SHORT-BEAKED COMMON DOLPHIN (*Delphinus delphis*): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The common dolphin may be one of the most widely distributed species of cetaceans, as it is found world-wide in temperate, tropical, and subtropical seas. In the North Atlantic, common dolphins occur over the continental shelf along the 200-2000-m isobaths and over prominent underwater topography from 50° N to 40° S latitude (Evans 1994). The species is less common south of Cape Hatteras, although schools have been reported as far south as eastern Florida (Gaskin 1992). In waters off the northeastern USA coast common dolphins are distributed along the continental slope (100 to 2,000 m) and are associated with Gulf Stream features (CETAP 1982; Selzer and Payne 1988; Waring *et al.* 1992; Hamazaki 2002). They occur from Cape Hatteras northeast to Georges Bank (35° to 42°N) during mid-January to May (Hain *et al.* 1981; CETAP 1982; Payne *et al.* 1984). Common dolphins move onto Georges Bank and the Scotian Shelf from mid-summer to autumn. Selzer and Payne (1988) reported very large aggregations (greater than 3,000 animals) on Georges Bank in autumn. Common dolphins are occasionally found in the Gulf of Maine (Selzer and Payne 1988). Migration onto the Scotian Shelf and continental shelf off Newfoundland occurs during summer and autumn when water temperatures exceed 11°C (Sergeant *et al.* 1970; Gowans and Whitehead 1995).

Westgate (2005) tested the proposed one-population-stock model using a molecular analysis of mitochondrial DNA (mtDNA), as well as a morphometric analysis of cranial specimens. Both genetic analysis and skull morphometrics failed to provide evidence (p>0.05) of more then a single population in the western North Atlantic, supporting the proposed one stock model. However, when western and eastern North Atlantic common dolphin mtDNA and skull morphology were compared, both the cranial and mtDNA results showed evidence of restricted gene flow (p<0.05) indicating that these two areas are not panmictic. Cranial specimens from the two sides of the North Atlantic differed primarily in elements associated with the rostrum. These results suggest that common dolphins in the western North Atlantic are composed of a single panmictic group whereas gene flow between the western and eastern North Atlantic is limited (Westgate 2005; 2007).

There is also a peak in parturition during July and August with an average birth day of July 28th. Gestation lasts about 11.7 months and lactation lasts at least a year. Given these results western North Atlantic female common dolphins are likely on a 2-3 year calving interval. Females become sexually mature earlier (8.3 years and 200 cm) than males (9.5 years and 215 cm) as males continue to increase in size and mass. There is significant sexual dimorphism present with males being on average about 9% larger in body length (Westgate 2005; Westgate and Read 2007).

POPULATION SIZE

The total number of common dolphins off the U.S. or Canadian Atlantic coast is unknown, although several
abundance estimates are available from selected regions for selected time periods. The best abundance estimate for common dolphins is 120,743 animals (CV=0.23). This is the sum of the estimates from two 2004 U.S. Atlantic surveys, where the estimate from the northern U.S. Atlantic is 90,547 (CV=0.24), and from the southern U.S. Atlantic is 30,196 (CV=0.54). This joint estimate is considered best because these two surveys have the most complete coverage of the species’ habitat (Table 1).

An abundance estimate of 6,460 (CV=0.74) common dolphins was obtained from an aerial survey conducted in July and August 2002 which covered 7,465 km of trackline over waters from the 1000 m depth contour on the southern edge of Georges Bank to Maine (Table 1: Palka 2006). The value of g(0) used for this estimation was derived from the pooled data of 2002, 2004 and 2006 aerial survey data.

An abundance estimate of 90,547 (CV=0.244) common dolphins was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed 10,761 km of trackline in waters north of Maryland (38ºN) (Table 1; Palka 2006). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and g(0), the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for g(0) and biases due to school size and other potential covariates (Palka 2005).

An abundance estimate of 30,196 (CV=0.537) common dolphins was derived from a shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths > 50m) between Florida and Maryland (27.5 and 38º N latitude) conducted during June-August, 2004 (Table 1). The survey employed two independent visual teams searching with 25x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included 5,659 km of trackline, and accomplished a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data were corrected for visibility bias (g(0)) and group-size bias and analyzed using line-transect distance analysis (Palka 1995; Buckland et al. 2001; Palka 2006).

An abundance estimate of 84,000 (CV=0.36) common dolphins was obtained from an aerial survey conducted in August 2006 which covered 10,676 km of trackline in the region from the 2000 m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence (Table 1; Palka pers. comm.).

An abundance estimate of 53,625 (95%CI=35,179-81,773) common dolphins was generated from the Canadian Trans North Atlantic Sighting Survey (TNASS) in July-August 2007. This aerial survey covered area from northern Labrador to the Scotian Shelf, providing full coverage of the Atlantic Canadian coast. Estimates from this survey have not yet been corrected for availability and perception biases (Lawson and Gosselin 2009).

Please see appendix IV for a summary of abundance estimates, including earlier estimates and survey descriptions. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable and should not be used for PBR determinations.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_best</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2002</td>
<td>S. Gulf of Maine to Maine</td>
<td>6,460</td>
<td>0.74</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Maryland to Bay of Fundy</td>
<td>90,547</td>
<td>0.24</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Maryland</td>
<td>30,196</td>
<td>0.54</td>
</tr>
<tr>
<td>Jun-Aug 2004</td>
<td>Florida to Bay of Fundy (COMBINED)</td>
<td>120,743</td>
<td>0.23</td>
</tr>
<tr>
<td>Aug 2006</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>84,000</td>
<td>0.36</td>
</tr>
<tr>
<td>July-Aug 2007</td>
<td>N. Labrador to Scotian Shelf</td>
<td>53,625</td>
<td></td>
</tr>
</tbody>
</table>
Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for common dolphins is 120,743 animals (CV =0.23) derived from the 2004 surveys. The minimum population estimate for the western North Atlantic common dolphin is 99,975.

Current Population Trend

A trend analysis has not been conducted for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 99,975 animals. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened, or stocks of unknown status, relative to optimum sustainable population (OSP) is assumed to be 0.5 because the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic stock of common dolphin is 1,000.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total annual estimated average fishery-related mortality or serious injury to this stock during 2003-2007 was 160 (CV=0.10) common dolphins (Table 2).

Fishery information

Detailed fishery information is reported in Appendix III.

Earlier Interactions

For more details on the historical fishery interactions prior to 1999 see Waring et al. (2007).
In the Atlantic pelagic longline fishery between 1990 and 2007, 20 common dolphins were observed hooked and released alive.

The estimated fishery-related mortality of common dolphins attributable to the Loligo squid portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries was 0 between 1997-1998 and 49 in 1999 (CV=0.97). After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

In the Atlantic mackerel portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries, the estimated fishery-related mortality was 161 (CV=0.49) animals in 1997 and 0 in 1998 and 1999. However, the estimates in both the mackerel and Loligo fisheries should be viewed with caution due to the extremely low (<1%) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl and mid-Atlantic mid-water trawl fisheries.
There was one observed take in the Southern New England/mid-Atlantic Bottom Trawl fishery reported in 1997. The estimated fishery-related mortality for common dolphins attributable to this fishery was 93 (CV= 1.06) in 1997 and 0 in 1998 and 1999. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

Northeast Sink Gillnet

Four common dolphins were observed taken in northeast sink gillnet fisheries in 2005, one in 2006 and 1 in 2007. The estimated annual fishery-related mortality and serious injury attributable to the northeast sink gillnet fishery (CV in parentheses) was 0 in 1995, 63 in 1996 (1.39), 0 in 1997, 0 in 1998, 146 in 1999 (0.97), 0 in 2000-2004, 5 (0.80) in 2005, 20 (1.05) in 2006, and 11 (1.08) in 2007. The 2003-2007 average annual mortality attributed to the northeast sink gillnet was 11 animals (CV=0.54). This fishery, which extends from North Carolina to New York, is actually a combination of small vessel fisheries that target a variety of fish species, some of which operate right off the beach. The number of vessels in this fishery is unknown, because records which are held by both state
and federal agencies have not been centralized and standardized.

Mid-Atlantic Gillnet

One common dolphin was taken in an observed trip during 2006. Two common dolphins were observed taken in 1995, 1996 and 1997, and no takes were observed from 1998 to 2005, or in 2007. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 7.4 in 1995 (0.69), 43 in 1996 (0.79), 16 in 1997 (0.53), and 0 in 1998-2005, 11 (1.03) in 2006, and 0 in 2007. Average annual estimated fishery-related mortality attributable to this fishery during 2003-2007 was 2 (CV = 1.03) common dolphins (Table 2).

Northeast Bottom Trawl

This fishery is active in New England waters in all seasons. One common dolphin was observed taken in 2002, three in 2004, five in 2005, 1 in 2006, and 3 in 2007. (Table2). The estimated annual fishery-related mortality and serious injury attributable to the northeast bottom trawl fishery (CV in parentheses) was 27 in 2000 (0.29), 30 (0.30) in 2001, 26 (0.29) in 2002, 26 (0.29) in 2003, 26 (0.29) in 2004, 32 (0.28) in 2005, 25 in 2006, and 24 (0.28). The 2003-2007 average annual mortality attributed to the northeast bottom trawl was 27 animals (CV=0.12).

Mid-Atlantic Bottom Trawl

Three common dolphins were observed taken in mid-Atlantic bottom trawl fisheries in 2000, two in 2001, nine in 2004, 15 in 2005, 14 in 2006, and 0 in 2007 (Table 2). The estimated annual fishery-related mortality and serious injury attributable to the northeast bottom trawl fishery (CV in parentheses) was 93 in 2000 (0.26), 103 (0.27) in 2001, 87 (0.27) in 2002, 99 (0.28) in 2003, 159 (0.30) in 2004, 141 (0.29) in 2005, 131 (0.28) in 2006, and 66 (0.27) in 2007. The 2003-2007 average annual mortality attributed to the mid-Atlantic bottom trawl was 119 animals (CV=0.12).

Mid-Atlantic Mid-water Trawl Fishery (Including Pair Trawl)

2007 was the first year a short-beaked common dolphin mortality had been observed in this fishery. This animal was taken in the same haul as an Atlantic white-sided dolphin. Due to small sample sizes, the bycatch rate model used the 2003 to September 2007 observed mid-water trawl data, including paired and single, and northeast and mid-Atlantic mid-water trawls (Palka, pers. comm.). The model that best fit these data was a Poisson logistic regression model that included latitude and bottom depth as significant explanatory variables, where soak duration was the unit of effort. The resultant estimated annual fishery-related mortality and serious injury (CV in parentheses) was 3.2 (.70) for 2007. The 2003-2007 average annual mortality attributed to the mid-Atlantic mid-water trawl was 1 (.70) animal.

Table 2. Summary of the incidental mortality of short-beaked common dolphins (*Delphinus delphis*) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (DataType), the annual observer coverage (ObserverCoverage), the mortalities recorded by on-board observers (ObservedMortality), the estimated annual mortality (EstimatedMortality), the estimated CV of the annual mortality (EstimatedCVs) and the mean annual mortality (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery a</th>
<th>Years</th>
<th>Vessels</th>
<th>Data Type</th>
<th>Observer Coverage b</th>
<th>Observed Serious Injury</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Sink Gillnet</td>
<td>03-07</td>
<td>unk</td>
<td>Obs. Data, Trip Logbook, Allocated Dealer Data</td>
<td>.03, .06, .07, .04, .07</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 4, 1, 1</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 26, 20, 11</td>
<td>0, 0, 26, 20, 11</td>
<td>0, 0, 8, 1.05, 1.08</td>
<td>11 (0.54)</td>
</tr>
<tr>
<td>Fishery</td>
<td>Year Range</td>
<td>Data Sources</td>
<td>Obs. Data</td>
<td>Trip Logbook</td>
<td>Dealer Data</td>
<td>VTR Data</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------</td>
<td>-------------------------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Mid-Atlantic Gillnet</td>
<td>03-07 unk</td>
<td>Obs. Data, Trip Logbook, Dealer Data</td>
<td>.01, .02, .03, .04, .05</td>
<td>0, 0, 0, 1, 0</td>
<td>0, 0, 0, 0</td>
<td>0, 0, 0, 11, 0</td>
<td>0, 0, 0, 11, 0</td>
<td>0, 0, 0, 1.03, 0</td>
<td>2 (1.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Atlantic Midwater Trawl</td>
<td>2003-2007</td>
<td>Obs. Data Weighout Trip Logbook</td>
<td>.018, .064, .084, .089, .039</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 1</td>
<td>0, 0, 0, 0, 3.2</td>
<td>0, 0, 0, 0, 3.2</td>
<td>0, 0, 0, 0, 0, 0, 0</td>
<td>1 (.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast Bottom Trawl</td>
<td>03-07 unk</td>
<td>Obs. Data Dealer Data VTR Data</td>
<td>.04, .05, .12, .06, .06</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>26, 26, 32, 25, 24</td>
<td>26, 26, 32, 25, 24</td>
<td>29, 29, 28, 28, 28</td>
<td>27 (.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Atlantic Bottom Trawl</td>
<td>03-07 unk</td>
<td>Obs. Data Dealer</td>
<td>.01, .03, .03, .02, .03</td>
<td>0, 0, 0, 0, 0</td>
<td>0, 0, 0, 0, 0</td>
<td>99, 159, 141, 131, 66</td>
<td>99, 159, 141, 131, 66</td>
<td>.28, .30, .20, .28, .27</td>
<td>119 (.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160 (.10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The fisheries listed in Table 2 reflect new definitions defined by the proposed List of Fisheries for 2005 (FR Vol. 69, No. 231, 2004). The „North Atlantic bottom trawl” fishery is now referred to as the „Northeast bottom trawl”. The Illex, Loligo, and Mackerel fisheries are now part of the „mid-Atlantic bottom trawl” and “mid-Atlantic midwater trawl” fisheries.

b. Observer data (Obs. Data), used to measure bycatch rates, are collected within the Northeast Fisheries Observer Program. NEFSC collects landings data (Dealer reported data) which are used as a measure of total landings and mandatory Vessel Trip Reports (VTR) (Trip Logbook) that are used to determine the spatial distribution of landings and fishing effort.

c. The observer coverages for the Northeast sink gillnet fishery are ratios based on tons of fish landed. North Atlantic bottom trawl mid-Atlantic bottom trawl, and mid-Atlantic midwater trawl fishery coverages are ratios based on trips.

d. NE and MA bottom trawl mortality estimates reported for 2007 are a product of GLM estimated bycatch rates (utilizing observer data collected from 2000 to 2005) and 2007 effort. Complete documentation of methods used to estimate cetacean bycatch mortality are described in „Estimated Bycatch of Cetaceans in Northeast U.S. Bottom Trawl Fishing Gear” but is not available for distribution. The manuscript is expected to be published in early 2009.

CANADA

Between January 1993 and December 1994, 36 Spanish deep water trawlers, covering 74 fishing trips (4,726 fishing days and 14,211 sets), were observed in NAFO Fishing Area 3 (off the Grand Banks) (Lens 1997). A total of 47 incidental catches were recorded, which included one common dolphin. The incidental mortality rate for common dolphins was 0.007/set.

Other Mortality

From 2003 to 2007, 407 common dolphins were reported stranded between Maine and Florida (Table 3). The total includes mass stranded common dolphins in Massachusetts during 2004 (one event of 6 animals and one of 3 animals), 2005 (a total of 43 in 4 separate events), 2006 (a total of 65 in 10 events), and 2007 (a total of 23 in 5 separate events). Five of the 2005 Massachusetts stranded animals, 18 animals in 2006, and 2 animals in 2007 were released alive. Common dolphins were included in the UME (unusual mortality event) declared for Virginia in 2004 (MMC 2005). The strandings were primarily bottlenose dolphins, but common dolphins were also involved. Human interactions were indicated on one of the 2004 Virginia common dolphin mortality records, one of the 2005 and one of the 2007 New York mortality records, and one of the 2006 Virginia mortality records.
Four common dolphin strandings (6 individuals) were reported on Sable Island, Nova Scotia from 1996 to 1998 (Lucas and Hooker 1997; 2000). One common dolphin was reported stranded in Halifax County, Nova Scotia in 2005 (Tonya Wimmer, pers. comm.).

Table 3. Short-beaked common dolphin (Delphinus delphis) reported strandings along the U.S. Atlantic coast, 2003-2007.

<table>
<thead>
<tr>
<th>STATE</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Massachusetts a</td>
<td>22</td>
<td>26</td>
<td>64</td>
<td>100</td>
<td>65</td>
<td>277</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>New York b, c</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>23</td>
<td>44</td>
</tr>
<tr>
<td>New Jersey</td>
<td>6</td>
<td>17</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>Delaware</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Maryland</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Virginia b, c</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>North Carolina</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>EZ</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTALS</td>
<td>53</td>
<td>67</td>
<td>76</td>
<td>110</td>
<td>101</td>
<td>407</td>
</tr>
</tbody>
</table>

b. Virginia reports 1 common dolphin found in a pound net in 2004. One common dolphin was released alive from a pound net in 2006 in NY. Twenty (12 dead, 8 rescued; one of the mortalities classified as human interaction) animals involved in a mass stranding in Suffolk county in 2007.

c. One 2005 and one 2007 mortality in New York reported as having human interactions and one in VA in 2006.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

STATUS OF STOCK

The status of short-beaked common dolphins, relative to OSP, in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The 2002-2006 average annual human-related mortality does not exceed PBR; therefore, this is not a strategic stock.

REFERENCES CITED

