RISSO'S DOLPHIN (Grampus griseus):
Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE
Risso's dolphin is distributed worldwide in tropical to warm temperate waters (Leatherwood and Reeves 1983). Risso’s dolphins in the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) occur throughout oceanic waters but are concentrated in continental slope waters (Figure 1; Baumgartner 1997; Maze-Foley and Mullin 2006). Risso's dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000).

The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently little information to differentiate this stock from the Atlantic Ocean stock(s). In 2006, a Risso’s dolphin that stranded on the Florida Gulf Coast was rehabilitated, satellite tagged and released into the Gulf southwest of Tampa Bay. Over a 23-day period the Risso’s dolphin moved from the Gulf release site into the Atlantic Ocean and north to just off of Delaware (Wells et al. 2009). During September 2007 – January 2008, tracking of an adult female Risso’s dolphin that had been rehabilitated and released by Mote Marine Laboratory after stranding on the southwest coast of Florida documented movements throughout the northern Gulf of Mexico. The dolphin, released with its young calf, traveled as far as Bahia de Campeche, Mexico, and waters off Texas and Louisiana before returning to the shelf edge southwest of its stranding site off Florida (Wells et al. 2008). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE
The best abundance estimate available for northern Gulf of Mexico Risso’s dolphins is 1,589 (CV=0.27) (Mullin 2007; Table 1). This estimate is pooled from summer 2003 and spring 2004 oceanic surveys covering waters from the 200-m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ).

Earlier abundance estimates
Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted in conjunction with bluefin tuna ichthyoplankton surveys during spring in the northern Gulf of Mexico from the 200-m isobath to the seaward extent of the U.S. EEZ (Hansen et al. 1995). Annual cetacean surveys were conducted along a fixed plankton sampling trackline. Survey effort-weighted estimated average abundance of Risso’s dolphins for all surveys combined was 2,749 (CV=0.27) (Hansen et al. 1995; Table 1). Similar surveys were conducted during spring from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico. Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate. The estimate of abundance for Risso’s dolphins in oceanic waters, pooled from 1996 to 2001, was 2,169 (CV=0.32) (Mullin and Fulling 2004; Table 1).
Recent surveys and abundance estimates

During summer 2003 and spring 2004, line-transect surveys dedicated to estimating the abundance of oceanic cetaceans were conducted in the northern Gulf of Mexico. During each year, a grid of uniformly-spaced transect lines from a random start were surveyed from the 200-m isobath to the seaward extent of the U.S. EEZ using NOAA Ship Gordon Gunter (Mullin 2007).

As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Because most of the data for estimates prior to 2003 were older than this 8-year limit and due to the different sampling strategies, estimates from the 2003 and 2004 surveys were considered most reliable. The estimate of abundance for Risso’s dolphins in oceanic waters, pooled from 2003 to 2004, was 1,589 (CV=0.27) (Mullin 2007; Table 1), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_best</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr-Jun 1991-1994</td>
<td>Oceanic waters</td>
<td>2,749</td>
<td>0.27</td>
</tr>
<tr>
<td>Apr-Jun 1996-2001 (excluding 1998)</td>
<td>Oceanic waters</td>
<td>2,169</td>
<td>0.32</td>
</tr>
<tr>
<td>Jun-Aug 2003, Apr-Jun 2004</td>
<td>Oceanic waters</td>
<td>1,589</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Risso’s dolphins is 1,589 (CV=0.27). The minimum population estimate for the northern Gulf of Mexico is 1,271 Risso’s dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 2003-2004 of 1,589 (CV=0.27) and that for 1996-2001 of 1,777 (CV=0.34) are not significantly different (P>0.05), but due to the precision of the estimates, the power to detect a difference is relatively low. These estimates are generally similar to that for 1991-1994 of 2,749 (CV=0.27). These temporal abundance estimates are difficult to interpret without a Gulf of Mexico-wide understanding of Risso’s dolphin abundance. The Gulf of Mexico is composed of waters belonging to the U.S., Mexico and Cuba. U.S. waters only comprise about 40% of the entire Gulf of Mexico, and 65% of oceanic waters are south of the U.S. EEZ. The oceanography of the Gulf of Mexico is quite dynamic, and the spatial scale of the Gulf is small relative to the ability of most cetacean species to travel. Studies based on abundance and distribution surveys restricted to U.S. waters are unable to detect temporal shifts in distribution beyond U.S. waters that might account for any changes in abundance.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 1,271. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Risso’s dolphin is 13.
ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a Risso’s dolphin during 1998-2007 (Yeung 1999; 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008). However, during 2005 there was 1 Risso’s dolphin released alive with no serious injury after an entanglement interaction with the pelagic longline fishery (Fairfield Walsh and Garrison 2006).

Fisheries Information

The level of past or current, direct, human-caused mortality of Risso’s dolphins in the northern Gulf of Mexico is unknown. This species has been taken in the U.S. pelagic longline fishery in the northern Gulf of Mexico and in the U.S. Atlantic (Lee et al. 1994). Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the northern Gulf of Mexico (see Appendix III for a description of the large pelagics longline fishery). There were no reports of mortality or serious injury to Risso’s dolphins in the northern Gulf of Mexico by this fishery during 1998-2007 (Yeung 1999; 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008). However, during 2005, 1 Risso’s dolphin was observed entangled and released alive in the northern Gulf of Mexico. The animal was not hooked, but was tangled with mainline and leader around its flukes. All gear was removed and the animal dove immediately. It is presumed to have not been seriously injured (Fairfield Walsh and Garrison 2006). One Risso’s dolphin was observed taken and released alive during 1992; the extent of injury to the animal was unknown (SEFSC, unpublished data). One lethal take of a Risso’s dolphin by the fishery was observed in the northern Gulf of Mexico during 1993 (SEFSC, unpublished data). Estimated average annual fishery-related mortality and serious injury attributable to the pelagic longline fishery in the northern Gulf of Mexico during 1992-1993 was 19 Risso’s dolphins (CV=0.20).

Other Mortality

There were 16 reported strandings of Risso’s dolphin in the Gulf of Mexico during 1999-2007 (13 in Florida, 3 in Texas; NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 16 September 2008; see Table 2 for 2003-2007 data). This includes 1 mass stranding of 5 animals in Florida during July 2005 (1 was rehabilitated and released by Mote Marine Laboratory), and 1 mass stranding of 4 animals in Florida during May 2007 (2 were rehabilitated and released by Mote Marine Laboratory). No evidence of human interactions was detected for any of the stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

In 1992, with the enactment of the Marine Mammal Health and Stranding Response Act, the Working Group on Marine Mammal Unusual Mortality Events was created to determine when an unusual mortality event (UME) is occurring, and then to direct responses to such events. Since 1992, 8 UMEs have been declared in the Gulf of Mexico, and 1 of these included a Risso’s dolphin. Between August 1999 and May 2000, 152 bottlenose dolphins died coincident with Karenia brevis blooms and fish kills in the Florida Panhandle. Additional strandings included 3 Atlantic spotted dolphins, Stenella frontalis, 1 Risso’s dolphin, 2 Blainville’s beaked whales, Mesoplodon densirostris, and 4 unidentified dolphins.

Table 2. Risso’s dolphin (Grampus griseus) strandings along the northern Gulf of Mexico coast, 2003-2007.

<table>
<thead>
<tr>
<th>STATE</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Florida</td>
<td>0</td>
<td>1</td>
<td>5*a</td>
<td>0</td>
<td>6*b</td>
<td>12</td>
</tr>
<tr>
<td>Louisiana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mississippi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Texas</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>
STATUS OF STOCK

The status of Risso’s dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. Total human-caused mortality and serious injury for this stock is not known. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because it is assumed that the average annual human-related mortality and serious injury does not exceed PBR.

REFERENCES CITED


