a few minutes, 
with fin whales failing to return to baseline behaviors after one hour of observation in some 
cases, in spite of the fact that Gauthier and Sears (1999) found fin whales to be less responsive 
than humpbacks.   

North Atlantic right whales (taxonomically similar to North Pacific right and bowhead whales) 
may not respond at all to kayaks, sailing sloops, or steel-hulled diesel-powered vessels 
approaching within five meters, although other individuals (possibly under different contexts) 
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have responded to the same diesel-powered vessel from 50 m away, usually by turning away 
from the path of the ship (Goodyear 1993a).  Baumgartner and Mate (2003b) found that 71% of 
42 North Atlantic right whales approached (and sometimes tagged) in a rigged inflatable boat 
within 10 m did not overtly respond.  Of those that did respond, behaviors included head lifts and 
lunges, back arching, rolling, and fluke beats.  Feeding dive durations were also shorter by 13-
17% in the dive following approach/tagging, but no difference was found in the duration of 
subsequent dives.  Mate et al. (1997a) found that although North Atlantic right whales generally 
responded to and avoided close approach, the level of response varied.  Watkins (1986) found 
that whales are more responsive to approach when they are inactive and less responsive when 
feeding or socializing.   

Humpback whales have been the best-studied whale species in regards to responses to close 
approaches by vessels.  Numerous studies have documented varied responses of humpback 
whales to vessel approaches, ranging from no response to approach to evasion (Goodyear 1993a; 
Salden 1993).  In response to vessel approach, Felix et al. (2001) found that 27 of 86 individuals 
approached resulted in avoidance of the vessel (50 were indifferent and 9 approached vessels), 
including long dive, change in heading, tail splashes, altered swimming speed or breathing 
frequency, and group structure disruption.  Approaching vessels may instigate aerial behavior, 
such as fluke slapping and breaching, behavior recently suggested to be a switch in 
communication from vocal to surface active signaling (Baker et al. 1983a; Baker et al. 1983c; 
Baker et al. 1982; Dunlop et al. 2009; Holt et al. 2009).  Hall (1982) did not find social or 
feeding behavior to be disturbed by vessel traffic or close approaches.  However, there is the 
possibility that humpback whales may habituate to vessel noise if given sufficient time and 
exposure (Clapham and Mattila 1993; Watkins 1986).  Goodyear (1993a) did not observe 
changes in behavior due to vessel approaches in most cases, although an increase in speed did 
occur on one occasion when a whale was approached within 10 m.  Cantor et al. (2010) generally 
found resting or socializing whales to switch to traveling upon approach of their research vessels. 
 Watkins et al. (1981) found that humpback whales appeared to react to vessel approach by 
increasing swim speed, exhibiting a startle reaction, and moving away from the vessel with 
strong fluke motions.  Baker and Herman (1989), Baker et al. (1982) and (1983a; 1983c), Bauer 
(1986), Bauer and Herman (1986), and Green and Green (1990) found that humpbacks spent less 
time at the surface and altered their direction of travel in response to approaching vessels.  
Increased time underwater and decreased swim speed persisted for up to 20 minutes after vessels 
left the area.  Watkins and Goebel (1984) found humpbacks to be very difficult to approach, 
possibly due to physical ocean features in the area that likely altered sound properties such that 
vessel noise was difficult to detect except at close range, resulting in whales suddenly becoming 
aware of boats in close proximity and reacting strongly as a result.  Norris (1994) documented 
changes in humpback song structure in response to passing vessels, with unit and phrase 
durations reduced versus control periods.   

Bauer and Herman (1986) studied the potential consequences of vessel disturbance on humpback 
whales wintering off Hawaii.  They as well as Scheidat et al. (2004) and Hemphill et al. (2006) 
noted changes in respiration, diving, swimming speed (50-300%) and direction, social 
exchanges, and other behavioral changes correlated with the number, speed, direction, and 
proximity of vessels.  Agonistic behavior has also been noted (Bauer and Herman 1986).  Results 
of vessel approach were different depending on individual sex and age class (smaller groups and 
groups with calves appeared more responsive), but humpback whales generally tried to avoid 
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vessels beginning at 500 to 1,000 m away.  Similar results were found in Alaskan waters, with 
increased dive durations and orientation away from the path of moving boats, often at ranges up 
to 3-4 km (Baker et al. 1983b; Baker and Herman. 1989).  Approaches in Alaskan waters closer 
than 100 m initiated evasive behavior (Hall 1982); Watkins (1986) found little response to 
approaches outside of 100 m away, although humpbacks regularly reacted to outboard vessels on 
a collision course even from long distance. 

Responses can also change over long timeframes; Watkins (1986) looked at whale responses off 
Cape Cod over a several decade period and found that humpbacks shifted their general response 
from being generally evasive to a tendency to approach vessels.  Mizroch et al. (2010) followed-
up on several humpback whales that were approached and radio tagged over the course of several 
decades.  They found no basis for substantiating a long-term reaction to approach, including 
gross measures of growth and reproduction.   

Information on contextual responses is also relatively abundant for humpback whales.  
Responses by humpback whales likely depend upon a given individual’s prior experience and 
current situation (Clapham and Mattila 1993).  The use of smaller, outboard-powered vessels 
(presumably louder) elicited more frequent and stronger responses to biopsy attempts than larger, 
inboard-powered vessels; sex was not a factor in response frequency or intensity (Cantor et al. 
2010).  Sudden changes in vessel speed and direction have been identified as contributors to 
humpback whale behavioral responses from vessel maneuvering (Watkins 1981b).  The more 
active the group, the more easily it was disturbed; however, Cantor et al. (2010) found structuring 
in the response rate of various individuals in mating groups, with male response becoming 
progressively less frequent with increasing degree of dominance in the mating group.  Mother-
calf pairs were the most easily disturbed group, followed by all adult groups, adult-subadult 
mixes, and all subadult groups (Felix 2001).  Weinrich et al. (1991) and (1992b), Cantor et al. 
(2010),  as well as Krieger and Wing (1984) found feeding animals to be least responsive, 
although data from these studies was contradictory when evaluating responses while resting or on 
breeding grounds.  The Weinrich studies also found that respiratory parameters are not good 
indicators of responsiveness due to the large natural variance associated with them.  However, 
numerous studies have identified significant changes in respiration and diving in association with 
vessel traffic (see Bauer and Herman (1986) for a summary).  On several occasions, research 
trips conducted by Krieger and Wing (1984) had to actively avoid collisions with humpbacks, 
although whales presumably were aware of the vessel’s presence.  Single or paired individuals 
may respond more than larger groups (Bauer and Herman 1986).  Würsig et al. (1998) found 
milling or resting cetaceans to be more sensitive.   

Repeated exposure can have a cumulative effect that is greater than the sum of individual 
exposures, eliciting responses that are more significant for individuals and populations, although 
Cantor et al. (2010) did not find a difference in response based upon re-exposure.  However, 
humpback whales have vacated areas where relatively high boat traffic and human activity occurs 
(Herman 1979).  Major declines and distributional shifts in Glacier Bay, Alaska were correlated 
with a rapid and significant increase in vessel traffic from 1976 to 1978, whereas humpback 
whales in other nearby areas with less traffic did not undergo such changes (Bauer and Herman 
1986).  It should be noted that potentially reduced prey resources may also have been important 
in this redistribution (Bauer and Herman 1986).  Matkin and Matkin (1981) did not find a 
correlation between humpback whale behavior and recreational vessels.   
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Other large whale species have also been investigated for their responses to close vessel 
approaches.  Bowheads seem to be particularly sensitive, with individuals swimming rapidly 
away (rarely seen as a natural behavior) and reducing dive and surface cycles in response to a 
crew boat used to study whales in Arctic waters at ranges of 1-4 km, with individuals moving up 
to 2-3 km away (Richardson et al. 1985a).  Movement away still occurred when engines were 
disengaged and idling at ranges greater than 900 m, but no effect was found when engines were 
off.  Individuals would also scatter from their groups, a condition that would persist well after the 
vessel had vacated the area and hamper echelon feeding.  Gray whales may be more sensitive to 
approach while resting; they frequently startle in response to close approach and swim rapidly 
away (Mate and Harvey 1983).  Pettis et al. (1999) found gray whales tended to disperse in the 
presence of boats and aggregate in their absence.  When directly approached, individuals were 
more likely to change heading, do a fluke-down dive, or slip under water, whereas indirect 
approaches tended to result in fluke or flipper swishes and head raises.  Calf presence did not 
appear to impact response, although calves tended to respond with bubble release from the 
blowholes, change their heading, or roll, whereas adults were more likely to dive or slip 
underwater.  Gray whales vacated a wintering (breeding, non-feeding) lagoon apparently in 
response to increased commercial vessel traffic but reoccupied it after vessel traffic decreased 
(Reeves 1977).  Such impacts can interfere with the reproductive success of individual whales 
and the populations they represent (Croll et al. 2001b).  Fin whales were found to accelerate their 
speed upon vessel approach (Watkins 1981b).  Fin whales were particularly evasive in a study 
published by Ray et al. (1978), exhibiting high-speed swimming, frequent changes in heading, 
separation of groups, and irregular breathing patterns.  As with humpback whales, fin whales 
have been found to respond by rapid course change, accelerated dive, and speed increases to 
vessel noise, particularly throttle changes, such as reversing.  Recognition (sensitization) of 
tagging vessels by both humpback and fin whales has not been seen to occur. 

Cook Inlet beluga whales are highly evasive of small boat approaches, likely at least partly due to 
a history of subsistence hunting from small boats in Cook Inlet. (Ferrero et al. 2000).  
Approaches to within 10 m instigate evasive behavior, which seems directed towards deeper 
water and may displace individuals from seasonal foraging locations, although habitat 
abandonment has not been observed (Ferrero et al. 2000; Lerczak et al. 2000; Shelden 1995).  
When active approaches were conducted, whales would move 300-500 m away from the research 
vessel, but return to the area within minutes of discontinuing pursuit (Shelden 1995).  Based 
upon prior research, individuals appear to learn the sound characteristics of at least research 
vessels if not others and become more evasive sooner in subsequent encounters (Barbara 
Mahoney, NMFS, pers. comm. in Shelden (1995)).  Additionally, surfacing behavior switches 
from a rolling surfacing behavior to one where only the top of the head is lifted above the water 
(Shelden 1995).  Individuals increase their surface speed for one to two minutes, after which 
surfacing become more frequent.  Eventually, individuals appear to tire and slow their pace, at 
which time tagging in the past have taken place.  Tagging bouts have taken an average of 2.7 
minutes in the past, with a maximum of 10 minutes (Shelden 1995); the applicant states that 
these methods reflect current practice.  However, whales have not appeared to avoid research 
vessels in the past when their engines were turned off, occasionally passing directly underneath 
the boat (Shelden 1995).  Conspecifics near target individuals also react strongly to initial vessel 
approaches at 10-20 m away; of 93 individuals targeted for tagging by Shelden (1995), 77 other 
whales reacted strongly to vessel approach.  These responses seem typical of beluga whales 
hunted in other areas (Shelden 1995).  Mothers and calves do not appear to separate during vessel 
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approaches (Shelden 1995). 

Beluga whale response to approaches is unique among listed cetaceans in that they display a 
severe avoidance response to vessels approaching closely, including rapid swimming, evasion, 
and extended dive duration.  This response is understandable from the whale’s perspective, as the 
population has been exposed to subsistence hunting from closely approaching small vessels for 
decades; an individual choosing not to avoid close approaches can easily experience lethal 
outcomes.  Exposure to such a stressor raises concerns about the degree of stress that individuals 
experience and the physiological, pathological, reproductive, and survival impacts, either by 
acute or chronic stress (Chrousos and Gold 1992; Clark et al. 2006; Cowan and Curry 2008; 
Waples and Gales. 2002).   

As discussed, the mammalian stress response through the HPA axis is conserved in marine 
mammals and is the physiological mechanism by which physiological and pathological impacts 
of stress occur (Curry 1999; St. Aubin and Geraci. 1990; St. Aubin et al. 1996).  To evaluate the 
significance of the stress response induced by close vessel approaches, we evaluated available 
data on HPA axis components in beluga whales and other taxa during baseline activities and 
during activities similar to or more invasive than those proposed by the NMML.  For example, 
Schmitt et al. (2010) measured cortisol and aldosterone levels (two hormones associated with the 
HPA axis that change within minutes of a stressful event) in captive beluga whales during in-
water blood draws as well as during more invasive out-of-water physical exams.  Such 
procedures are a normal aspect of captive beluga whale husbandry and do not seem to impact 
their survival, growth, or reproduction in captivity; captive individuals are suggested to have 
lower stress levels due to lack of many factors individuals must deal with in the wild (Schmitt et 
al. 2010).   

St. Aubin et al. (2001) measured levels of these same hormones in 183 free-ranging beluga 
whales exposed to an average of 15 min of approach followed by capture, transport to shallow 
water, and blood draw (activities more invasive than those proposed, but for which close 
approach was similar).  Comparison of hormone levels indicate that animals in the free-ranging 
study experienced cortisol levels at blood draw roughly 150% of baseline levels in the captive 
study and aldosterone levels roughly an order of magnitude greater.  Cortisol levels during and 
subsequent to the captive out-of-water exam were similar to or higher than those found in free-
ranging, approached, captured, and handled individuals; aldosterone levels were 50-300% higher, 
though, and glucose levels were similar (glucose levels become elevated during a mammalian 
stress response).  In a separate study, St. Aubin and Geraci (1989) chased, live captured, and 
sampled several dozen mostly subadult beluga whales (all but one within 30 minutes).  Mean 
cortisol levels were almost identical to those observed in St. Aubin et al. (2001), while 
aldosterone levels averaged one-third less.  Glucose levels were less than one-third of those 
found in St. Aubin et al. (2001).   

For both St. Aubin et al. (2001) and St. Aubin and Geraci (1989) studies, maximum aldosterone 
levels were two to five fold greater than those found in the captive study by Schmitt et al. (2010). 
 Maximum cortisol levels in Schmitt et al. (2010) were greater than those in either St. Aubin et 
al. (2001) or St. Aubin and Geraci (1989), but by less than two-fold.  Orlov et al. (1991) also 
found cortisol levels of chased, captured, and captively-held beluga whales to be near the mean 
values of both St. Aubin et al. (2001) and St. Aubin and Gercai (1996).  Norman et al. (2011) 
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found that glucose levels in beluga whales approached, and captured (total combined duration of 
50-129 minutes, mean of 80) were not elevated, although serial sampling through to release was 
not performed.   

Similar findings of cortisol and aldosterone responses have been made for bottlenose dolphins in 
the wild versus captivity (Schroeder and Keller. 1989; Thomson and Geraci. 1986).  Cowan and 
Curry (2008) summarized cortisol response to stress as less than that found in terrestrial 
mammals while aldosterone response was greatly increased based upon prior cetacean work (St. 
Aubin and Geraci. 1990; Thomson and Geraci 1986).  Unfortunately, the St. Aubin et al. (2001) 
and St. Aubin and Geraci (1989) studies did not follow-up with additional blood draws tracking 
the progress of many stress response parameters.  St. Aubin and Geraci (1988) did with different 
hormones (triiodothyronine[T3] and thyroxine [T4]) in free-ranging beluga whales exposed to 
close approach, capture, handling, and release (typically less than 30 minutes combined) or 
captive housing over several hours to weeks, finding that levels of the hormones responded only 
after several hours, which was expected based upon the time for response in other marine 
mammal studies (St .Aubin et al. 2001; St Aubin and Geraci 1988; St. Aubin and Geraci 1992).  
However, no other adverse effects were noted; individuals gained weight and exhibited further 
hormone response to chemical induction, suggesting additional latitude in the stress response 
without becoming distressed.  St. Aubin and Geraci (1989) did observe 20-40% decreases in 
some immune system parameters within 2-3 hours of capture (transport of individuals occurred 
during this time as well).  St. Aubin et al. (1996) found that dolphins remaining encircled up to 
four hours retained elevated cortisol and aldosterone levels.   

Based upon these findings and pending additional data on response over time in beluga whales 
and examination for pathological changes evident from necropsy of deceased individuals (Cowan 
and Curry 2008), we believe that the proposed close approaches will instigate a mild to moderate 
stress response in Cook Inlet beluga whales less than that observed in Schmitt et al.’s (2010) 
beluga whales examined out-of-water, or free-ranging individuals studied in St. Aubin et al. 
(1996) and St. Aubin et al. (2001).  Such a stress response would be temporary and lack 
pathology, acute or cumulative (i.e., no distress), that would impact the target individual’s 
survival or growth.  The stress response may be greater during spring, as baseline stress hormone 
levels have been found to be higher in beluga whales during this time (Orlov et al. 1991). 

Several studies have suggested that stress can adversely impact female reproduction through 
alterations in the estrus cycle (Herrenkohl and Politch 1979; Moberg 1991; Mourlon et al. 2011; 
Rivier 1991).  Komesaroff et al. (1998) found that estrus may inhibit the stress response to some 
extent, although several studies suggest estrus and particularly the follicular stage may be 
susceptible to stress-induced disruption (see (Rivier 1991) and (Moberg 1991) for reviews).  
Most of these studies were conducted with single or multiple highly invasive and frequent stress 
methodologies or chronic stress; we do not expect stressors associated with the proposed 
research to be nearly as stressful.  Under less invasive and acutely stressful methods (but more 
invasive than those proposed by the NMML), Omsjoe et al. (2009b) found no impacts to the 
percentage of individuals with offspring the following year following chase, capture, and 
restraint of reindeer (ungulates in general tend to be prone to strong, potentially lethal stress 
responses).  Overall, we do not expect reproduction to be impaired primarily due to the lack 
extreme stressors utilized by studies to induce adverse reproductive impacts and the acute nature 
of the stressors involved. 
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The close approach of vessels also presents the possibility that valuable acoustic information 
could be missed by the target individual(s) due to masking by the vessel’s engines.  The acoustic 
properties of vessels likely to be used by the applicant are similar to the frequency range utilized 
by target marine mammals during vocalization such that communication could be impaired 
(Clark et al. 2009; Dunlop et al. 2010b).  Parks et al. (2010) and Anonymous (2010) found that 
North Atlantic right whales temporarily modify the amplitude of their calls, making them louder 
with increased background noise (including noise from vessel traffic), as well as shifting call 
frequency over longer time frames.  Killer whales in high traffic areas have been found to 
increase call duration or call amplitude in response to increased anthropogenic noise in the 
marine environment (Erbe 2002b; Foote et al. 2004b; Holt et al. 2009).  As a broader issue, 
increased anthropogenic noise in the marine environment has the potential to reduce the range 
over which individuals communicate, conceivably increasing calf mortality, altering ideal group 
or individual spacing, and making identification and selection of mates more difficult or 
impossible (Croll et al. 2001b).  The applicant proposes to use one vessel per survey, and we do 
not anticipate masking will occur for several reasons.  Operations would be conducted at low 
speed with a minimum of throttling and directional changes.  Low vessel speed means that less 
cavitation will occur, which is the primary source of sound energy emitted by motorized vessels 
(Mazzuca et al. 2001; Ross 1976).  Lower speed and fewer directional changes will also result in 
fewer changes in sound characteristics, which are believed to add to the significance of vessel 
noise and its impact to cetaceans.  Most interactions with target individuals should be brief (less 
than 30 minutes) before the vessel breaks contact following photoidentification, biopsy, and/or 
biopsy. 

Based upon few data, Hawaiian insular false killer whales do not appear to respond to close 
vessel approaches; individuals frequently approach vessels to engage in bowriding (Robin Baird, 
pers. comm.). 

We would expect most listed whales exposed to close vessel approaches under the proposed 
permit to exhibit either no visible reaction or short-term low-level to moderate behavioral 
responses.  Available evidence, including approaches of individuals of other species in a variety 
of locations, leads us to conclude there should be no strong behavioral responses to close 
approaches except by Cook Inlet beluga whales, all of whom we expect to strongly evade every 
approach within 10 m.  We expect conspecifics around the target individual to also respond 
strongly, but for a lesser duration as they will not be pursued.  The NMML has documented 
responses of marine mammals to its permitted activities for several years.  Based upon these data, 
it is reasonably possible that up to 142 humpback, 43 North Pacific right whales, four sperm 
whales may respond to NMML close vessel approaches in the North Pacific and Arctic Oceans 
every year with low- to moderate level behavioral responses described above.  One or a few blue 
whales may also respond with low-to moderate-level behavioral responses described above for 
baleen whales.  An unknown number (we expect up to a few) of Hawaiian insular false killer 
whales and southern resident killer whales may also respond to close vessel approaches, also 
with low- to moderate-level behavioral responses.  The NMML has not attempted work on 
humpback whales in the North Atlantic before, so monitoring data are not available to directly 
assess the impacts of past NMML activities here.  However, we expect the number of responses 
to be less than for humpback whales in the Pacific Ocean, as the level of permitted activity would 
be less.  Table 22 on page 113-114 described the extent to which individuals may be re-exposed 
to proposed activities, including vessel approach.  We expect that some, but not all, individuals 
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may respond to these re-exposures as well.  

Tagging 

 Partially and fully implantable/dart/dash tags 

Although external transmitting devices have been used by many researchers, few studies examine 
the possible effects of these devices (Culik et al. 1994; Hawkins 2004b; Murray and Fuller 2000; 
White and Garrot 1990; Wilson and McMahon 2006).  For example, Murray and Fuller (2000) 
surveyed a sample of articles in which vertebrates had been marked, covering nine journals that 
publish studies on a broad range of taxonomic groups, and found that in most instances (90 
percent of 238 articles surveyed), the articles did not address potential effects of marking, or at 
least did not report that such effects had been considered.  However, the attachment of a device 
has the potential to generate physiological and behavioral effects, depending on factors such as 
device weight, shape, and attachment location (Hawkins 2004b; White and Garrot 1990).  Effects 
of attached devices may range from subtle, short-term behavioral responses to long-term changes 
that affect survival and reproduction; attached devices may also cause effects not detectable in 
observed behaviors, such as increased energy expenditure by the tagged animal (White and 
Garrot 1990; Wilson and McMahon 2006).  Walker and Boveng (1995) concluded the effects of 
devices on animal behavior are expected to be greatest when the device-to-body size ratio is 
large.  Although the weight and size of the device may be of less concern for larger animals such 
as cetaceans, there is still the potential for significant effects; for example, behavioral effects that 
may cause reduced biological performance, particularly during critical periods such as lactation 
(Walker and Boveng 1995; White and Garrot 1990). 

Once target individuals are approached, researchers propose to place devices in whales to track 
movements and dive data.  This involves implanting tags into target individuals, a process that 
has been shown to not only result in behavioral responses, but has the potential to induce 
physiological and pathological changes.  Implantable tags can cause behavioral responses similar 
to close approach as well as wounds, bruising, swelling, hydrodynamic drag, and in at least one 
case, lead to death.  Some species are more behaviorally responsive than others, as shown in 
Table 23.  Humpback whales tend to be one of the least responsive baleen whales to the tagging 
process.  Although less data are available for bowheads, their closely related kin, the southern 
and North Atlantic right whales, tend to be amongst the most responsive species to tagging.  
Available data regarding the effects of tagging is almost exclusively focused on short-term 
effects, as few studies have attempted to follow up on tagged individuals weeks, months, or years 
after tagging.  However, some opportunistic resightings have been documented; results are 
presented when available. 

Table 23.  Number of whales tagged and number of whales responding to the tagging process, by 
species (Mate et al. 2007c). 

Whale species # tagged (including 
failed attempts) 

# responding (including 
failed attempts) 

% responding 
(including failed 

attempts) 

Blue 146 22 15.1 
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Fin 29 13 44.8 

Humpback 122 37 30.3 

North Atlantic 
right 16 12 75 

Southern right 23 15 65.2 

Sperm 60 51 85 

Physiological risks to whales from tagging include swelling, inflammation, or infection of the tag 
site.  Although concerns about the potential to strike an animal in sensitive areas, such as the eyes 
or blowhole, have been raised in previous studies (Whitehead et al. 1990), methods adopted by 
the researchers here would prevent such occurrences.  To minimize localized infection risks, the 
parts of the tags that would be inserted into whales would be constructed of medical grade 
stainless steel, titanium, or other biologically inert materials, and thoroughly disinfected before 
attachment.  Most infections in wildlife resulting from invasive tagging stem from the skin 
(Hawkins 2004a; Mate et al. 2007c).  Invasive components are generally designed to minimize 
the potential for skin intrusion into the wound at time of tagging (Mate et al. 2007c).  Although a 
wide variety of implantable tags have been used over the past several decades, review of 
available data support tags to generally produce a similar, small variety of wound patterns in 
North Atlantic right and humpback whales: white scar, white scar and divot, a divot and cyamids 
(whale lice), localized swelling, and regional swelling (up to 90 cm across and persisting for 
years), although roughly one in eight individuals showed no wound pattern (Kraus et al. 2000; 
Mate et al. 2007c; Quinn et al. 2000; Weller 2008).  Follow-up monitoring shows local and 
regional swelling frequently occurs around the tag site following implantation in humpback and 
North Atlantic right whales (Mate et al. 2007c).  Southern right whales appeared to generally lack 
swelling around implantable tags, but divots were frequently seen after tag rejection on 
individuals resighted after greater than one year post tagging (Best and Mate. 2007).  Tags appear 
to be shed by 27-36 months post tagging, although some may protrude (begin to be ejected) after 
75 days (Best and Mate. 2007).  Divots are theorized to stem from fat cell rupture upon tag entry 
(Mate et al. 2007c).  The physiological consequences of such responses remain unstudied, but a 
general response of glucocorticoid secretion and lymphocyte suppression is known to occur in 
whales entangled in fishing gear (Cole et al. 2006).  Although gear entanglement has been shown 
to be potentially very debilitating or lethal to a whale, we expect the same response to be present, 
but at a lower level.  

Expert reviewers in a workshop summarized by Kraus et al. (2000) were not concerned with the 
consequences of divots, cyamids, or scars.  However, swelling was believed to be due either to 
hematoma, abscess, or an active inflammatory response to a foreign body or agent (such as 
bacteria), rupture through the subdermal sheath, foreign body granuloma, or benign tumor.  
Several reviewers had serious concerns for the potential of tags penetrating into the muscle layer, 
potentially introducing serious infections into muscle and expanding the infection due to shear 
forces at the muscle-blubber interface (Kraus et al. 2000; Quinn et al. 2000; Weller 2008).  The 
extensive resighting history of North Atlantic right whales permits some analysis of tagging 
effects and, ultimately, survival rates of tagged versus untagged individuals is not discernibly 
different (Mate et al. 2007c).  Resightings from other species, although not as extensive, has also 
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failed to support long-term effects at the individual level (Best and Mate. 2007; Mate et al. 
2007c).  The only close study of a wound after tagging was based upon a gray whale that 
stranded dead 18 days post tagging; although the animals was decomposed, investigators found 
no evidence of infection at the tag site or other findings that suggested the tag/tagging process 
resulted in the animal’s death (Weller 2008).   

Keeping implanted tags stable promotes healing, as new epithelial cells and scar tissue form 
around the foreign body to wall it off (Mate et al. 2007c).  Researchers expect that the presence 
of recurved barbs on the cylinder housing should enable the tag to remain embedded for longer 
periods of time and be more stable in the body.  However, over time, the tag would be rejected by 
the body and migrate out of the blubber due to possible infection, reaction to a foreign body, an 
irritation from motion due to body flexing, as well as mechanical stress from hydrodynamic drag 
on the external components of the tag (Watkins et al. 1981).  The applicants state that tag 
rejection can take as little as a couple of weeks to over one year; this is supported by Watkins et 
al. (1981), Best and Mate (2007), and Mate et al. (2007c).  

Apart from pathological effects, tagged marine mammals can also experience physiological 
effects, particularly from impaired hydrodynamics.  Tags should be designed to minimize the 
drag experienced by the individual carrying the tag (Hawkins 2004a; Hooker et al. 2007).  For 
example, Walker and Boveng (1995) found that average foraging-trip and nursing-visit durations 
were significantly greater for seals carrying time-depth recorders and radio transmitters than for 
seals carrying radio transmitters only.  A spotted dolphin fitted with a bulky satellite transmitter 
was recaptured eight days after tagging in poor body condition, presumably due to the large drag 
effects it created (Scott et al. 1990).  However, the tag designs under the proposed action 
minimizes drag, so as to increase attachment duration.  Under the proposed actions, a variety of 
tags could be used; some have minimal drag potential (fully implantable, dart, and dash) because 
of their small external profile, while partially implantable tags likely experience greater overall 
drag because of their higher profile, but otherwise are designed for minimal drag.  Hawaiian 
insular false killer whales have the smallest profile of all target species and would be expected to 
experience the greatest impact from any increase in drag.  However, tag profile would be no 
more than 1% of the target individual’s frontal cross sectional area and no more than 0.1% of its 
body weight.  Drag would be considered minute when compared to the size of most target 
species, even as calves; the additional energy expenditure, even when considered over the course 
of a year, would be small in comparison to the drag created by such large animals in a highly-
viscous medium.  This is supported by data from Best and Mate (2007), who found that six out of 
seven female southern right whales birthed in their routine intervals (similar to the rate of 
detection of untagged individuals; (Best et al. 2005). 

Blue whales.  Blue whales tagged with implantable tags have immediately resumed lunge 
feeding following tagging in a large number of cases (Mate et al. 2007c).  

Fin whales.  Watkins (1981b) tagged several fin whales with relatively large radio transmitters 
and did not observe responses by targeted individuals to the actual tagging, although response to 
changes in vessel throttling or tags splashing on the water during misses were documented.  It is 
noteworthy that closely related Bryde’s whales have been documented to respond to both missed 
and successful tagging events with rapid acceleration and/or multiple breaching in two 
individuals; one returned to baseline behavior within 2-5 minutes, while the other individual took 
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2.5 hours to normalize (Watkins et al. 1979). 

Humpback whales.  Short-term, behavioral effects are also documented for humpback whales.  
General whale responses include no response at all, skin twitching, startle reactions or flinching, 
altered swimming speed and orientation, diving, rolling, head lifts, high back arching, fluking, 
and tail swishing (Goodyear 1981; Goodyear 1993b; Hooker et al. 2001c; Mate et al. 1997b; 
Watkins 1981c; Watkins et al. 1984b).  Mate et al. (1998) found humpback whales to not 
respond to satellite tagging at all.  Humpback whales responded to shallow implantable tags by 
turning away from the tagging vessel and undertaking short dives;  and increasing their 
swimming speed (Goodyear 1993b).  Watkins (1981b) found humpback whales in the North 
Atlantic to respond to tagging with startle reactions, increased swimming speed, or with no 
reaction at all; all responding individuals returned to baseline behavior within 15 minutes.  A 
humpback whale was found to resume singing within 13 minutes of tagging in another case 
(Mate et al. 2007c).  “Strong” reactions were found in only 3.3-5.6% of humpbacks tagged 
(Weinrich et al. 1991; Weinrich et al. 1992b).  Humpback reactions can also occur to misses, 
possibly as a result of splashes in the water (Brown et al. 1994; Watkins 1981c).  Baseline 
behavior appears to resume within minutes.  Responses to tagging may be difficult to discern 
from responses to close approaches.  In two studies of humpback whales off Hawaii and Alaska, 
no additional responses were found to approach and tagging versus approach alone (Mate et al. 
1991; Watkins 1981c).  Ultimately, humpback whale survival does not appear altered by invasive 
tagging; seven individuals tagged in Alaska 20-30 years ago have been reidentified in recent 
years also in Alaska (Mizroch et al. 2008). 

Bowhead whales.  Although multiple tagging studies have been conducted on bowhead whales, 
researchers did not report the effects of tagging on target whales (Heide-Jorgensen et al. 2006; 
Krutzikowsky and Mate. 2000; Laidre et al. 2007).  However unpublished data from other permit 
applicants with bowhead tagging experience provide some insight.  Only one individual has been 
resighted a few days after tagging; the individual’s behavior appeared normal and there appeared 
to be nothing noteworthy about the tagging site.  A few resightings have occurred in other studies 
up to 15 days post tagging; individuals appeared to be behaving normally and no evidence of 
swelling or infection was evident (A. Zerbini, unpublished data; NMML unpublished data, M. 
Jensen, unpublished data).  Based upon bowhead satellite tracks, movement patterns have not 
appeared unusual.  Tags remained functional for several months and the authors claim that this 
supports a lack of infection, as this would have resulted in tags being expelled or rubbed off. 

Right whales.  Goodyear (1993b) found North Atlantic right whales to not respond or twitch in 
response to tagging and then turn or dive away from the tagging vessel, although baseline 
behavior resumed within minutes.  After Mate et al. (1997b) tagged mothers and calves, the pair 
remained together and calves ultimately survived, evidence that the authors use to support the 
supposition that tagging does not significantly alter the mother-calf relationship.  One breeding 
event was also documented for tagged right whale (Weinrich et al. 1992b).  Best and Mate (2007) 
used resighting data for previously tagged southern right whales to suggest that no major impact 
on reproductive output or short-term survival had occurred due to implanted tags. 
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Figure 8.  An implantable satellite tag being expunged from the side of a sperm whale.  A. 
photograph of implantable tag moments after being implanted.  B. and C. Same individual and 
tag nearly one year later.  Figure from Mate et al. (2007), used with permission of Bruce Mate.  
Lead author notes expulsion process not likely representative of all invasive tags in all species. 

Sperm whales.  Responses to implantable tagging appear to vary within the species.  Watkins et 
al. (1999) found sperm whales to not respond to tagging, including time spent at the surface, 
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although Watkins et al. (1993a) found a startle reaction in one individual.  Tagging of seven out 
of ten sperm whales within a single group and within a 90 minute timeframe did not cause the 
group to disperse, although responses to tagging occur more in this species than any other large 
whale (Mate et al. 2007c).  These researchers have resighted 15 of 57 tagged sperm whales, 
finding persistent localized swelling many months after tagging.  Sperm whales tagged while 
resting on the surface between foraging dives appear to respond by engaging in a foraging dive 
earlier than they otherwise would (Tyack 2003).  This dive may not last as long as it otherwise 
would, but conspecifics may follow the target individual in its early dive.  Missed tagging 
attempts have resulted in a startle response (rapid acceleration and defecation), although tagging 
hits did not appear to elicit responses (Watkins and Tyack 1991). 

Hawaiian insular false killer whales.  Data from false killer whales is generally lacking, but 
unpublished data from Dr. Robin Baird are available to assess impacts of dart tagging.  Dr. Baird 
has found that between 2006 and 2009, false killer whales in Hawaiian waters do not respond to 
dart tagging attempts in 9% of cases and respond by accelerated dives, tail flicks, and or 
increased swimming speed in 91% of 23 cases.  These responses appear to be short-term, 
although follow-up monitoring is limited to observations of scarring and some tissue 
inflammation.   

Studies of other toothed whales are also available to assess responses.  Tagging has been 
conducted on a variety of marine mammal species, including pilot whales (Mate 1989), blue 
whales (2003; Calambokidis et al. 2001b; 2007; Lagerquist et al. 2000; Mate et al. 2007b), 
beluga whales (Martin and Smith 1992), northern bottlenose whales (Hooker et al. 2001a), 
Hector’s dolphins (Stone et al. 1994), bottlenose dolphins (Schneider et al. 1998a), Dall’s 
porpoises (Baird and Hanson 1996), harbor porpoises (Eskesen et al. 2009), and narwhals 
(Martin et al. 1994).  Although several tagging studies have been conducted, few have 
systematically investigated or recorded the effects on cetaceans from tagging, and available 
investigations into instrument effects on marine species are often limited to visual assessments of 
behavior (Walker and Boveng 1995).  In addition, reactions to tagging are difficult to 
differentiate from reactions to close vessel approaches, because in all cases it is necessary to 
closely approach the individual to ensure proper tag placement. 

Southern resident killer whales.  Perhaps the best data regarding response comes from killer 
whales in the North Pacific Ocean.  Data on responses of killer whales to tagging are available 
from studies conducted on 32 individuals from four different lineages (Antarctic Type A and 
Type B, North Pacific Residents and Transients) between January 2006 and September 2007 
(unpublished data from Andrews et al. cited in (NMFS 2008c)).  Most of the tagged whales were 
adult or sub-adult males, and more than half (18) were reported to exhibit no immediate reaction 
to tagging.  Nine whales exhibited a slight or very slight startle or shake in response to tagging.  
A moderate startle reaction was observed in two whales (both transients), and three whales 
responded to tagging by either a startle response (no magnitude noted) or a startle response 
combined with a roll or dive.  Of these 32 whales, 13 individuals were resident ecotype killer 
whales.  The reactions noted for the resident whales were consistent with the range of reactions 
noted for the larger data set encompassing all 32 killer whales (i.e., 7 no reaction, 5 slight or very 
slight startle, 1 startle and dive).  The duration of tag attachments averaged 29 days up to a 
maximum of 65 days, similar to what is anticipated during the proposed study.  Since this 
tagging work, follow-up studies in Alaska have re-photographed previously tagged individuals 
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over periods ranging from days to two years.  Researchers report the available data from tagged 
whales indicate no long-term behavioral reactions and negligible scarring that is difficult to 
detect at the tag site (unpublished data from Andrews et al.; K. Balcomb, personal 
communication cited in (NMFS 2008c)).  For example, photographs of whale AK1 which was 
tagged twice – once on August 9, 2006 and again on June 12, 2007 – indicate that tags sites 
completely healed, with small localized swelling that eventually subsided leaving no visible 
irregularities on the dorsal fin (unpublished data from Andrews et al cited in (NMFS 2008c)). 

Andrews et al. (2005) also used satellite dart tags on five resident killer whales in southeastern 
Alaska.  Tags were deployed using a similar crossbow and with similar tags as the proposed 
study, but with one dart for attachment and a penetration depth of 3 cm.  In September 2004, 
three killer whales were tagged in various locations on the dorsal fin and flank; the authors 
observed no reactions to tagging.  Three weeks later one of the tagged whales was resighted and 
a small (1-cm or 0.4-in) but healed spot was observed at the tag site.  The authors concluded this 
suggested minimal tissue reaction and quick healing time.  In October 2004, two killer whales 
were tagged and no reaction was noted from either whale.  The authors used video playback to 
confirm the absence of an observable behavioral response to tagging.  Both of these whales were 
followed for approximately 2.5 hours after tagging during which they exhibited apparently 
normal behavior.  The authors also noted that no bleeding was observed when tags struck the 
dorsal fin. 

Erickson (1978a) reported on an earlier use of attached radio packages on the dorsal fin of two 
killer whales in the Pacific Northwest.  Although these whales were equipped with a much larger 
radio package (1.4 kg) than the proposed tags, information from this study informs our 
assessment of anticipated effects.  The radio packages were affixed to the base of each dorsal fin 
using four surgical pins that pierced the fin.  The author noted that attachment of the tag elicited 
no noticeable reaction from the whales, no bleeding from the pin sites, and no flinching or 
thrashing at any time during the attachment process.  Whales were observed afterward to 
determine if disturbed by the package; however no behavioral aberrations were seen and the 
whale did not attempt to rub the transmitter or try to remove the package (Erickson 1978a).  The 
two whales were later recaptured and examined; there was no evidence of tissue edema, skin 
irritation, or discharge suggestive of infection.  The author also noted that blood samples showed 
no significant change in the blood characteristics of either whale, particularly the white blood cell 
count, coincident with the attachment of the radio package. 

Other odontocetes have also been assessed for response to tagging.  Cuvier’s and dense-beaked 
whales exhibited fast dives and/or tail splashes upon tagging, but had returned to baseline 
behavior upon resighting (Baird et al. 2004).  Captive common dolphins have been observed to 
pull on implanted tags of conspecifics; similar behaviors are suspected of bottlenose dolphins 
(Scott et al. 1990).  A shark bite in a wild dolphin appeared to have been directed at an implanted 
tag (Scott et al. 1990). 

 Suction-cup tagging 

Baleen whales.  Although suction cup tagging is not as invasive as implantable tagging, whales 
have also demonstrated behavioral reactions to tag attachment.  Goodyear (1989c) observed a 
quickened dive, high back arch, tail swish (31%) or no reaction (69%) to suction cup attachment, 
although one breach was observed in roughly 100 taggings.  Baird et al. (2000) also found 
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responses less frequently than responses in humpbacks (17% of 31 attachments), although 
competitive groups were easier to approach than singletons.  Regardless, pre-tagging behavior 
was observed again in all cases within minutes.  No damage to skin was found (Goodyear 
1989a).  Baumgartner and Mate (2003) reported that strong reactions of North Atlantic right 
whales to suction-cup tagging were uncommon, and that 71% of the 42 whales closely 
approached for suction-cup tagging showed no observable reaction.  Of the remaining whales, 
reactions included lifting of the head or flukes, rolling, back-arching, or performing head lunges. 
 No differences in dive patterns were found after two dives post-tagging.  Suction cup tagging of 
bowhead whales has met with poor attachment success due to the animal’s rough skin and 
evasive behavior (Baumgartner and Hammar. 2010). 

Whether any long-term effects resulting from tagging remain largely unknown and available 
information is limited.  Goodyear (1989b) noted that humpbacks monitored several days after 
being suction-cup tagged did not appear to exhibit altered behavior. 

Although reported data are relatively paucious on baleen whale responses to suction cup tagging, 
discussions with experts having years of experience in the field provide additional insight into 
likely response.  Overall, suction cup tagging produces similar responses as biopsy or more 
invasive tagging, with low-level, ephemeral responses or no response observed in most cases 
(David Schorr, Cascadia Research, pers. comm.). 

Southern resident killer whales.  Several studies using suction-cup attached tags on killer 
whales are available.  These studies do not involve the use of invasive tags; however, whales are 
documented to respond to the strike of a tag and the results of these studies are also informative 
for this consultation.  Baird (1994) attached suction cup TDR tags to three killer whales using a 
pole, noting that two reacted with a low-level response (flinch and roll) and one by swimming 
away.  Using crossbow deployment, the author also tagged seven killer whales and noted no 
reaction in 43% of the whales and a low-level reaction in 57%.  The author reported that whales 
were not more difficult to approach after tagging than before, and suggested their behavior was 
not greatly modified due to tagging.  Baird (1998) reported on additional tagging studies using a 
crossbow-deployed suction-cup tag on killer whales.  Of over 160 attempts (41 successful), the 
author noted that responses were either no reaction or low-intensity and short duration responses 
such as flinching.  Baird et al. (2003b) tagged eight southern resident killer whales with suction-
cup tags and characterized killer whale behavior during the study as including social and travel 
behaviors; however, no description of behavioral or other responses to tagging were noted.  Baird 
et al. (2005b) reported on tagging studies of 34 southern resident killer whales using a suction-
cup TDR tag.  Males between 3–42 years of age and females between 3–60 years old were tagged 
at distances of approximately three to seven meters from the whale, using a crossbow.  
Immediate reactions included no reaction (24% in U.S. waters from 1997-2002) and low-to-
moderate behavioral reactions consisting of a fast dive and a flinch or tail flick (76% in U.S. 
waters 1997-2002).  No strong behavioral reactions were observed, and no changes in general 
behavioral state (e.g., travel, foraging) were seen immediately following tagging (Baird et al. 
2005b).  In addition, acoustic monitoring of one event documented no change in sound 
production associated with the tagging. 

No research has been done to specifically assess the long-term impacts of tagging on killer 
whales.  However, as described above, data from resightings of previously tagged killer whales in 
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Alaska days to years after tagging suggest no long-term behavioral reactions or physical damage 
(unpublished data from Andrews et al. K. Balcomb, personal communication cited in (NMFS 
2008c)).   

Cook Inlet beluga whales.  Suction cup tagging of Cook Inlet beluga whales does not appear to 
elicit a response different from those described in the process of approaching target individuals 
(Lerczak et al. 2000). 

Hawaiian insular false killer whales.  As with implantable tagging, few data are available on 
false killer whales, but suction cup tagging has been attempted on other small odontocetes.  
Roberts et al. (1999) found a false killer whale to respond to a suction cup tagging attempt with a 
fast dive, but did not subsequently avoid the research vessel.  A conspecific subsequently pulled 
the tag off after one hour.  This study also documented spotted and spinner dolphins to respond 
to tagging with tail flicks or fast dives, but most animals returned to the research vessel to 
bowride.  Hanson and Baird (1998) found bowriding Dall’s porpoises to react in 11 of 13 
successful tagging events, but in none of the two misses.  Responses included tail slaps, flinches, 
and/or swimming rapidly away.  However, in seven of 11 responses, individuals returned to 
bowriding and telemetry data suggest individuals returned to baseline behavior within eight 
minutes.  Northern bottlenose whales generally do not respond to missed tagging attempts and 
usually respond to hits by low to moderate-level reactions, but returned to baseline behavior 
within minutes (Hooker et al. 2001b).  Bottlenose dolphins appear to respond very strongly to 
suction cup tagging, engaging in immediate and continuous leaping and increases in swimming 
speed in nearly all cases (Schneider et al. 1998b).  Stone et al. (1994) found a single successful 
tagging event on a Hector’s dolphin caused the individual to cease bowriding and depart the area, 
but return to bowride within five minutes. 

Data from NMML monitoring reports are not entirely clear as to the number and type of 
responses target individuals show to tagging activities, nor the type of tagging conducted.  Due to 
this lack of detail, we could not identify the number of individuals tagged using invasive means 
versus suction-cup tagging over the past several years of NMML’s activities.  However, review 
of the literature and discussion with experts supports responses and response rates by target 
species to be generally similar to these forms of tagging.  Response data provided by Mate et al. 
(2007a) for blue, fin, humpback, right (used as a surrogate for bowhead whale response due to 
lack of species-specific response data), and sperm whales appears to be the best source to 
appraise the rate of response by these species to invasive tagging and is used here to estimate the 
number of responses; additional information summarized above helps us determine the type of 
response likely to occur under the proposed permit.  Baird (2011, pers. comm.) provides a basis 
for estimating response rate of Hawaiian insular false killer whales (91%).  Based upon these 
response rates and the expected level of tagging, we do not expect sei whales to respond, but two 
fin, eight humpback (Pacific), 25 bowhead, six North Pacific right, and 11 sperm whales are 
expected to respond to invasive and suction cup tagging activities with low- to moderate-level 
behavioral responses described above.  One or a few blue whales may also respond in a similar 
manner over the life of the proposed permit.  As it is possible that an individual could be exposed 
to tagging more than once per year, the same individual could respond multiple times (potentially 
as frequently as the maximum annual range identified in Table 22 on pages 113-114).  In 
addition, 167 humpback whales (Atlantic), most if not all Hawaiian insular false killer whales, 
and most if not all of the southern resident killer whales are expected to respond to tagging 
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(again, multiple individual responses are possible).  We do not expect Cook Inlet beluga whales 
to respond to suction cup tagging (at least not in a way that is discernable from stressors 
associated with close vessel approach)(Lerczak et al. 2000).   

Most responses would consist of low-level, transitory behavioral responses, such as startle, 
flinching, defecation, fluke beat(s), premature or accelerated dive, movement away from the 
research vessel, increased swimming speed, rolling, head lifts, and/or back arching.  Some 
individuals may exhibit more prolonged or extreme responses, rising to a moderate level. We do 
not anticipate any strong behavioral responses to tagging.  We expect all individuals receiving 
implantable tags to experience a physiological response to the foreign body, including swelling 
or inflammation.  We do not anticipate any individual will incur an infection from tag 
application, although data are spartan and additional study is needed to better inform this 
possibility. 

Our use of behavior as an indicator of a whale’s response to tagging may or may not accurately 
reflect the whale’s experience, and we cannot definitively know whether such behavioral 
responses have long-term consequences.  Responses to human disturbances, such as tagging, may 
manifest as stress responses, interruptions of essential behavioral or physiological events, 
alteration of an animal’s time budget, or some combination of these responses.  Weinrich et al. 
(1992) associated “moderate” responses with alarm reactions and “strong” behavioral reactions 
with stress responses.  Wild harbor porpoises restrained and tagged did not show consistent 
elevations in cortisol nor did heart rate change in ways consistent with a stress reaction (Eskesen 
et al. 2009); these actions are much more invasive that those proposed.  Moderate responses 
might also be associated with a stress response, given that certain behavioral responses may have 
metabolic consequences.  As a result, we assume the proposed tagging could be stressful for a 
small portion of the whales; however, the significance of this stress response and its 
consequences, if any, on the fitness of individual whales are not definitively known.  However, 
the limited information available from Erickson (1978a) indicates that for a more invasive radio 
package attachment on the dorsal fin, the blood parameters of killer whales showed no significant 
change.  Recognizing the evidence indicating that behavioral responses would be short-lived, we 
provisionally assume that the tagging activities could produce short-lived stress responses in 
some individuals. 

Biopsy 

Biopsy sampling has the potential to disrupt behavior and breach an individual’s integument.  
Physiological, pathological, and behavioral responses are possible.  We reviewed the literature 
assessing the impacts of biopsy sampling to various cetacean species.  We know of only one 
published report of a cetacean death following biopsy sampling, when the dart penetrated the 
muscle mass of a female common dolphin (Delphinus delphis), which may have resulted in 
vertebral trauma and severe shock (Bearzi 2000).  The individual had relatively thin blubber, 
permitting deeper penetration than was desired and sticking of the dart.  Apart from the one 
mortality, there is not even evidence of infection at the point of penetration or elsewhere among 
the many whales sighted in the days following biopsy sampling (Weller 2008).  The risk of 
infection is thought to be minimized by sterilizing dart tips before sampling occurs.  In general, 
healing is rapid (roughly one week, scarring thereafter)(Noren and Mocklin 2011). 

Balaenopterids.  Although suction cup tagging has become a common field method for studying 
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baleen whales, few data exist regarding response of balaenopterid whales to suction cup tagging. 
 Gauthier and Sears (1999) summarized data for several species, including blue, fin, and 
humpback (Table 24).  Blue whale responses responded by submerging, accelerating, and/or 
diving (Gauthier and Sears 1999).  Fin whales either do not respond at all, or exhibit low- to 
moderate-level behavioral responses (Marsili and Focardi 1996).  Inadvertent repeated biopsy 
within a week did not appear to cause a difference in reaction in three blue whales and five fin 
whales (Gauthier and Sears 1999).  Group size does not appear to impact the likelihood or 
severity of response (Gauthier and Sears 1999).  Female fin whales appear to respond to biopsy 
more often than males (66% versus 44%) and more strongly.  Individuals generally return to 
baseline behavior within a few minutes (Gauthier and Sears 1999).  A biopsy miss that hit the 
water near a target fin whale apparently caused the fin whale to dive (Gauthier and Sears 1999).   

Table 24.  Response frequency and intensity of baleen whales to biopsy attempts (Gauthier and 
Sears 1999) 

Whale 
species Response No 

response 
% 

responding 

Low-
intensity 
response 

Mid-
intensity 
response 

Strong-
intensity 
response 

Blue 32 71 31.1 25 7 0 

Fin 57 56 50.4 34 23 0 

Humpback 135 71 65.5 38 87 10 

Humpback whale.  Many researchers claim that biopsy darts or sampling does not result in 
significant short-term or long-term behavioral disturbance to humpback whales.  However, 
humpback whales do appear to be more reactive to biopsies than other baleen whale species 
(Table 24).  An IWC working group reviewed biopsy sampling and concluded long-term effects 
are unlikely, although short-term responses frequently occur (IWC 1991).  Clapham and Mattila 
(1993) found 44% of humpback whales sampled showed no immediate response, while 22.5% 
reacted in subtle or minor ways.  Cerchio (2003) found similar results in 350 biopsy events.  
Cantor et al. (2010) found that 46% of 542 biopsy attempts on adult or subadult humpback 
whales from 10-25 m away resulted in a behavioral response (most commonly fluke movement). 
 Neither the use of a tether, the duration of vessel contact with the target individual, nor region of 
the body hit influenced the likelihood of response, although responses were more frequent and 
intense from smaller vessels (likely due to their additional noise) than from larger vessels.  
Weinrich et al. (1991) reached the same conclusions for humpback whales, although short-term 
disruption of foraging could occur as well as agonistic behavior and altered dive parameters.  
Gauthier and Sears (1999) found humpback whales to accelerate, change direction, dive, lobtail, 
exhale forcefully, submerge, and display tail and flipper movements (the most common 
response); “moderate” responses were the most common category of response.  Weinrich et al. 
(1992b) also found that of 71 humpback whales biopsied, 7% had no response, 27% exhibited a 
“low” response, 61% had a “moderate” response, and 6% had a “strong” response.  Brown et al. 
(1994) found 41% of 203 humpbacks biopsied to respond in some way, including fluke 
movements, tail slaps, and disrupted dives.  Humpbacks rarely display tail flicks, but frequently 
do so in response to biopsy (Weinrich et al. 1992b).  Repeated sampling was not found to 
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influence the likelihood of subsequent biopsy responses (Brown et al. 1994).   

The behavioral state of individuals pre-biopsy may also influence the probability of response, 
with foraging, traveling, or socializing individuals less likely to respond than resting individuals 
(Cantor et al. 2010; Weinrich et al. 1991), although this is confounded by data in other areas, 
possibly due to differences in vessels or methods used between studies (Brown et al. 1994).  
Clapham and Mattila (1993) found that evasion was the most common behavioral change and 
that response was less likely on breeding grounds.  Unlike close approach, demographic factors 
do not appear to influence biopsy response in humpback whales; individual age, gender, group 
size, geographic location, and repeated sampling have not been found to influence the likelihood 
of biopsy responses (Cantor et al. 2010; Gauthier and Sears 1999; Weinrich et al. 1991).  Brown 
et al. (1994) did find females to respond more frequently than males, although not significantly 
so.  Of individuals that do respond, return to baseline behavior occurs within a few minutes 
(Gauthier and Sears 1999).  Mothers and males in competitive groups reacted less frequently than 
other individuals (Cerchio 2003; Clapham and Mattila 1993).  However, calves tend to be more 
evasive than any other group.  Females with calves responded more frequently than did non-
lactating females (60% versus 43%)(Cantor et al. 2010).  

Biopsy misses can also cause behavioral responses (Gauthier and Sears 1999).  Strong behavioral 
responses were found by Weinrich et al. (1992b) and (1991) when a line attached to the biopsy 
dart snagged on an individual’s flukes.  Brown et al. (1994) reported that 16% of missed 
Australian humpbacks responded, suggesting that these animals reacted to the sound of the dart 
hitting the water.  Similarly, Clapham and Mattila (1993) reported that a total of 375 (87.7%) of 
misses on breeding grounds involved no reaction.  Gauthier and Sears (1999) found four out of 
five misses of individuals in a feeding area did not involve a response, although four out of five 
other individuals did respond until freed from biopsy darts that stuck in their blubber.  
Significantly stronger reactions were displayed when  biopsy darts actually hit humpback whales 
than when they missed (Weinrich and Kuhlberg. 1991).  

Bowhead whale.  Prior experience by researchers has found that bowhead whales biopsied using 
a crossbow, from a boat, tend to dive 52% of the time, have no observed reaction on 19% of 
biopsy samples, or increase swimming speed/change direction on 19% of occasions (Rossi 
2009).  However, the reaction to the boat is usually more pronounced than the reaction to the 
biopsy.  This is the limit of our knowledge of bowhead responses to biopsy sampling. 

Right whales.  The relatively high level of behavioral responsiveness observed in bowheads also 
appears to be present in right whale species.  North Atlantic right whales showed immediate, 
minor behavioral response to biopsy darting 19% of the time in 241 attempts and no reaction in 
81% of hits and misses (Brown et al. 1991b).  Reactions include twitches, increased swimming 
speed and dives, back arches and dives, tail flicks, lobtails, and turning away from the tagging 
vessel (Brown et al. 1991b).  More than 50% of individuals had a hard tail flick; an unusual 
behavior for this species.  Dives also became longer relative to surface times.  However, return to 
baseline behavior generally occurred rapidly (Brown et al. 1991b).  It should be noted, though, 
that one individual lobtailed for 40 minutes after a missed biopsy attempt where monofilament 
line attached to the arrow trailed after the animal (Brown et al. 1991b).  Reeb and Best (2006)  
also documented generally no or low- to moderate-level responses of right whales to pole biopsy 
techniques.  Demographic differences in responses have been identified in southern right whales, 
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with greater response in singletons versus groups and cow/calf pairs responding more strongly 
than other groups (Best et al. 2005).  Overall, changes in reproductive output by female right 
whales was not found, although the power to detect differences was low (Best et al. 2005). 

Sperm whales.  We identified only one study that has reported on the response of sperm whales 
to biopsy attempts.  Whitehead et al. (1990) reported responses from sperm whales off Nova 
Scotia as well as the Azores, finding that every biopsy hit and roughly half of the misses caused a 
startle response.  Startling was associated with flexing the body, raising the back, and/or 
increasing swimming speed.  Other responses occasionally observed included short dives of up to 
five minutes and defecation.  In all cases, individuals were observed to return to baseline 
behavior within minutes.  Discussions with experienced field biologists suggest these trends are 
generally accurate, although no response may also occur to biopsy hits (Greg Schorr, Cascadia 
Research, pers. comm.).   

Southern resident killer whales.  Killer whales normally flinch, shake, and/or accelerate in 
response to biopsy hits (81%) and misses (53%), but do not show aversion to reapproaches in 
most cases shortly after biopsy (Barrett-Lennard et al. 1996). 

Cook Inlet beluga whales.  We are not aware of data documenting the response of beluga whales 
to biopsy attempts.  We expect that, as with suction cup tagging, responses could not be 
discriminated from the response previously described to close vessel approach. 

Hawaiian insular false killer whales.  Few data are available from false killer whales.  
However, from other odontocete species are available.  A total of 28 responses (23 low-level, 
five moderate) out of 49 biopsy events were measured for northern bottlenose whales, with 
logging individuals responding more strongly than milling or traveling individuals (Hooker et al. 
2001b).  Responses occurred to both hits and misses, although hits elicited much more frequent 
responses.  Most responses were startles.  Weller et al. (1997) found that all eight bottlenose 
dolphins biopsy sampled exhibited startle responses in his study, including tail flicks, increased 
swimming speed, and leaving the area.  Misses did not produce a response.  Follow-up veterinary 
and pathological examination found wounds to be uninfected and healing well, with skin 
covering the wound 15-42 days post-biopsy.  Biopsies of roughly 100 bottlenose dolphins and 
four humpbacked dolphins generally resulted in startle responses as well (Weller et al. 1997).  
Long-term effects have not been found to result from biopsy attempts (Weller et al. 1997).  Killer 
whales have been observed to shake or accelerate upon biopsy, but no other effects were 
observed (Barrett-Lennard et al. 1996).  Resting and socializing groups of spinner, pantropical 
spotted, melon-headed, and Indo-Pacific bottlenose dolphins apparently respond more strongly 
than do milling or traveling groups (Kiszka et al. 2010b).  Responses were similar for both hits 
and misses.  Overall, 94% of responses were twitch and/or dive, while 2% of responses included 
tail slap, leaping, multiple breaches, and/or escape.  Group behavior changed in 54% of biopsy 
attempts, with group dive being the most common response.  However, group escape or 
increased swimming speed occurred in 4% of biopsy attempts.  Group size did not bear of the 
likelihood or strength of response.  Gorgone et al. (2008) found that 22% of conspecifics reacted 
in a manner similar or identical to target individuals. 

As with tagging activities, NMML annual reports are unclear as to the number and types of 
responses target individuals exhibited upon biopsy.  Therefore, we relied upon available 
literature and expert opinion to determine the number and types of responses under the proposed 
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activities.  Gauthier and Sears (1999) provide the only quantitative data available for 
balaenopterid response, as does Whitehead et al. (1990) for sperm whales.  Humpback whale 
responses have been documented extensively.  Of the available studies, Cantor et al. (2010) and 
Brown et al. (1994) provide the largest sample sizes and report similar response rates; we use 
these studies to determine humpback response rate and the entirety of the literature to inform the 
expected type of response.  Data from Rossi (2009) are used to calculate bowhead response rate 
and Brown et al. (1991a) was used for right whales.  Overall, we do not expect sei whales to 
respond to biopsy, but 18 fin, 1,019 and 35 humpback (Pacific/Atlantic), 21 bowhead, two North 
pacific right, and 35 sperm whales are likely to respond behaviorally to biopsy activities as 
described above (mild- to moderate-behavioral responses).  We also expect that one or a few blue 
whales may respond with low- to moderate-level behavioral responses over the life of the 
proposed permit.  We do not expect Cook Inlet beluga whales to respond in a way that is 
discernable from the previously described response to close vessel approach.  Based upon data 
from a variety of odontocete species, we expect most if not all Hawaiian insular false killer 
whales to respond to biopsy attempts.  We could not assess the impacts of biopsy and tagging 
independently from one another for populations or species which we provisionally accepted 
proposed levels of tagging and biopsy (humpback whales in the Atlantic, southern resident killer 
whales, and Hawaiian insular false killer whales).  However, as response rates and response types 
for these activities are generally similar and if biopsy and tagging were to occur to the same 
individual, the response to both activities by an individual would likely be the same as to one of 
the activities alone.  As previously mentioned, individuals re-exposed to proposed activities 
could also undergo additional responses.  Table 22 on pages 113-114 provides maximum 
expected re-exposure; we expect the number of individual responses to be less than this. 

We expect responses to consist of brief, low-level to moderate behavioral responses, consistent 
with findings of Noren and Mocklin (2011).  These are likely to include increased swimming 
speed, diving, change in direction, lobtail, forceful exhalation, submergence, tail and flipper 
movements, agonistic behavior, twitches, back arches, and defecation.  As a result, individuals 
may temporarily leave the area or cease feeding, breeding, resting, or other activities.  However, 
we expect that individuals would return to baseline behavior within a few minutes. 

Cumulative effects 

Cumulative effects include the effects of future State, tribal, local, or private actions that are 
reasonably certain to occur in the action area considered in this Opinion.  Future Federal actions 
that are unrelated to the proposed action are not considered in this section because they require 
separate consultation pursuant to section 7 of the ESA. 

This section attempts to identify the likely changes present in the future and their impact on ESA 
listed species and their critical habitats in the action area.  This section is not meant to be a 
comprehensive socio-economic evaluation, but a brief outlook on future changes on the 
environment.  Projections are based upon recognized organizations producing best-available 
information and reasonable rough-trend estimates of change stemming from these data. However, 
all changes are based upon projections that are subject to error and alteration by complex 
economic and social interactions.  It is reinforced that projections are broad-scale and do not 
incorporate small- to medium-sized changes on the local level.  Information sources include the 
U.S. Census Bureau, Department of Labor, and Lexus-Nexus information system.  With the later 
(source for state legislation), only pending bills under consideration were included; those that 
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died in process or were vetoed are not included. 

Regulatory changes alter the environment under which future actions can occur, including zoning 
regulation, fishery capacity, environmental standards, and development of commerce and 
industry.  New York State legislation would prevent the release of balloons due to marine life 
ingestion.  A bill in the Virginia house and senate would limit pound net fishing.  Florida’s 
legislature is considering a possible amendment to the state constitution prohibiting marine oil 
exploration, drilling, and extraction. 

The NMFS expects whale watching operations, vessel traffic, climate change, and research 
activities to continue within the range of the species for the foreseeable future.  The best 
scientific and commercial data available provide little specific information on any long-term 
effects of these potential sources of disturbance on whale populations.  Harvests of bowhead 
whales in the Arctic is expected to continue in both Russian and Alaskan waters.  Information on 
the effects of repeated harassment by research activities, vessel traffic, and whale watchers is also 
lacking.  Lusseau (2004) provides evidence that dolphins may be changing their activity budget 
and behavior in response to dolphin watching tours.  Salden (1988) and Herman (1979) 
demonstrated a shift in humpback distribution possibly due to recreational watercraft.  There is 
also some concern that the increasing population trends for these species may be related to 
increased sampling effort (Branch 2006) or habitat shifts from one region to another globally, so 
that the global population is not increasing but the local populations at some feeding or breeding 
sites is.  Therefore, without additional information on their population structure, which is 
provided by this research, continuation of these activities does not appear to pose any threat to, or 
prevent the survival and recovery of listed marine mammals. 

States along the Pacific coast, or which contribute water to major river systems here, are 
projected to have the most rapid growth of any area in the U.S. within the next few decades.  
This is particularly true for coastal states and those of the desert southwest.  California, Oregon, 
Washington State, Arizona, Idaho, Utah, Nevada, and Alaska are forecasted to have double digit 
increases in population growth rates for each decade from 2000 to 2030 (USCB 2005b).  Overall, 
this region had a projected population of 65.6 million people in 2005 and will likely grow to 70.0 
million in 2010 and 74.4 million in 2015, making it by far the most populous region (but also 
containing the greatest land area).  The U.S. Census Bureau projects the population of 
Washington State (the vast majority of which lives along Puget Sound, the San Juan Strait, or 
coastal Pacific waters where southern resident killer whales occur) is growing at an accelerated 
rate of 1.1% annually by 2010, 1.4% between 2010 and 2020, and 1.6% between 2020 and 2030 
(USCB 2005a; USCB 2005b).  Oregon should experience similar, although slower growth.   
Specifically, NOAA’s State of the Coast which summarizes United States census data for coastal 
regions, indicates that all counties within the Washington and Oregon coastal watershed will 
show significant increases in population, with counties along the southern resident killer whale 
critical habitat having some of the largest growth (http://stateofthecoast.noaa.gov/).  
Washington’s Office of Financial Management estimates an additional 700,000 people will be 
living in the Puget Sound Region over the next 10 years.  With this growth comes the related 
concern of increased toxic runoff and increased hard surface area that facilitate the runoff, 
reduced oxygen levels in the sound due to waste discharge, loss of habitat, and increased 
shoreline development. Growth in the region will increase contaminants from wastewater 
treatment plants and sediments from sprawling urban and suburban development that enter 
riverine, estuarine, and marine habitats.  Environmental contamination is a persistent and long-

http://stateofthecoast.noaa.gov/�
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term health risk for some listed species, such as southern resident killer whales (Krahn et al. 
2007; NMFS 2008e; Ross et al. 2000c).  Overall, exposure of southern resident killer whales to 
most contaminants in the action area is not expected to appreciably decrease in the foreseeable 
future (Grant and Ross 2002; Krahn et al. 2002a; NMFS 2008e). 

Whale-watching activities likely will become more extensive, potentially altering marine 
mammal habitat use and risk behavioral changes similar to what has been observed in the Pacific 
northwest (NMFS 2008e).  Whale watching can become more extensive locally (i.e., Virginia 
Beach, a popular tourist destination roughly 80 miles from Richmond, VA, is a location past 
which humpback and right whales migrate) and potentially present issues with overuse.   

Nationwide, construction is forecasted to be one of the most extensively growing industries in the 
U.S.  From 2006 to 2016, the construction industry is expected to grow by 1.4%/year and employ 
an additional 600,000 people during that time (Figueroa and Woods 2007).  However, this 
represents a 30% slow-down from the 1996 to 2006 time period.  Construction will be most 
likely to occur in school, industrial, and medical areas, as well as infrastructure (bridge and road) 
repair and replacement.  An increase in construction will entail additional development in urban 
and non-urbanized areas that can introduce large amounts of sediment into waterways via run-
off.  Sediment run-off can also introduce nutrients into marine environments that can cause algal 
blooms, which have been documented in nearshore habitats of the northeast U.S., and introduce 
neurotoxins to large areas and cause wide-scale mortality (NMFS 2007a; NMFS and USFWS 
2004; Vitousek et al. 1997).   

Fishing is a major industry affecting the action area.  According to projections from the U.S. 
Department of Labor, fishing is expected to undergo decline in output (USBLS 2010a; USBLS 
2010b).  This means that the adverse affects of ship-strikes, entanglement, and/or competition for 
prey that are associated with this industry to baleen whales, southern resident killer whales, and 
Steller sea lions are likely to decrease. 

Any future scientific studies targeting these species and contributing to their conservation or 
recovery will require consultation under the ESA and such studies, therefore, are not included in 
the Cumulative Effects section of this Opinion.  Whale watching has the potential to significantly 
expand, generating an additional 413 million dollars globally and generating an additional 5,700 
jobs (Cisneros-Montemayor et al. 2010).  Similarly, alternative energy projects such as ocean 
current, wave, and tidal energy projects are expected to increase within the action area and will 
require federal permits (e.g., Federal Energy Regulatory Commission (FERC)), so these actions 
are not included in the Cumulative Effects section of this Opinion.  After reviewing available 
information, NMFS is not aware of effects from any additional future non-federal activities in the 
action area that would not require federal authorization or funding and are reasonably certain to 
occur during the foreseeable future. 

The state of Washington has implemented a strategy to restore Puget Sound to a healthier 
condition in 2020.  A Puget Sound Partnership was created by the governor and in 2008 the 
Puget Sound Action Agenda was released by the partnership.  During the legislature’s 2009 
session, $78.5 million dollars was earmarked for various projects that would support the action 
agenda, indicating a concerted effort by the state to improve the Puget Sound environment. 
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Integration and synthesis of effects 

As explained in the Approach to the assessment section, risks to listed individuals are measured 
using changes to an individual’s “fitness” – i.e., the individual’s growth, survival, annual 
reproductive success, and lifetime reproductive success.  When listed plants or animals exposed 
to an action’s effects are not expected to experience reductions in fitness, we would not expect 
the action to have adverse consequences on the viability of the population(s) those individuals 
represent or the species those populations comprise (Anderson 2000; Brandon 1978; Mills and 
Beatty 1979; Stearns 1992).  As a result, if the assessment indicates that listed plants or animals 
are not likely to experience reductions in their fitness, we conclude our assessment.  If possible 
reductions in individuals’ fitness are likely to occur, the assessment considers the risk posed to 
population(s) to which those individuals belong, and then to the species those population(s) 
represent. 

The NMFS Permits Division proposes to issue a permit amendment to Dr. John Bengtson of the 
NMML for directed take of all listed and proposed for listing cetaceans in the North Pacific 
(blue, fin, sei, humpback, bowhead, North Pacific right, sperm, Cook Inlet beluga, southern 
resident killer whales, and Hawaiian insular false killer whales) as well as humpback whales in 
the North Atlantic, all of whom are endangered throughout their ranges (except Hawaiian insular 
false killer whales, which are proposed as endangered).  The Permits Division also proposes to 
authorize unintentional take for both DPSs of Steller sea lions (eastern DPS listed as threatened, 
western DPS listed as endangered), the Beringia DPS of bearded seals (proposed as threatened), 
as well as the Arctic DPS of ringed seals (proposed as threatened).   

The Status of listed resources section identified commercial whaling as the primary reason 
population sizes are a fraction of their former abundance for large whales.  Native harvests, 
strandings, and killer whale predation were identified as reasons for decline of Cook Inlet beluga 
whales, while collections for aquaria have been a major contributor to a reduced southern 
resident killer whale population size.  Steller sea lions have and continue to experience a variety 
of threats, including fishery interaction, hunting, predation, and prey depletion.  Bearded and 
ringed seals are not known to have undergone reduced population sizes, but are threatened by 
reductions in ice habitat.  Insular Hawaiian false killer whales have likely experienced reductions 
due to fishery interactions and may be negatively impacted from environmental contaminants and 
prey depletion.  Other worldwide threats to the survival and recovery of listed marine mammals 
include ship strike, entanglement in fishing gear, and toxic chemical burden and biotoxins.  
Listed marine mammal populations in the North Pacific and North Atlantic are expected face 
area-specific threats identified in the Environmental baseline, including habitat degradation, 
whale watching, research activities, seismic surveys, oil and gas exploration, naval activities, 
climate change, human noise sources, ship strike, subsistence and commercial harvesting, and 
entanglement.  Despite these pressures, most large whale populations (as well as the eastern 
Steller sea lion DPS) appear to be recovering, although Cook Inlet beluga whale, southern 
resident killer whale, and the western Steller sea lion DPS  population have recently fluctuated 
and are mostly in decline.  Insular Hawaiian false killer whales appear to be either stable or in 
decline.  Beringia bearded seal and Arctic ringed seal population sizes are poorly known, but 
appear to be stable.  Reasonably likely future actions described in the Cumulative effects section 
include the continuation of activities previously identified in the Environmental baseline as well 
as state regulatory trends, population growth, and increase in some industrial sectors that can 
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degrade habitat quality. 

The Exposure analysis describes the actions proposed to be undertaken to North Pacific 
populations of listed or proposed for listed and proposed for listing marine mammals: close 
approaches by survey aircraft of any age/sex, close approaches by research vessel of any age/sex, 
invasive tagging, and/or suction cup tagging (see Tables 21 and 22 on pages 110-112 and 113-
114 for expected exposure and Table 20 on pages 107-109 for age class limitations on some 
tagging and biopsy activities).  

The Response analysis considered that stressors to which targeted individuals would be exposed 
will likely cause behavioral, physiological, and displacement responses.  Aerial surveys are 
expected to cause temporary, low-level behavioral responses in a few individuals of some listed 
species which are targeted under the proposed permit.  We expect the vast majority of individuals 
to not respond at all and the remainder to exhibit low-level behavioral responses and possibly a 
mild stress response.  Those that do respond are expected to return to baseline behavior within 
minutes and no targeted individual will experience a reduction in growth, reproduction, or 
survival potential. 

Vessel approaches frequently result in behavioral changes in listed whales, with most approaches 
resulting in no response or apparently “minor” to “moderate” responses (increasing swim speed 
and direction, startle reaction, movement away, changes in respiration and diving, agonistic 
behavior, evasion (Baker et al. 1983b; Baker and Herman. 1989; Bauer and Herman 1986; Bauer 
1986; Clapham and Mattila 1993; Hall 1982; Hemphill et al. 2006; Koski and Johnson 1987; 
Malme et al. 1983b; Malme et al. 1984b; Richardson et al. 1985b; Scheidat et al. 2004)).  There 
is also compelling evidence that cumulative vessel approaches (Bauer and Herman 1986; 
Herman 1979) or additive effects of vessel approach and other anthropogenic stressors (Fraker et 
al. 1982) can have more significant effects, including the displacement of humpback whales from 
Alaskan foraging areas, displacement of gray whales from habitat (Reeves 1977) and interference 
with bowhead feeding and social behavior (Bauer and Herman 1986).  The presence of additional 
anthropogenic stressors, such as seismic survey and drilling activities and commercial vessel 
traffic are likely to induce additional disturbance on potential target individuals (Fraker et al. 
1982; NMFS 2008a).  Although it is possible that individuals are being displaced from more 
preferable habitat, we have no evidence to suggest this.  The number and severity of responses to 
vessel approaches that listed individuals will experience is small.  This is especially so in 
comparison to the other anthropogenic and natural stressors that individuals must cope with.  
Coupled with trends suggesting recovery for most target species, the continuation of close 
approach activities under the proposed permit are not expected to measurably hamper survival or 
recovery of listed species. 

A possible exception to this is Cook Inlet beluga whales, whose responses to close vessel 
approach are the most extreme we know of for any cetacean and whose population size is in 
decline.  Exposure is likely to last a short period (average of 2.7 minutes, up to 10 minutes) and 
individuals have been observed to typically return to baseline behavior very shortly after escaping 
pursuit.  It is apparent that targeted individuals would do everything possible to avoid research 
vessels at close range and will likely experience significant metabolic costs (exertion likely to 
anaerobic respiration) and stress responses.  Stress levels may rise to the point of distress, with 
potential muscle damage similar to that documented in other distressed odontocetes (Cowan and 
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Curry 1998a; Cowan and Curry 2008; Cowan and Curry. 2002).  However, to date no severe 
adverse effects, such as mortality, physiological damage, reduced growth or reproduction have 
been documented even with several years of monitoring having been conducted.  Comparative 
analysis of stress responses in belugas exposed to similar and more invasive stressors versus 
captive “baseline” status does not support a distress response.  Additional serial study of the 
stress response to anthropogenic stressors should be undertaken to further clarify the significance 
of human impacts to the species.  At present the available evidence leads us to believe that 
significant physiological harm can, but is not likely to result from close vessel approaches of 
Cook Inlet beluga whales and that significant but temporary behavioral and physiological 
responses would result from approaches to any individual. 

In addition to the stressors placed upon targeted individuals from vessel approaches, a portion of 
the same individuals will be further exposed to stressors associated with biopsy and/or tagging.  
The Response analysis found that responses by whales to these activities are similar to those of 
vessel approach and are frequently difficult to differentiate (Goodyear 1981; Goodyear 1993b; 
Hooker et al. 2001c; Mate et al. 1997b; Watkins 1981c; Watkins et al. 1984b).  In addition, not 
all individuals respond to tagging or biopsy, meaning that a fraction of targeted individuals are 
not expected to show an overt response to the combined approach, tagging, and biopsy action.  
We do expect all individuals to at least be aware of the vessel’s approach and undergo a low-
level to high (Cook Inlet beluga whales) stress reaction as a result of a large unknown object in 
close proximity to individuals.  Information available to us does not support behavioral responses 
by an individual being more severe when additional activities (such as tagging and biopsy) are 
added to vessel approach, although we do expect more frequent responses to the combined 
activities versus to approach alone. 

Implantable tags also have the potential to introduce pathogenic agents into the blubber and 
muscle of targeted individuals.  This concern has been addressed to some extent by several 
reviews, but conclusive evidence for or against the potential for infection is lacking (Best and 
Mate. 2007; Kraus et al. 2000; Mate et al. 2007c; Weller 2008).  At present, available evidence 
from a single animal of advanced decomposition and numerous observations of live whales does 
not support debilitating infection caused by implantable tags (Weller 2008).  Until additional 
tagging sites of have been evaluated, the issue will likely remain unresolved.  Methods adopted 
by the researchers, including use of disinfectants on biopsy and tagging materials penetrating 
target individuals, should minimize the risk of infection (Mate et al. 2007c; Weller 2008).  We do 
expect that tagged individuals will exhibit similar inflammatory responses, development of 
divots, and scar tissue development from implantable tags as has been seen in whale species who 
have been tagged in the past (Best and Mate. 2007; Kraus et al. 2000; Mate et al. 2007c; Quinn et 
al. 2000; Weller 2008).  We also expect implantably-tagged individuals to experience increased 
drag during the days to months that tags will be protruding from the blubber as they are rejected 
from the body (Best and Mate. 2007).  Suction cup tags will not likely stay on for as long, but 
will also cause drag while attached to the target whale.  However, we expect the amount of drag 
to not be significant to target whales, as the tags are small compared to the size of target whales.  
As evidenced from the apparent ability of whales to survive and reproduce successfully under 
these conditions (Baumgartner and Hammar. 2010; Best and Mate. 2007; Mate et al. 2007c), we 
do not expect these physiological responses to be significant to any individuals’ overall 
metabolic balance or health state. 
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Overall, we expect all targeted whales to experience some degree of stress response to approach, 
biopsy, and/or tagging attempts.  We also expect a fraction of these individuals to undergo short-
term behavioral responses to these activities, varying from twitches to evasion and breaching.  
We do not expect displacement of individuals from the action area as a result of the proposed 
action.  Individuals responding in such ways may temporarily cease feeding, breeding, resting, or 
otherwise disrupt vital activities.  However, we do not expect that these disruptions will cause a 
measureable impact to any individual’s fitness. We expect all biopsied or implantably-tagged 
individuals to experience additional physiological reactions associated with foreign body 
penetration into the blubber and possibly muscle, including inflammation, scar tissue 
development, and (for implantable and suction cup tags) a small amount of drag associated with 
the applied tags.  We do not expect any single individual to experience a fitness consequence as a 
result of the proposed actions and, by extension, do not expect population-level effects.    

Conclusion 

After reviewing the current status of endangered blue, fin, sei, humpback, bowhead, North 
Pacific right, sperm, southern resident killer, Cook Inlet beluga, and Hawaiian insular false killer 
whales (proposed as endangered), endangered western DPS Steller sea lions, threatened eastern 
DPS Steller sea lions, Arctic DPS ringed seals (proposed as threatened), and Beringia DPS 
bearded seals (proposed as threatened) in the Status of Listed Resources, the Environmental 
Baseline for the action area, the effects of the proposed research programs, and the Cumulative 
Effects, it is NMFS’ biological opinion that issuing Permit 14245 is likely to adversely affect 
individuals of the forementioned listed species or species proposed for listing but is not likely to 
jeopardize the continued existence of the species.  We do not expect that critical habitat will be 
adversely affected by the proposed actions. 

 Incidental Take Statement 
Section 9 of the ESA and Federal regulation pursuant to section 4(d) of the ESA prohibits the 
take of endangered and threatened species, respectively, without special exemption.  Take is 
defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt 
to engage in any such conduct.  Harm is further defined by NMFS to include significant habitat 
modification or degradation that results in death or injury to listed species by significantly 
impairing essential behavioral patterns, including breeding, feeding, or sheltering.  Incidental 
take is defined as take that is incidental to, and not the purpose of, the carrying out of an 
otherwise lawful activity.  Under the terms of section 7(b)(4) and section 7(o)(2), taking that is 
incidental to and not intended as part of the agency action is not considered to be prohibited 
taking under the ESA provided that such taking is in compliance with the terms and conditions of 
this Incidental Take Statement. 

We do not expect incidental take of threatened or endangered species as a result of the proposed 
actions. 

Conservation Recommendations 

Section 7(a)(1) of the Act directs Federal agencies to utilize their authorities to further the 
purposes of the Act by carrying out conservation programs for the benefit of endangered and 
threatened species.  Conservation recommendations are discretionary agency activities to 
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minimize or avoid adverse effects of a proposed action on listed species or critical habitat, to 
help implement recovery plans, or to develop information. 

The following conservation recommendations would provide information for future consultations 
involving the issuance of marine mammal permits that may affect endangered whales as well as 
reduce harassment related to research activities: 

1. Determination of take numbers.  We find that the methods used to determine the 
number of takes for most actions proposed to be authorized by the Permits Division to 
be several orders of magnitude in excess of those that are reasonably likely to occur.  
We recommend that the Permits Division adopt methods in determining take numbers 
that are reasonable in light of the actions proposed by the NMML and the level of 
exposure which has occurred in the past under similar or identical NMML actions as 
evidenced by annual reports. 

2. Identify responses by listed individuals to permitted actions.  The Endangered 
Species Division recommends that annual reports submitted to the Permits Division 
require detail on the response of listed individuals to permitted activities.  Expansive, 
individual-by-individual detail is not recommended, but a minimum of general 
comments on individual responses can inform future consultations.  Information 
should include responses to targeted individuals to whom actions are directed, 
unintentional responses of the conspecifics of target individuals, and unintentional 
exposure to non-target species.  This will greatly aid in analyses of likely impacts of 
future activities. 

In order for NMFS Endangered Species Division to be kept informed of actions minimizing or 
avoiding adverse effects or benefiting listed species or their habitats, the Permits Division should 
notify the Endangered Species Division of any conservation recommendations they implement in 
their final action. 

Reinitiation Notice 

This concludes formal consultation on NMFS’ proposal to issue Permit 14245 to the NMML, 
pursuant to the provisions of section 10 of the ESA and MMPA.  As provided in 50 CFR 402.16, 
reinitiation of formal consultation is required where discretionary Federal agency involvement or 
control over the action has been retained (or is authorized by law) and if: (1) the amount or extent 
of incidental take is exceeded; (2) new information reveals effects of the agency action that may 
affect listed species or critical habitat in a manner or to an extent not considered in this Opinion; 
(3) the agency action is subsequently modified in a manner that causes an effect to the listed 
species or critical habitat not considered in this Opinion; or (4) a new species is listed or critical 
habitat designated that may be affected by the action. In instances where the amount or extent of 
authorized take is exceeded, NMFS Permits, Conservation, and Education Division must 
immediately request reinitiation of section 7 consultation. 
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