BAIRD'S BEAKED WHALE (*Berardius bairdii*):
California/Oregon/Washington Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Baird's beaked whales are distributed throughout deep waters and along the continental slopes of the North Pacific Ocean (Balcomb 1989, Macleod et al. 2006). They have been harvested and studied in Japanese waters, but little is known about this species elsewhere (Balcomb 1989). Along the U.S. west coast, Baird's beaked whales have been seen primarily along the continental slope (Figure 1) from late spring to early fall. They have been seen less frequently and are presumed to be farther offshore during the colder water months of November through April. For the Marine Mammal Protection Act (MMPA) stock assessment reports, Baird's beaked whales within the Pacific U.S. Exclusive Economic Zone are divided into two discrete, non-contiguous areas: 1) waters off California, Oregon and Washington (this report), and 2) Alaskan waters.

POPULATION SIZE

Two summer/fall shipboard surveys were conducted within 300 nmi of the coasts of California, Oregon and Washington 2005 (Forney 2007) and 2008 (Barlow 2010). Because the distribution of Baird's beaked whale varies and animals probably spend time outside the U.S. Exclusive Economic Zone, a multi-year average abundance estimate is the most appropriate for management within U.S. waters. A geometric mean abundance estimate for California, Oregon and Washington waters based on ship surveys from 2005 and 2008 was 907 (CV=0.49) Baird’s beaked whales (Forney 2007, Barlow 2010). This abundance estimate included correction factors for the proportion of animals missed, based on a model of their diving behavior, detection distances, and the searching behavior of observers (Barlow 1999). About 96% of all trackline groups are estimated to be seen. A trend-based analysis of line-transect data from surveys conducted between 1991 and 2008 yielded new estimates of abundance (Moore and Barlow 2013). Based on this analysis and a lack of a detected trend in abundance, a multi-year average of the 2005 and 2008 trend estimates is the most appropriate estimate for this stock. The geometric mean of the best (50th percentile) estimates of abundance for Baird’s beaked whales in 2005 (767, CV=1.29) and 2008 (937, CV=1.34) in waters off California, Oregon and Washington is 847 (CV=0.81).
Minimum Population Estimate

The log-normal 20th percentile of the 2005-2008 geometric mean abundance estimate is 466 Baird’s beaked whales.

Current Population Trend

The analysis by Moore and Barlow (2013) did not suggest evidence of an abundance trend during 1991–2008 for Baird’s beaked whale in waters off the U.S. west coast (Figure 2).

Current and Maximum Net Productivity Rates

No information on current or maximum net productivity rates is available for this species.

Potential Biological Removal

The potential biological removal (PBR) level for this stock is calculated as the minimum population size (466) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.50 (for a species of unknown status with no fishery mortality; Wade and Anglis 1997), resulting in a PBR of 4.7 Baird’s beaked whales per year.

Human-Caused Mortality and Serious Injury

Fishery Information

The California large mesh drift gillnet fishery has been the only fishery known to interact with this stock. One Baird’s beaked whale was incidentally killed in this fishery in 1994 (Julian and Beeson 1998), before acoustic pingers were first used in the fishery in 1996 (Barlow and Cameron 2003). Since 1996, no beaked whale of any species have been observed entangled or killed in this fishery (Carretta et al. 2008, Carretta and Enriquez 2009a, 2009b, Carretta and Barlow 2011, Carretta and Enriquez 2012a, 2012b). Mean annual takes in Table 1 are based on 2007-2011 data. This results in an average estimated annual mortality of zero Baird’s beaked whales. Gillnets have been documented to entangle marine mammals off Baja California (Sosa-Nishizaki et al. 1993), but no recent bycatch data from Mexico are available.

Table 1. Summary of available information on the incidental mortality and injury of Baird's beaked whales (California/Oregon/Washington Stock) in commercial fisheries that might take this species. The single observed entanglement resulted in the death of the animal. Coefficients of variation for mortality estimates are provided in parentheses. Mean annual takes are based on 2007-2011 data unless noted otherwise.

<table>
<thead>
<tr>
<th>Fishery Name</th>
<th>Data Type</th>
<th>Year(s)</th>
<th>Percent Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Annual Mortality</th>
<th>Mean Annual Takes (CV in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA/OR thresher shark/swordfish drift gillnet fishery</td>
<td>observer data</td>
<td>2007</td>
<td>16.4%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2008</td>
<td>13.5%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
<td>13.3%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010</td>
<td>11.9%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>19.5%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
California coastal whaling operations killed 15 Baird's beaked whales between 1956 and 1970, and 29 additional Baird's beaked whales were taken by whalers in British Columbian waters (Rice 1974). One Baird’s beaked whale stranded in Washington state in 2003 and the cause of death was attributed to a ship strike. No other human-caused mortality has been reported for this stock for the period 2007-2011. Anthropogenic sound sources, such as military sonar and seismic testing have been implicated in the mass strandings of beaked whales, including atypical events involving multiple beaked whale species (Simmonds and Lopez-Jurado 1991, Frantiz 1998, Anon. 2001, Jepson et al. 2003, Cox et al. 2006). While D'Amico et al. (2009) note that most mass strandings of beaked whales are unassociated with documented sonar activities, lethal or sub-lethal effects of such activities would rarely be documented, due to the remote nature of such activities and the low probability that an injured or dead beaked whale would strand. Filadelpho et al. (2009) reported statistically significant correlations between military sonar use and mass strandings of beaked whales in the Mediterranean and Caribbean Seas, but not in Japanese and Southern California waters, and hypothesized that regions with steep bathymetry adjacent to coastlines are more conducive to stranding events in the presence of sonar use. In Hawaiian waters, Faerber & Baird (2010) suggest that the probability of stranding is lower than in some other regions due to nearshore currents carrying animals away from beaches, and that stranded animals are less likely to be detected due to low human population density near many of Hawaii’s beaches. Actual and simulated sonar are known to interrupt the foraging dives and echolocation activities of tagged beaked whales (Tyack et al. 2011). Blainville’s beaked whale presence was monitored on hydrophone arrays before, during, and after sonar activities on a Caribbean military range, with evidence of avoidance behavior: whales were detected throughout the range prior to sonar exposure, not detected in the center of the range coincident with highest sonar use, and gradually returned to the range center after the cessation of sonar activity (Tyack et al. 2011). Fernández et al. (2013) report that there have been no mass strandings of beaked whales in the Canary Islands following a 2004 ban on sonar activities in that region. The absence of beaked whale bycatch in California drift gillnets following the introduction of acoustic pingers into the fishery implies additional sensitivity of beaked whales to anthropogenic sound (Carretta et al. 2008, Carretta and Barlow 2011).

STATUS OF STOCK
The status of Baird's beaked whales in California, Oregon and Washington waters relative to OSP is not known, and no abundance trend is evident. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. The average annual human-caused mortality during 2007-2011 is zero animals/year. Because recent fishery and human-caused mortality is less than the PBR (4.7), Baird’s beaked whales are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for this stock is zero and can be considered to be insignificant and approaching zero. The impacts of anthropogenic sound on beaked whales remains a concern (Barlow and Gisiner 2006, Cox et al. 2006, Hildebrand et al. 2005, Weilgart 2007).

REFERENCES

