STOCK DEFINITION AND GEOGRAPHIC RANGE

Within the genus *Mesoplodon*, there are four species of beaked whales that reside in the northwest Atlantic. These include True's beaked whale, *M. mirus*; Gervais' beaked whale, *M. europaeus*; Blainville's beaked whale, *M. densirostris*; and Sowerby's beaked whale, *M. bidens* (Mead 1989). These species are difficult to identify to the species level at sea; therefore, much of the available characterization for beaked whales is to genus level only. Stock structure for each species is unknown. Thus, it is plausible the stock could actually contain multiple demographically independent populations that should be stocks, because the current stock spans multiple eco-regions (Longhurst 1998; Spalding et al. 2007).

The distributions of *Mesoplodon* spp. in the northwest Atlantic are known principally from stranding records (Mead 1989; Nawojchik 1994; Mignucci-Giannoni et al. 1999; MacLeod et al. 2006). Off the U.S. Atlantic coast, beaked whale (*Mesoplodon* spp.) sightings have occurred principally along the shelf-edge and deeper oceanic waters (Figure 1; CETAP 1982; Waring et al. 1992; Tove 1995; Waring et al. 2001; Hamazaki 2002; Palka 2006). Most sightings were in late spring and summer, which corresponds to survey effort.

Sowerby's beaked whales have been reported from New England waters north to the ice pack (e.g., Davis Strait), and individuals are seen along the Newfoundland coast in summer (Leatherwood et al. 1976; Mead 1989; MacLeod et al. 2006; Jefferson et al. 2008). Furthermore, a single stranding occurred off the Florida west coast (Mead 1989). This species is considered rare in Canadian waters (Lien et al. 1990) and has been designated as “Special Concern” by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).

POPULATION SIZE

Several estimates of the undifferentiated complex of beaked whales (*Ziphius* and *Mesoplodon* spp.) from selected regions are available for select time periods (Barlow et al. 2006), as well as two estimates of *Mesoplodon* spp. beaked whales alone. Survey platform type influences observer ability to identify species, with differentiation most difficult from aircraft. Sightings are almost exclusively in the continental shelf edge and continental slope areas (Figure 1). The best abundance estimate for *Mesoplodon* spp. beaked whales is the sum of the 2011 survey estimates—7,092 (CV=0.54).

Earlier abundance estimates

Please see Appendix IV for a summary of abundance estimates, including earlier estimates and survey descriptions. Due to changes in survey methodology these historical data should not be used to make comparisons to more current estimates.

Recent surveys and abundance estimates

An abundance estimate of 922 (CV=1.47) undifferentiated beaked whales (*Ziphius* and *Mesoplodon* spp.) was
obtained from an aerial survey conducted in August 2006, which covered 10,676 km of trackline in the region from the 2000 m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence. (Table 1; Palka pers. comm.)

An abundance estimate of 5,500 (CV=0.67) *Mesoplodon* spp. beaked whales (not including *Ziphius*) was generated from a shipboard and aerial survey conducted during June–August 2011 (Palka 2012). The aerial portion that contributed to the abundance estimate covered 5,313 km of tracklines that were over waters north of New Jersey and shallower than the 100-m depth contour, through the U.S. and Canadian Gulf of Maine and up to and including the lower Bay of Fundy. The shipboard portion covered 3,107 km of tracklines that were in waters offshore of Virginia to Massachusetts (waters that were deeper than the 100-m depth contour out to beyond the U.S. EEZ). Both sighting platforms used a two-simultaneous team data collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers, 2004). Shipboard data were inspected to determine if there was significant responsive movement to the ship (Palka and Hammond 2001). Because there was an insignificant amount of responsive movement for this species, the estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

An abundance estimate of 1,570 (CV=0.65) *Mesoplodon* spp. beaked whales (not including *Ziphius*) was also generated from a shipboard survey conducted during June –August 2011 between central Florida and Virginia. The survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S. EEZ. The survey employed two independent visual teams searching with 25x bigeye binoculars. A total of 4,445 km of survey effort were accomplished with 290 cetacean sightings. The majority of sightings occurred along the continental shelf break with generally lower sighting rates over the continental slope. Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

Although the 1990–2011 surveys did not sample exactly the same areas or encompass the entire beaked whale habitat, they did focus on segments of known or suspected high-use habitats off the northeastern U.S. coast. The collective 1990–2011 data suggest that, seasonally, at least several thousand beaked whales are occupying these waters, with highest levels of abundance in the Georges Bank region. NMFS surveys suggest that beaked whale abundance may be highest in association with Gulf Stream and warm-core ring features (Waring et al. 2001; Hamazaki 2002).

Because the estimates presented here were not dive-time corrected, they are likely negatively biased and probably underestimate actual abundance. Given that *Mesoplodon* spp. prefer deep-water habitats (Mead 1989) the bias may be substantial.

Table 1. Summary of abundance estimates for *Mesoplodon* spp.a or the undifferentiated complexb of beaked whales which include *Ziphius* and *Mesoplodon* spp.a

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_best</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2006b</td>
<td>S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence</td>
<td>922</td>
<td>1.47</td>
</tr>
<tr>
<td>Jun-Aug 2011a</td>
<td>Central Virginia to lower Bay of Fundy</td>
<td>5,500</td>
<td>0.67</td>
</tr>
<tr>
<td>Jun-Aug 2011a</td>
<td>Central Florida to Central Virginia</td>
<td>1,592</td>
<td>0.67</td>
</tr>
<tr>
<td>Jun-Aug 2011a</td>
<td>Central Florida to lower Bay of Fundy (COMBINED)</td>
<td>7,092</td>
<td>0.54</td>
</tr>
</tbody>
</table>

a 2011 estimates are for *Mesoplodon* spp. beaked whales alone, not the undifferentiated complex

b 2006 estimate includes *Mesoplodon* and *Ziphius*.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for *Mesoplodon* spp. beaked whales (not including *Ziphius*) is 7,092 (CV=0.54). The minimum population estimate for *Mesoplodon* spp beaked whales is 4,632.

Current Population Trend

A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for
this stock is poor due to the relatively imprecise abundance estimates and long survey interval. For example, the
power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision
(e.g., CV > 0.30) remains below 80% (alpha = 0.30) unless surveys are conducted on an annual basis (Taylor et al.
2007).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
Current and maximum net productivity rates are unknown for this stock. *Mesoplodon* spp. life history
parameters that could be used to estimate net productivity include: length at birth is 2 to 3 m, length at sexual
maturity 6.1 m for females, and 5.5 m for males, maximum age for females were 30 growth layer groups (GLG’s)
and for males was 36 GLG’s, which may be annual layers (Mead 1984).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is
based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given
the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL
Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum
productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angli ss 1997). The minimum
population size for the *Mesoplodon* spp. beaked whales is 4,632. The maximum productivity rate is 0.04, the default
value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of
unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5. PBR for *Mesoplodon* spp.
beaked whales (not including *Ziphius*) is 46.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY
The 2007–2011 total average estimated annual mortality of Sowerby’s beaked whales in observed fisheries in
the U.S. Atlantic EEZ is zero.

New Serious Injury Guidelines
NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious
injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing
serious from non-serious injury (Angliss and DeMaster 1998; Andersen et al. 2008; NOAA 2012). NMFS defines
serious injury as an “injury that is more likely than not to result in mortality”. Injury determinations for stock
assessments revised in 2013 or later incorporate the new serious injury guidelines, based on the most recent 5-year
period for which data are available.

Fishery Information
Total fishery-related mortality and serious injury cannot be estimated separately for each beaked whale species
because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group
advised adopting the risk-averse strategy of assuming that any beaked whale stock which occurred in the U.S.
Atlantic EEZ might have been subject to the observed fishery-related mortality and serious injury.

Estimated annual average fishery-related mortality or serious injury of this stock in 2007–2011 in U.S.
fisheries was zero. Detailed fishery information is reported in Appendix III.

Earlier Interactions
There is no historical information available that documents incidental mortality in either U.S. or Canadian
Atlantic coast fisheries (Read 1994). The only documented bycatch prior to 2003 of beaked whales is in the pelagic
drift gillnet fishery (now prohibited). The bycatch only occurred from Georges Canyon to Hydrographer Canyon
along the continental shelf break and continental slope during July to October (Northridge 1996). Forty-six fishery-
related beaked whale mortalities were observed between 1989 and 1998. These included: 24 Sowerby’s; 4 True’s; 1
Cuvier’s; and 17 undifferentiated beaked whales. Recent analysis of biological samples (genetics and morphological
analysis) has been used to determine species identifications for some of the bycaught animals. Estimates from the
1989 to 1993 period are for undifferentiated beaked whales. The estimated annual fishery-related mortality (CV in
parentheses) was 60 in 1989 (0.21), 76 in 1990 (0.26), 13 in 1991 (0.21), 9.7 in 1992 (0.24) and 12 in 1993 (0.16).
Estimates of bycatch mortality by species are available for the 1994-1998 period. For animals identified as
Sowerby’s beaked whales, bycatch estimates were 3 (0.09) in 1994, 6 (0) in 1995, 9 (0.12) in 1996 and 2 (0) in
1998. Estimated annual fishery-related mortality for unidentified *Mesoplodon* beaked whales during this period was
0 in 1994, 3 (0) in 1995, 2 (0.25) in 1996, and 7 (0) in 1998. There was no fishery during 1997. During July 1996,
one beaked whale was entangled and released alive with “gear in/around a single body part”.

One unidentified beaked whale was seriously injured in the U.S. Atlantic pelagic longline fishery in 2003. This interaction occurred in the Sargasso Sea fishing area. The estimated fishery-related combined mortality in 2003 was 5.3 beaked whales (CV=1.0). No serious injury or mortality interactions have been reported since 2003.

Other Mortality

During 2007–2011 three Sowerby’s beaked whales stranded along the U.S. Atlantic coast (Table 3). None of these animals showed evidence of a human interaction.

Several unusual mass strandings of beaked whales throughout their worldwide range have been associated with naval activities (D’Amico et al. 2009; Filadelfo et al. 2009). During the mid- to late 1980s multiple mass strandings of Cuvier’s beaked whales (4 to about 20 per event) and small numbers of Gervais’ beaked whale and Blainville’s beaked whale occurred in the Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier’s beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 were associated with low frequency acoustic sonar tests conducted by the North Atlantic Treaty Organization (Frantzis 1998; D’Amico et al. 2009; Filadelfo et al. 2009). In March 2000, 14 beaked whales live stranded in the Bahamas; 6 beaked whales (5 Cuvier’s and 1 Blainville’s) died (Balcomb and Claridge 2001; NMFS 2001; Cox et al. 2006). Four Cuvier’s, 2 Blainville’s, and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown, since none of the whales have been resighted. Necropsy of 6 dead beaked whales revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (Cox et al. 2006). Fourteen beaked whales (mostly Cuvier’s beaked whales but also including Gervais’ and Blainville’s beaked whales) stranded in the Canary Islands in 2002 (Cox et al. 2006, Fernandez et al. 2005; Martin et al. 2004). Gas bubble-associated lesions and fat embolism were found in necropsied animals from this event, leading researchers to link nitrogen supersaturation with sonar exposure (Fernandez et al. 2005).

| Table 3. Sowerby's beaked whale (Mesoplodon bidens) strandings along the U.S. Atlantic coast. |
|---------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| State | 2007 | 2008 | 2009 | 2010 | 2011 | Total |
| Rhode Island | 1 | 0 | 0 | 0 | 0 | 1 |
| Virginia | 0 | 0 | 2 | 0 | 0 | 2 |
| Total | 1 | 0 | 2 | 0 | 0 | 3 |

STATUS OF STOCK

While Sowerby’s beaked whales are not listed as threatened or endangered under the Endangered Species Act they have been listed as a species of Special Concern by both COSEWIC and SARA (the Species at Risk Act) in Canada (COSEWIC 2006). The western North Atlantic stock of Sowerby’s beaked whale is not considered strategic under the Marine Mammal Protection Act. No habitat issues are known to be of concern for this species, but questions have been raised regarding potential effects of human-made sounds on deep-diving cetacean species such as Sowerby’s beaked whales (Richardson et al. 1995). There are insufficient data to determine the population size or trends, and, while a PBR value has been calculated for the Mesoplodon genus, PBR cannot be calculated for this species independently. The permanent closure of the pelagic drift gillnet fishery has eliminated the principal known source of incidental fishery mortality, and no fishery-related mortality and serious injury has been observed during the recent 5-year (2007–2011) period. Therefore, the total U.S. fishery mortality and serious injury rate can be considered to be insignificant and approaching zero. The status of Sowerby’s beaked whales relative to OSP in U.S. Atlantic EEZ is unknown.

REFERENCES CITED

http://www.nofsc.noaa.gov/nefsc/publications/crd/crd1229/

