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The  majority  of  global  fish  stocks  lack adequate  data  to evaluate  stock  status using conventional  stock
assessment  methods.  This  poses  a challenge  for  the  sustainable  management  of  these  stocks.  Recent
requirements  to  set scientifically  based  catch  limits  in several  countries,  and  growing  consumer  demand
for  sustainably  managed  fish  have  spurred  an  emerging  field  of  methods  for  estimating  overfishing
thresholds  and  setting  catch  limits  for stocks  with  limited  data.  Using  a  management  strategy  evaluation
framework  we  quantified  the  performance  of  a number  of data-limited  methods.  For  most  life-histories,
we  found  that  methods  that made  use of  only  historical  catches  often  performed  worse  than  maintaining
ata-limited
ata-poor
anagement strategy evaluation

atch limits
imulation evaluation

current  fishing  levels.  Only  those  methods  that  dynamically  accounted  for  changes  in abundance  and/or
depletion  performed  well  at  low  stock  sizes.  Stock  assessments  that  make  use  of  historical  catch and
effort  data  did  not  necessarily  out-perform  simpler  data-limited  methods  that  made  use of  fewer  data.
There is  a high  value  of additional  information  regarding  stock  depletion,  historical  fishing  effort  and
current  abundance  when  only  catch  data  are  available.  We  discuss  the  implications  of  our  results  for

ds  an
tock assessment other  data-limited  metho

. Introduction

The majority of global fish stocks lack adequate catch, sur-
ey, and other biological data to calculate current abundance
nd productivity using conventional stock assessment methods. In
eveloped countries, the fraction of fish stocks that are assessed
anges between 10 and 50%. This fraction is generally lower in
eveloping countries where it ranges between 5 and 20% (Costello
t al., 2012). This poses a significant challenge for the sustainable
anagement of these stocks. Recent requirements to set scientifi-

ally based catch limits in countries such as Australia, New Zealand,
nd the United States, along with growing consumer demand for

ustainably managed fish, have spurred an emerging field of meth-
ds for estimating overfishing thresholds and setting catch limits
or stocks with limited data.
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In 2006, the U.S. Magnuson-Stevens Fishery Conservation and
Management Act was amended to require annual catch lim-
its (ACLs) to prevent overfishing for most federally managed
fish stocks, including many data-limited stocks. According to the
National Marine Fisheries Service’s (NMFS’s) National Standard 1
Guidelines (2009), setting ACLs is a three-step process that begins
by identifying an overfishing limit (OFL). The OFL is the annual catch
when fishing the stock’s current abundance at the maximum sus-
tainable fishing mortality rate (FMSY). In the second step, a harvest
control rule is used to determine the acceptable biological catch
(ABC). The ABC is a catch level equal to or less than the OFL that
accounts for the scientific uncertainty in the estimate of the OFL.
Finally, fisheries managers use the ABC to establish an ACL. The ACL
is set to a level equal to or below the ABC and accounts for various
ecological, social and economic factors in addition to uncertainty
in management controls.

The most established basis for estimating an OFL is by a con-
ventional stock assessment, which typically uses fishery time
series data to estimate current stock size and productivity. How-
ever, many populations have insufficient fishery catch data, survey
data, or information about life-history characteristics to support

a conventional stock assessment, requiring the use of alternative,
data-limited methods. Most data-limited methods are designed
to operate on a single time series of annual catches (generally
no fishing effort or survey data are available) with additional

reserved.
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This method (referred to as “Depletion Adjusted Catch Scalar”,
T.R. Carruthers et al. / Fishe

ser-specified inputs for fisheries characteristics, demographic
arameters, exploitation rate and/or stock status. Many of these
ethods are now being used in management, although they

ave not been thoroughly tested. Management strategy evaluation
MSE) is an appropriate tool to evaluate and compare the perfor-

ance of existing methods across various types of fish stocks and
elative population levels (see Section 2.2 for a detailed description
f MSE). We  use MSE  in this research to test the performance of
ata-limited methods for various stock types and depletion levels
depletion is defined here as current biomass divided by unfished
iomass).

It may  be possible to make reasonable qualitative statements
bout the performance of various data-limited methods with-
ut undertaking an MSE. However detailed simulation evaluation
nables the relative performance of methods to be quantified to
upport strategic decisions regarding data collection and selec-
ion of methods. Previous simulation evaluations of data-limited
FL-setting methods and ABC control rules have been conducted
y Wetzel and Punt (2011) and Wilberg et al. (2011). Wetzel and
unt (2011) evaluated the performance of two methods (DB-SRA
nd DCAC) over a range of population and fishery dynamics. Lim-
tations of their approach include the simulation of a relatively
arrow range of fishery dynamics without simultaneously consid-
ring a realistic level of uncertainty and bias in all of the inputs
o the methods under examination (e.g., natural mortality rate,
). Wilberg et al. (2011) simulation tested a more comprehen-

ive range of data-limited methods. However, not all data-limited
ethods were applied to all stock types preventing a complete per-

ormance comparison (Vaughan et al., 2012). Their approach was
lso criticized on the basis of a relatively narrow range of simulated
ife-histories and discrete simulation of error and bias. We  aim to
ddress these criticisms by (1) simulating a wide range of fishery
nd population dynamics and (2) assigning probability distribu-
ions for bias and imprecision to more of the inputs to data-limited

ethods (e.g., depletion, M).  Such an approach may  better reveal
he trade-offs among management objectives and provide a more
etailed account of the performance characteristics of data-limited
ethods.

. Materials and methods

This research is aimed at evaluating methods that determine an
BC as a basis for setting annual catch limits. Twenty-five methods

or determining OFLs and modifying them using ABC control rules
re evaluated, including nine that have been used in the manage-
ent of U.S. fisheries (M1–M9), 12 alternative methods (A1–A12),

nd four reference methods that can be used to comparatively
ssess the performance of the other methods (R1–R4).

The methods are classified as follows: (1) those that rely on
 time series of recent catch (“catch-based methods”); (2) those
hat adjust historical catches using assumptions about histor-
cal depletion and life history characteristics (“depletion-based

ethods”), and (3) those that rely on current estimates of abso-
ute abundance (“abundance-based methods”). Methods within
hese classes can be further distinguished into those methods that
ynamically update with current information on depletion and
hose that remain static. The following section describes the spe-
ific methods selected for evaluation (see Table 1 for a list of all
ethods). The data requirements of each method tested are sum-
arized in Table 2, and their detailed description can be found in
ppendix B.
These methods are subject to modification by two  types of ABC
ontrol rule. The first is no downward adjustment. For example,
ethods M1–M3  are catch methods for which ABC equals the OFL.

he second type of ABC control rule uses a simple scalar approach
esearch 153 (2014) 48–68 49

in which a point value produced by a method (e.g., the median
outcome of DB-SRA or DCAC) is multiplied by a factor. These scalar
factors differ depending on a broadly defined characterization of
scientific uncertainty for different groups of stocks (e.g., alternative
methods A1, A2 and A7–A12 make use of 75% and 100% scalars).

2.1. Methods evaluated in this study

2.1.1. Catch-based methods
Catch-based methods have generally been employed where

insufficient data exist for determining an OFL using more sophis-
ticated methods. For example, the U.S. Southeast and Mid-Atlantic
Fishery Management Councils currently apply catch-based meth-
ods to dozens of stocks. The South Atlantic Fishery Management
Council (SAFMC) has adopted two quantitative approaches to ACL-
setting that are simulation tested: the OFL is set to the third highest
landings over the last ten years or to the median landings over
the last ten years (SAFMC, 2011). The Mid-Atlantic Fishery Man-
agement Council has adopted an OFL for Atlantic Mackerel that is
the median catch from the last three years (MAFMC, 2010; NMFS,
2011). These approaches stem from the work of Restrepo et al.
(1998) who  suggested the use of average catches with a downward
adjustment based on uncertainty about stock status, although these
implementations do not include a downward adjustment. All three
of these methods are tested: the median catch over the most recent
three years (M1), the median catch over the most recent 10 years
(M2), and the third-highest catch over the most recent 10 years
(M3).

Other catch-based methods that have been proposed attempt
to introduce dynamic updates of simple catch-based control rules
based on generally subjective scoring systems, such as the Only
Reliable Catch Stocks (ORCS, Berkson et al., 2011) method and
Productivity–Susceptibility Analysis (PSA, Patrick et al., 2009). Both
of these approaches use biological and fishery characteristics to cal-
culate a single catch value. Berkson et al. (2011) identify a possible
means of using the outcome from ORCS to categorize stocks into
exploitation levels. Each level leads to a different multiplication of
interquartile mean catch (the average of all catches greater than the
25th percentile and less than the 75th percentile) that is selected
as a proxy for the OFL or ABC. PSA has been suggested as a basis
for an ABC control rule that increases the precautionary buffer with
increasing vulnerability of the stock (Berkson et al., 2011). Unfortu-
nately, it proved difficult to test these approaches due to an inability
to simulate the subjective scoring systems in a defensible way. The
success of the methods is likely to be determined by how they are
implemented, so we decided to omit them from the comparative
performance analysis.

Instead of simulating these subjective methods we tested a con-
trol rule similar to that proposed by Berkson et al. (2011). This
control rule dynamically scales a catch-based OFL  according to peri-
odic estimates of depletion. The OFL is set to half, equal or twice
the interquartile mean catch when current biomass is considered
to be less than 20% of unfished, greater than 20% and less than 65%
of unfished, and greater than 65% of unfished levels, respectively.
In lieu of a subjective scoring system to estimate depletion, we
test the performance of the catch scalar methods using imperfect
knowledge of simulated current depletion. An imperfect estimate
of depletion was  simulated by calculating the current level of stock
depletion (current biomass divided by unfished biomass) and then
adding error according to specified levels of bias and imprecision.
DACS) represents a very simple approach to modifying an OFL using
coarse subjective information about current stock levels. We  test
the DACS method with two ABC control rules: 75% and 100% scalars
(methods A1 and A2).
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Table 1
A  summary table of the methods tested in this management strategy evaluation, including nine methods currently in use in the management of stocks in U.S. fishery management plans (M1–M9), 12 alternative methods described
in  the peer-reviewed literature (A1–A12) and four reference methods (R1–R4).

Type Code Name OFL setting ABC control rule Source

Static methods
Catch-based (static) M1 Median catch – 3 years Median catch over last 3 years None MAFMC

M2  Median catch – 10 years Median catch over last 10 years None SAFMC
M3  3rd highest catch 3rd highest catch over last 10 years None SAFMC

Depletion-based (static) M4 DB-SRA (depletion fixed @ 40% B0) – 69.4% scalar Median of OFL distribution 69.4% scalar PFMC (Dick and MacCall, 2011)
M5  DB-SRA (depletion fixed @ 40% B0) – 83.4% scalar Median of OFL distribution 83.4% scalar PFMC (Dick and MacCall, 2011)
M6  DB-SRA (depletion fixed @ 40% B0) – 91.3% scalar Median of OFL distribution 91.3% scalar PFMC (Dick and MacCall, 2011)
M7  DCAC (depletion fixed @ 40% B0) – 69.4% scalar Median of OFL distribution 69.4% scalar PFMC (Dick and MacCall, 2010)
M8  DCAC (depletion fixed @ 40% B0) – 83.4% scalar Median of OFL distribution 83.4% scalar PFMC (Dick and MacCall, 2010)
M9  DCAC (depletion fixed @ 40% B0) – 91.3% scalar Median of OFL distribution 91.3% scalar PFMC (Dick and MacCall, 2010)

Dynamic  methods
Catch-based (dynamic) A1 Depletion adjusted catch scalar – 75% scalar 0.5, 1.0, or 2.0 × mean landings 75% scalar Berkson et al. (2011)

A2 Depletion adjusted catch scalar – 100% scalar 0.5, 1.0, or 2.0 × mean landings 100% scalar Berkson et al. (2011)

Depletion-based (dynamic) A3 DB-SRA (depletion adjusted) – 25% P* Stochastic model output 25% P* Dick and MacCall (2011)
A4 DB-SRA (depletion adjusted) – 50% P* Stochastic model output 50% P* Dick and MacCall (2011)
A5 DCAC (depletion adjusted) – 25% P* Stochastic model output 25% P* Dick and MacCall (2011)
A6 DCAC (depletion adjusted) – 50% P* Stochastic model output 50% P* Dick and MacCall (2011)

Abundance-based (dynamic) A7 Life history analysis – 75% scalar FMSY × abundance 75% scalar Beddington and Kirkwood (2005)
A8 Life history analysis – 100% scalar FMSY × abundance 100% scalar Beddington and Kirkwood (2005)
A9 FMSY/M (low) – 75% scalar FMSY @ 0.5 M × abundance 75% scalar Gulland (1971) and Walters and Martell (2002)
A10 FMSY/M (low) – 100% scalar FMSY @ 0.5 M × abundance 100% scalar Gulland (1971) and Walters and Martell (2002)
A11 FMSY/M (hi) – 75% scalar FMSY @ 0.8 M × abundance 75% scalar Gulland (1971) and Walters and Martell (2002)
A12 FMSY/M (hi) – 100% scalar FMSY @ 0.8 M × abundance 100% scalar Gulland (1971) and Walters and Martell (2002)

Reference cases
Stock assessment (dynamic) R1 Delay-difference – 75% scalar Delay-difference assessment 75% scalar Deriso (1980) and Schnute (1985)

R2 Delay-difference – 100% scalar Delay-difference assessment 100% scalar Deriso (1980) and Schnute (1985)

Status quo (static) R3 Current catch Catch in last simulated year None N/A
R4  Current effort Effort in last simulated year None N/A
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Table  2
The data requirements or inputs of the data-limited methods tested in this evaluation. These include a time series of historical catches (Catch), current stock size relative to
unfished condition (Depltn), the ratio of fishing mortality rate at maximum sustainable yield to the natural mortality rate (FMSY/M), biomass at maximum sustainable yield
relative  to unfished biomass (BMSY/B0), natural mortality rate (M), median age at maturity, current biomass, the rate parameter K of the von Bertalanffy growth equation (Von
Bert.  K) and the mean length at first capture.

Type Code Name Catch Depltn.
FMSY/

M

BMSY/

B0

M
Age at 
50% 
Maturity

Curr ent 
biomass

Von 
Bert. K

Length-
at-first 
capture

Sta�c Methods
M1 Mean Catch - 3 Years

M2 Median Catch - 10  Years

M3 3rd Highest Catch

M4 DB-SRA (Deple�on Fixed @ 40%B0) - 69.4% scalar

M5 DB-SRA (Deple�on Fixed @ 40 %B0) - 83 .4% scalar

M6 DB-SRA (Deple�on Fixed @ 40%B0) - 91.3% scalar

M7 DCAC (Deple�on Fixed @ 40%B0) - 69.4% scalar

M8 DCAC (Deple�on Fixed @ 40%B0) - 83.4% scalar

M9 DCAC (Fixed Deple�on @ 40%B0) - 91.3% scalar

Dynamic Methods
A1 Deple�on Adjusted Catch Scalar - 75 % scalar

A2 Deple�on Adjusted Catch Scalar - 100 % scalar

A3 DB-SRA (Deple�on Adjusted) - 25 % P*

A4 DB-SRA (Deple�on Adjusted) - 50 % P*

A5 DCAC (Deple�on Adjusted) - 25 % P*

A6 DCAC (Deple�on Adjusted) - 50 % P*

A7 Life Histo ry Analysis - 75 % scalar

A8 Life Histo ry Analysis - 100 % scalar

A9 FMSY/M (Low) - 75 % scalar

A10 FMSY/M (Low) - 100 % scalar

A11 FMSY/M (Hi) - 75 % scalar

A12 FMSY/M (Hi) - 100 % scalar

Reference Cases
R1 Delay-Difference - 75 % scalar

R2 Delay-Difference - 100 % scalar

R3 Curr ent Catch

R4 Curr ent Effort

Catch-Based 
(Sta�c)

Deple�on-Based 
(Sta�c)

Catch-Based 
(Dynamic)

Deple�on-Based 
(Dynamic)

Status Quo (Sta�c)

Sto ck Ass ess ment 
(Dynamic)

Abund ance-Based 
(Dynamic)
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.1.2. Depletion-based methods
These data-limited methods rely on estimates of depletion rel-

tive to an unfished population, combined with other inputs to
stimate an OFL directly or to adjust historical catch with historical
epletion to derive a catch level recommendation. Depletion-Based
tock Reduction Analysis (DB-SRA, Dick and MacCall, 2011) is a
ethod for estimating an OFL based on a complete time series of

istorical catches and four key inputs: (1) the level of current deple-
ion, (2) the ratio of FMSY to the natural mortality rate (FMSY/M), (3)
he natural mortality rate (M)  and (4) the most productive stock
ize relative to unfished (BMSY/B0). Given input values for M,  FMSY/M
nd BMSY/B0, DB-SRA finds a stock reconstruction that matches the
nput level of depletion and historical catch. DB-SRA then calculates
he OFL by multiplying together FMSY, depletion, and the recon-

tructed unfished biomass. The process is stochastic, and samples
any values for all four inputs, each sample leading to an estimate

f unfished biomass and therefore an OFL recommendation (see
ppendix B.1 for details). DB-SRA also requires an estimate of the
age at which fish become recruited to the fishery since it assumes
delay-difference stock dynamics.

Depletion-Corrected Average Catch (DCAC, MacCall, 2009) pro-
vides an estimate of “sustainable catch” based on an estimate of
average annual catch and the same four key inputs as DB-SRA
(depletion, FMSY/M,  M and BMSY/B0). In essence, DCAC calculates
average catches accounting for the removal of the “windfall har-
vest” of less productive biomass that may  have occurred as the
stock became depleted (the equations are included in the Appendix
B.1). DCAC requires the same inputs as DB-SRA and is also stochas-
tic, sampling many input values to produce numerous estimates of
“sustainable catch.”

Both DB-SRA and DCAC are currently being used to set OFLs
and ABCs for data-limited stocks by the Pacific Fishery Manage-

ment Council (PFMC, 2010). Different ABC control rules are applied
depending on the degree of scientific uncertainty for different
stocks. The Pacific Fishery Management Council’s implementation
of DB-SRA and DCAC assumes that current depletion is, on average,
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sufficiently long to develop a range of exploitation patterns over a
length of time similar to industrial fishing in US waters. Manage-
ment reference points such as maximum sustainable yield (MSY),
2 T.R. Carruthers et al. / Fishe

0% of unfished biomass – for many stocks this may be considered
 productive and healthy stock size (Dick and MacCall, 2010). These
ethods also do not make direct use of the stochastic OFL output of
B-SRA and DCAC. Instead, a downward adjustment is achieved by

uperimposing a distribution (with a pre-specified variance) over
he median OFL estimate from DB-SRA and DCAC. It is a percentile
f this superimposed distribution that is used as the ABC. Three
ersions of DB-SRA and DCAC are tested that rely on distributions
or depletion which are centered on 40% of unfished biomass. The
FL for each method is then adjusted according to the same ABC
ontrol rules applied to different categories of data-limited stocks
y the PFMC (M4–M9, Appendix B.1).

Two generic implementations of DB-SRA and DCAC were tested
A3–A6) that include dynamic updates in depletion (they are linked
o the actual simulated level of stock depletion and do not rely on a
xed assumption of 40% unfished biomass). These implementations
lso make direct use of the stochastic output of DB-SRA and DCAC
o derive the ABC based on pre-specified percentiles (25% and 50%).

.1.3. Abundance-based methods
As an alternative to data-limited methods that rely solely or pri-

arily on catch data and/or depletion estimates we tested a class
f methods that rely on estimates of current abundance and FMSY.
hile methods such as DB-SRA attempt to reconstruct historical

tock levels, abundance-based methods rely only on current data.
he methods that use current biomass are also not reliant on his-
orical catch data and there is no positive feedback from previous

anagement recommendations (the catch prescribed in one year
oes not directly inform the next catch recommendation). These
ethods also rely on weaker assumptions of stationary population

nd fishery dynamics.
We examine two methods of quantifying FMSY based on growth

nd natural mortality rate. Beddington and Kirkwood (2005)
escribe a method for calculating FMSY using length at first cap-
ure and information about maximum growth rate of individuals.
impler still are methods that assume a fixed value for FMSY/M.
he originator of this concept, Gulland (1971), assumed FMSY = M.
ubsequent publications have recommended lower ratios of 0.8
Thompson, 1993) and 0.5 (Walters and Martell, 2002). An esti-

ate of current biomass is required to apply these approaches.
he North Pacific Fishery Management Council (NPFMC) currently
ses an FMSY/M ratio method for managing stocks for which typical
tock assessment reference points are not available (‘Tier 5’ stocks
PFMC, 2012,2013, referred to as ‘data poor’ by DiCosimo et al.,
010). Six variants of the abundance-based method are considered
A7–A12) depending on the assumed ratio of FMSY to M,  and the
ssumed ratio of the ABC to the OFL.

.1.4. Reference cases
Four reference cases are included to provide a yardstick for the

erformance of the methods described above (R1–R4). We  test
 stock assessment method based on a delay-difference model
Deriso, 1980; Schnute, 1985) (R1–R2), which may  be applied in
nstances where catch age- and length-composition data are not
vailable (similar population dynamics are assumed by DB-SRA).
he delay-difference assessment also requires auxiliary informa-
ion regarding the form of the stock-recruit function, the fraction
f mature fish-at-age, body growth rate, natural mortality rate, and
he vulnerability-at-age curve. It calculates the OFL directly from
stimates of current biomass and FMSY. The performance of 100%
nd 75% scalar ABC control rules is evaluated. Similar to the data-
imited methods, the delay-difference stock assessment method

as inputs that are subject to imperfect information regarding
istorical catches. The delay-difference reference cases may  be
xpected to perform better than the data-limited methods that
nly make use of catch data. Two “status quo” reference cases are
esearch 153 (2014) 48–68

simulated to frame the results of the data-limited methods in terms
of two  non-adaptive methods: (R3) a constant current catch sce-
nario and (R4) a constant current effort scenario.

2.2. Management strategy evaluation

Experimental evaluation of methods for setting OFLs and ABCs
through manipulation and monitoring of wild populations is
impractical. Previous research has sought to compare the outputs
of data-limited methods with those of data-rich assessments given
the same data (e.g., Dick and MacCall, 2011). The principal limi-
tation of this approach is the difficulty in assessing risks, and the
inability to quantify bias. For example, relatively large differences
in predicted fishing mortality rate (F) between an assessment and
a data-limited method may  not translate to commensurate differ-
ences in the risks of certain events occurring (e.g., the probability of
reduction in biomass below BMSY). Stock assessment models typi-
cally make use of common assumptions that may  bias their results
in similar ways (e.g., not accounting for habitat degradation, spa-
tial expansion of fishing, or increases in fishing efficiency), and
may  therefore provide a limited basis for comparative performance
evaluation. Equally, the stocks that are subject to assessment may
not be representative of those with limited data; perhaps due to
economic value they are heavily exploited or conversely subject to
stringent management. Fundamentally, it is not possible to eval-
uate the accuracy of a data-limited method without knowledge
of the quantity which is to be estimated (e.g., actual abundance
or simulated abundance). For these reasons simulation evaluation
is recommended as an important first step in testing data-limited
methods (Butterworth et al., 2010).

Management Strategy Evaluation (MSE, Cochrane et al., 1998;
Butterworth and Punt, 1999) is a simulation approach which gen-
erates many realizations of a real fishery system encompassing a
credible range of population and exploitation scenarios. The sim-
ulated reality, commonly referred to as the “operating model,” is
then projected forward in time and updated according to the ACL
recommendations generated by a particular management method
(the ACL is assumed to be the ABC in this study). The relative
performance of each management strategy can then be evaluated
relative to defined management objectives. MSE  also provides an
opportunity to better understand the trade-offs among manage-
ment objectives for any given management method and to quantify
the value of various types of information and data. The core require-
ments of the MSE  approach are the operating model that describes
the “true” simulated population (Section 2.3), a range of candidate
management methods (Section 2.1), and criteria for evaluating the
performance of management methods (Section 2.7). Fig. 1 describes
the components of the MSE  design as it related to this research.

2.3. Operating model

The operating model is parameterized for six life-history
types (also referred to as “stocks” or “simulated stocks”): mack-
erel (Scombridae), butterfish (Stromateidae), snapper (Lutjanidae),
porgy (Sparidae), sole (Pleuronectidae) and rockfish (Sebastidae).4 In
addition to providing diversity in life-history, these stocks also rep-
resent generic versions of real-world stocks that appear in various
geographic regions. Populations were first simulated for 50 years
using random selections for various parameters. This duration was
4 The results of this research should not be interpreted as empirical support for
the status of real-world fish stocks.
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F shed box represents the projection of the model and update according to a particular
c e (e.g., the P* approach).
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ig. 1. A flow diagram of the components of the MSE  for any given stock. The da
ombination of data-limited OFL setting method (e.g., DB-SRA) and ABC control rul

MSY, and FMSY were then calculated for each simulation. Bias and
mprecision in the knowledge of the simulated system were gen-
rated for all variables and parameters used by the management
ethods (e.g., M,  current biomass, etc.). Each simulation was then

rojected forward subject to the ABC recommendations from each
f the management methods. This update of information and set-
ing of a new ABC was simulated every three years of the projection
eriod to approximate a typical assessment cycle. To provide mean-

ngful advice over a time-scale relevant to each stock, generation
ime was used as a basis for setting the number of projected years.
imulations were projected for a maximum of either 30 years or
wice the mean generation time. The rockfish stock, with a gener-
tion time of 25 years, was projected for 50 years.

For each of the six stock types we carried out 10,000 simulations
or each data-limited method. A much lower level of replication
as required to obtain stability in aggregate performance metrics

the difference was less than 2% between 2000 and 3000 simu-
ations for such metrics). However a larger degree of replication

as required to provide plots of trends in performance with chang-
ng simulation parameters. The simulation evaluation framework

as programmed in the statistical environment R (2.15.0 64bit, R
evelopment Core Team, 2012) using the “Snowfall” package for
arallel computing.

The “branched” form of experimental design (Fig. 2) allows
anagement methods to be compared side-by-side because pro-

ections are made from the same set of historical simulations and
he same future recruitment patterns. An additional benefit of this
esign is that the performance of any management method can
e phrased in terms of a “best case” reference method based on

dentical conditions. For example, we standardized the predicted
ield of a particular management method for any given simulation

y dividing it by the “best case” yield that could be obtained with
erfect knowledge of FMSY.

The operating model was an age-structured, spatial model (a
etailed description can be found in Appendix A). Simulating
Fig. 2. The “branched” design of the simulation evaluation including six stock types,
50  historical years, 30–50 projected years, 25 data-limited and reference methods,
and 7 performance measures.

spatial dynamics provided the basis to account for differences
among life-history types that may be considered important, such
as low mixing among areas and refuges from fishing. All stocks
are assumed to have density-dependent recruitment that does
not decrease with increasing stock size, and maximum surplus
recruitment is achieved when spawning output is less than half of
unfished (Beverton and Holt, 1957). For the purposes of simulation,
variability among simulations and where applicable, inter-annual
variability within simulations, were generated in a number of bio-
logical parameters such as M,  stock-recruitment parameters and
recruitment deviations. Auto-correlation in recruitment was not
simulated. The location and slope of the age-at-maturity curve,
weight-at-length curve and scale parameters such as unfished stock
size and maximum length did not vary among simulations for the

same stock.

Five discrete areas were modeled for each population. The
operating model generated both directed and diffusive movement
among areas by adjusting regional gravity parameters and a stock
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Fig. 3. The historical simulation conditions (10,000 simulations). Plotted in panel a are the relative frequencies of sampled depletion (the biomass in year 50, the final
h of BMS
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future recruitment is deterministically related to the stock-recruit
istorical year, divided by unfished biomass). Panel b describes the sampled ratio 

anel  d describes the sampled distribution of FMSY .

ixing (“viscosity”) parameter (Eqs. (App.A.27) and (App.A.28)).
ith the exception of recruitment deviations, all population

ynamics parameters were assumed to be time-invariant. Simu-
ations were also conducted without spatial structure to evaluate
he sensitivity of results to spatial dynamics.

For each simulation a single trend in fishing effort was  gen-
rated. This time series represents the total effort on the stock
rom all sources of fishing. Among simulations both the mean
rend and inter-annual variability in effort was allowed to vary
see Appendix App.A.2 for full details). For all simulations mean
rends always increased during the first 25 years. Subsequently
shing effort could range from a strong decline to a steep increase
ver the last 25 historical years. The same inter-annual variation
n fishing effort was simulated for each stock with a coefficient of
ariation (CV) ranging from 0.2 and 0.4. For all stocks, catch obser-
ation error was  sampled over a range for the CV of 0.1–0.5. Some
pecies-specific fishery characteristics were specified, including
ulnerability-at-age, spatial targeting (or avoidance) and spatial
efuges from fishing. While fishing effort, targeting and fishing effi-
iency could change temporally, all other fishery characteristics
ere assumed to remain constant over time.

.4. Defining simulations for specific stocks

The operating model inputs for each stock are summarized in

able App.A.1. Some of these inputs describe a range from which

 value is sampled (e.g., M uniformly sampled between 0.2 and
.4 yr−1). The number of areas (5), historical simulation years (50),
he level of unfished recruitment, the rate of catch observation error
Y /B0. Plotted in panel c are the relative frequencies of the sampled ratio of FMSY/M.

and the variability in the simulated trend in effort are the same for
each stock.

Fifty years of historical projection prior to first application of the
management methods (Fig. 3) led to a wide range of depletions that
were nevertheless comparable among stocks so that conclusions
were not confounded by stock-specific depletion levels. All stocks
had mean depletion values close to 45% at the end of the historical
simulation period (Fig. 3). The exception is butterfish which, due
to a short life-span and high recruitment variability, could not be
made comparable to the depletion distributions of the other stocks.
The six life-history types span a reasonably wide range of values for
BMSY/B0 (mean simulated values in the range of 0.33 for sole to 0.52
for butterfish). The range for FMSY/M among stocks was greater, with
mean values between 0.27 (rockfish) and 1.4 (snapper). FMSY varied
widely among stocks, with mean rates of 0.05 for sole and 0.6 for
butterfish.

2.5. Calculating MSY reference points

BMSY and FMSY are required to evaluate the performance of data-
limited methods (Section 2.7). These quantities were computed for
each simulation by projecting the operating model forward for 100
years, numerically optimizing for the fishing effort that provided
the maximum yield. Optimizations were undertaken assuming that
relationship, and that there are no changes in fisheries targeting
and catchability. Optimizations to find FMSY were conducted via
successive parabolic interpolation using the function ‘optimize’ of
the R stats package.
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.6. Simulating imperfect knowledge

There may  be considerable uncertainty regarding the inputs to
he management methods. Imperfect knowledge of these quanti-
ies was simulated by adding error to the “true” simulated values of
he operating model. Since these inputs are likely to control the rel-
tive performance of the methods they are assigned ranges that are
onsidered to be representative of the magnitude of uncertainty in

 data-limited setting. An additional purpose for generating imper-
ect information is to determine the effect of the misspecification
f inputs on the performance of a particular management method.

 related objective is quantifying the value of more precise and/or
ccurate information regarding population variables (e.g., current
tock depletion) and parameters (e.g., M).

Table 3 describes how bias (and in some cases imprecision) was
ntroduced to operating model parameters that are used by the

anagement methods. All such variables have the subscript “obs”
o denote an observed quantity. For example, Mobs is the simulated
alue of M,  subject to variable bias determined by a coefficient
f variation parameter CVM. In each simulation the same biased
evel of Mobs is used by the methods throughout the projection
o determine OFLs and ABCs. In some cases, data-limited meth-
ds require inputs that are updated annually as the population is
rojected (e.g., current biomass Bcurobs, current depletion, and cur-
ent fishing mortality rate). Both bias and imprecision are simulated
n such instances. For example, Bcurobs is the simulated “true” cur-
ent biomass (Bcur), subject to error sampled in each projected year
ccording to a bias (�Bcur) and imprecision (�Bcur) that are perpet-
ated over the whole projection (on average, inputs were allowed
o be positively or negatively biased and precise or imprecise over
he whole projection). The rationale for the values of these inputs
s explained further in Appendix A.5.

.7. Evaluating performance

Performance of the data-limited and reference methods were
valuated against the legal standards implied by the Magnuson-
tevens Fishery Conservation and Management Act (“MSA”):
reventing overfishing, avoiding becoming overfished, and pro-
ucing maximum sustainable yield. The MSA’s National Standard 1
NSG, 2009) requires that “[c]onservation and management mea-
ures shall prevent overfishing while achieving, on a continuing
asis, the optimum yield from each fishery.” 16 U.S.C. §  1851(a)(1).
he National Standard 1 Guidelines (50 C.F.R. §  600.310(f)(4)) spec-
fy that the probability of overfishing cannot exceed 50%, but should
e lower based on the degree of scientific uncertainty in the esti-
ate of the OFL. The MSA  requires that overfished stocks, which

re often defined as Bcur/BMSY < 50%, be rebuilt as fast as possible.
Performance was measured in terms of preventing overfishing,

voiding becoming overfished, and producing long-term yield in
ight of these management objectives. The probability of overfish-
ng is recorded for each simulation by calculating the fraction of
rojected years in which F > FMSY. This was averaged over multi-
le simulations to create a probability of overfishing metric (POF)
hat is the expected probability of overfishing in a projected year
sing a particular management method. We  use BMSY as a man-
gement reference point for overfished stock status. Similarly to
he POF metric, the future stock biomass relative to BMSY (B/BMSY)
as averaged over projected years and simulations to provide the

xpectation of stock status using a particular management method.
bsolute yield of any projection is difficult to interpret because it
epends on the specific conditions of each projection (i.e., start-
ng depletion, future productivity, etc.). A standardized measure of
ield was calculated by dividing the total projected yield for each
imulation by the catch under Fref, the constant F that maximizes
atch over the projected time period with perfect knowledge of
esearch 153 (2014) 48–68 55

future recruitment deviations. In this way, yields are standardized
as a percentage of an “upper bound.” In some cases it is possible for a
method to obtain relatively high total yields over the whole projec-
tion by depleting the stock (a “mining” strategy). The yield metric
was therefore calculated based on the last five years of each projec-
tion (e.g., the yield from a method in projected years 26–30 divided
by the yield of the Fref strategy in projected years 26–30) since it is
of more interest to identify methods that can achieve sustainable
long-term yields. This was  averaged over multiple simulations of
each stock to provide the expected relative yield (herein referred
to as ‘Yield’) of a management method.

The metrics POF, B/BMSY and Yield relate to the central refer-
ence points for overfishing, overfished status and sustainable yield,
but cannot be readily interpreted in terms of the average trajec-
tory of biomass using a particular management method. To address
this, we derive four additional metrics that relate to stock status in
the final three years of the projections. The probability of biomass
increasing, Pinc, is the fraction of projected simulations for which
average biomass in the last three years of the projection is larger
than average biomass for the last three years of the historical sim-
ulation. Bend is the mean biomass over the final three years of the
projection divided by BMSY averaged over simulations. The proba-
bility of ending below 50% BMSY, P<50 is the fraction of simulations
for which the mean biomass of the last three projected years is
below 50% BMSY. Similarly, P<10 is the fraction of simulations ending
below 10% BMSY.

Each performance metric was calculated for each simulation
allowing performance to be averaged over various subsets of the
simulations. For example, of the 10,000 simulations that were con-
ducted for mackerel, approximately 1700 corresponded to stocks
that were below 50% BMSY levels at the end of the historical projec-
tion. The mean performance metrics were calculated for this subset
of 1700 simulations to reveal how the expected performance when
starting from low population levels. We  used a similar approach to
quantify the value of different sources of information (Section 2.8
below).

2.8. Quantifying value of information

We evaluated how long-term yield can be expected to vary with
the uncertainty in each input. This was  used to assess the value of
various sources of information for each method. To do this we  took
each input variable/parameter in turn and subdivided the simula-
tions into ten equally sized blocks relating to the 10th percentiles
of the sampled input. For example, less than the 10th percentile
of sampled bias in depletion, greater than or equal to the 10th
percentile but less than the 20th percentile of bias in depletion,
and so on. Since the 10,000 simulations of each stock type were
subdivided according to percentiles in the input parameters, these
subsets were approximately equal in size at around 1000 simula-
tions. The mean relative yield for each of the ten subdivisions was
calculated for each method. The standard deviation of these relative
yield scores can be interpreted as the marginal effect of an input
variable on expected yield. These results are unit-less because they
are standardized according to the level of simulated uncertainty for
each of the input parameters/variables.

3. Results

3.1. Performance
The general results statements below refer to the mackerel,
snapper, porgy, sole and rockfish simulations. The results for but-
terfish are discussed in Section 3.2 because the simulations for
butterfish behaved very differently from those for the other stocks.
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Table 3
Summary of the bias/error parameters and related distributions that control the accuracy and imprecision of knowledge of the simulated system that is subsequently used
by  the data-limited methods and harvest control rules. The log-normal distribution described in the table below (∼LN(�,CV)) is the exponent of the normal distribution with

mean  and standard deviation (sd = CV × mean) parameters: N(−0.5 log(1 + sd2/�2),
√

log(1 + sd2/�2)).

Variable Symbol Related functions All stocks

The coefficient of variation of the log-normally distributed bias in natural mortality rate M CVM Mobs = M × �M

�M ∼ dlnorm(� = 1, CVM)
0.5

The  coefficient of variation of the log-normally distributed bias in von Bertalanffy growth rate
parameter K

CVK Kobs = K × �K

�K ∼ dlnorm(� = 1, CVK)
0.2

The  coefficient of variation of the log-normally distributed bias in length at first capture, Lc CVLc Lcobs = Lc × �Lc

�Lc ∼ dlnorm(� = 1, CVLc)
0.5

The  coefficient of variation of the log-normally distributed bias in biomass at maximum
sustainable yield relative to unfished Bpeak (BMSY/B0)

CVBpeak
Bpeakobs

= Bpeak × �Bpeak

�Bpeak
∼dlnorm (� = 1, CVBpeak

)
0.2

The  coefficient of variation of the log-normally distributed bias in the ratio of maximum
sustainable fishing mortality rate to natural mortality rate c

CVc cobs = c × �c

�c ∼ dlnorm(� = 1,CVc)
0.2

The  coefficient of variation of the log-normally distributed bias in the age at first maturity Am CVAm Amobs = Am × �Am

�Am ∼ dlnorm(� = 1, CVAm)
0.2

The  coefficient of variation of the log-normally distributed bias in the intrinsic rate of increase
parameter r

CVr robs = r × �r

�r ∼ dlnorm(� = 1, CVr)
0.5

The  coefficient of variation of the log-normally distributed bias in the current level of stock
depletion D (Bcur/B0)

CVD Dobs = D × jD
jD ∼ dlnorm(�D ,�D)
�D ∼ dlnorm(� = 1, CVD)

1

The  maximum coefficient of variation for log-normal error around bias in current stock depletion
�D for projected years

�maxD Dobs = D × jD
jD ∼ dlnorm(�D,�D)
�D ∼ U(0, �maxD)

2

The  coefficient of variation of the log-normally distributed bias in the current stock level Bcur CVBcur Bcurobs = Bcur × jBcur

jBcur ∼ dlnorm(�Bcur ,�Bcur)
�Bcur ∼ dlnorm(� = 1, CVBcur)

1
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The  maximum coefficient of variation for log-normal error around bias �Bcur for p

t was instructive to separate the simulations according to the
epletion at the start of the projection. Four categories were chosen
elating to projections starting (1) below 50% of BMSY, (2) between
0% and 100% BMSY, (3) between 100% and 150% of BMSY and (4)
bove 150% BMSY. The largest discrepancies in performance were
ound among the first three categories and for the benefit of brevity
he table for projections starting above 150% BMSY is included in the
ppendix (Table App.C.1)

.1.1. Catch-based methods
Methods that set the ABC to average historical catches or a per-

entile of recent catch (M1–M3) led to the worst performance of
he methods tested by a large margin. When starting below 50%
MSY, the probability of overfishing was high – typically above 80%
“POF”, Table 4). While some catch-based methods performed bet-
er at moderate levels of depletion (above 50% of BMSY) particularly
n regard to yield, they still led to relatively high probabilities
f overfishing-in most cases exceeding 60% of the simulations
Tables 5 and 6). These static catch-based methods failed to rebuild
tocks initially below 50% BMSY to above 50% BMSY in the major-
ty of simulations (between 60% and 95%; on most occasions the
ailure rate was over 85% (“P<10”, Table App.C.2). The static catch
ased methods could lead to very high probabilities of dropping
elow 10% of BMSY (generally 40–60%) when applied to stocks start-

ng below BMSY (Table App.C.3). Relative to other methods, P<10
emained high even when stock levels were above BMSY (between
2% and 26% for M1–M3  compared with less than 2% for M4–M9,
able App.C.4). Methods M1–M3  also led to amongst the lowest
ields in simulations starting below BMSY (Figs. 4 and 5). The per-
ormance of these methods was poor for all stocks except butterfish
see Section 3.2), and was not as strongly related to life-history type

ompared to the other methods. Methods M1–M3  performed worse
han the “status quo” current catch and effort scenarios (R3–R4) in
everal instances. This was particularly the case for method M3
ABC set at the third highest historical catch) which drove 19 out
ed years �maxBcur Bcurobs = Bcur × jBcur

jBcur ∼ dlnorm(�Bcur ,�Bcur)
�Bcur ∼ U(0,�maxBcur)

2

of 20 stocks that were already below 50% of BMSY at the start of
the projection to below 10% of BMSY by the end of the projection
(Table 4). This was  only somewhat reduced to 7 out of 10 stocks in
those simulations starting between 50% and 100% of BMSY (Table 5).

The dynamic catch-based methods A1 and A2 led to interme-
diate performance at low stock sizes (i.e., less than 50% BMSY) in
terms of the probability of overfishing and yield relative to the other
methods. At moderate stock sizes they performed much better,
leading to reasonably high yields (approximately 50–80% of those
corresponding to Fref), with moderate probabilities of overfishing
(approximately 30–40%) (Tables 4 and 5, Figs. 5 and App.C.6). Meth-
ods A1 and A2 reduced catches by multiplying historical mean
catch by 50% when the stock declines below 20% of unfished levels.
This does not appear to be sufficiently responsive to prevent these
methods from frequently depleting the stock below the overfished
threshold of 50% BMSY, even in simulations that start above 50% BMSY
(Tables App.C.3 and App.C.4).

3.1.2. Depletion-based methods
The static implementation of DB-SRA that assumes that stock

depletion is, on average, 40% of unfished levels (equivalent to
∼100% of BMSY) performed well when this assumption was reason-
ably close to actual depletion (e.g., 50–150% of BMSY, Tables 5 and 6).
At these stock levels, the probability of overfishing, projected stock
status (B/BMSY) and yield were among the best of any method. The
probabilities of stocks falling below 50% BMSY were also relatively
small, with the majority of cases exhibiting an increasing biomass
trend on average (“Pinc”, Table App.C.3). However, these methods
prescribed OFLs that were too high and stocks suffered from high
probabilities of overfishing, depletion and consequently reduced
yields when starting biomass was  much below that assumed

(Table 4). Since the PFMC DB-SRA methods do not introduce feed-
back between stock status and the OFL recommendation, these
methods suffer from a similar, but less pronounced phenomenon
as the average catch methods. DB-SRA performed relatively poorly,
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Fig. 4. The trade-off between of long term yield (yield over last 5 projected years divided by that of the Fref strategy) and the probability of overfishing (fraction of projected
years  for which fishing mortality rate exceeded FMSY ) for projections starting below 50% BMSY .
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Fig. 5. The trade-off between of long term yield (yield over last 5 projected years divided by that of the Fref strategy) and the probability of overfishing (fraction of projected
years  for which fishing mortality rate exceeded FMSY ) for projections starting between 50% and 100% BMSY .
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Table  4
Overfishing, stock status and yield performance metrics for simulations starting below 50% of BMSY. All of the numbers represent a percentage. The probability of
overfishing (POF) is the fraction of years (across all simulations and all of their projection years) for which fishing mortality rate exceeds FMSY . ‘B/BMSY ’ is the mean
biomass (across all simulations and all of their projection years) divided by biomass at maximum sustainable yield. ‘Yield’ is the mean relative yield over the last five
years  of the projection (the yield of a simulation over the last five years of the projection divided by that of the Fref policy). Dark gray shading reflects poor scores (POF

greater than 50%, B/BMSY less than 50%, yield less than 25%). Light gray shading reflects intermediate scores (POF greater than 25%, B/BMSY less than 100%, yield less than
50%).

Type Code Name

POF B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield

M1 Median Catch - 3 Years 82 22 18 31 10 3 42 81 29 18 74 39 23 80 31 17 90 14 9
M2 Median Catch - 10  Years 89 14 12 43 88 46 91 16 10 85 26 17 91 17 9 95 8 5
M3 3rd High est Catch 93 10 8 61 67 48 94 9 4 91 16 9 94 9 3 97 5 2
M4 DB-SRA  (De ple�on Fixed @ 40 %B0) - 69 .4% scalar 74 32 20 48 78 43 26 98 22 68 47 25 57 63 22 31 69 23
M5 DB-SRA  (De ple�on Fixed @ 40 %B0) - 83 .4% scalar 81 25 16 54 71 43 33 88 24 77 35 20 67 49 20 38 63 24
M6 DB-SRA  (De ple�on Fixed @ 40 %B0) - 91 .3% scalar 83 22 14 57 67 42 37 83 24 81 30 18 71 42 18 41 60 24
M7 DCAC (De ple�on Fixed @ 40 %B0) - 69 .4% scalar 69 38 23 53 75 46 24 10 2 22 62 55 28 49 73 24 29 71 23
M8 DCAC (De ple�on Fixed @ 40 %B0) - 83 .4% scalar 77 29 19 60 66 48 31 92 24 72 42 24 61 58 23 36 65 24
M9 DCAC (Fixed De ple�on @ 40 %B0) - 91 .3% scalar 80 26 17 64 61 49 34 86 25 77 36 22 66 50 21 39 62 25
A1 Deple�on A djusted Catch Scalar - 75 % scalar 59 39 37 36 92 57 41 67 47 45 61 47 49 64 40 60 36 34
A2 Deple�on A djusted Catch Scalar - 100 % scalar 69 32 32 43 83 59 52 55 45 56 50 42 59 52 34 73 27 26
A3 DB-SRA  (De ple�on A djusted) - 25 % P* 13 67 64 21 10 5 41 7 12 2 77 16 90 77 21 99 67 5 85 48
A4 DB-SRA  (De ple�on A djusted) - 50 % P* 21 60 69 26 98 46 12 11 0 97 24 81 77 29 88 70 9 75 64
A5 DCAC (De ple�on A djusted) - 25 % P* 78 26 27 67 58 52 41 74 40 73 40 31 78 34 23 59 42 37
A6 DCAC (Deple�on Adjusted) - 50% P* 87 18 20 68 57 50 56 56 37 83 29 23 86 23 17 75 30 31
A7 Life History A nalysis - 75 % scalar 56 38 58 18 11 0 59 48 59 68 36 74 69 30 89 63 50 43 64
A8 Life History A nalysis - 100 % scalar 62 31 49 25 10 2 63 55 49 61 44 64 67 39 76 62 57 36 58
A9 FMSY/M (Low) - 75 % scalar 27 64 64 25 10 2 63 8 12 0 50 19 96 61 12 11 7 53 14 77 57
A10 FMSY/M (Low) - 100 % scalar 34 58 65 32 94 66 12 11 2 57 25 87 64 18 10 7 58 20 71 62
A11 FMSY/M (Hi) - 75 % scalar 37 55 66 34 92 66 14 10 7 61 29 83 65 21 10 2 60 24 68 65
A12 FMSY/M (Hi) - 100 % scalar 45 48 64 41 84 66 21 97 66 36 73 66 29 91 61 31 61 67
R1 Delay-Difference - 75 % scalar 20 69 38 26 10 0 39 3 14 2 17 19 10 0 49 28 99 82 4 92 26
R2 Delay-Difference - 100 % scalar 28 63 36 27 97 36 6 13 8 20 26 92 46 44 81 75 8 88 29
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eading to a low probability of recovery from biomass below 50%
MSY regardless of the ABC control rule (scalar multipliers between
9% and 91%) (‘P<50’, Table App.C.2). This was particularly the case
or the mackerel and porgy stocks, where the probability of projec-
ions ending below half of BMSY was between 50% and 80% when
tarting below half of BMSY (Table App.C.2).

DB-SRA and DCAC performed somewhat better for long-lived

ife history types such as snapper and rockfish compared with other

ethods. This result is a product of the greater “windfall” biomass
f older age classes, that is deliberately accounted for by DCAC and
s approximated by the delay-difference stock dynamics of DB-SRA.

Table 5
As for Table 4, except the simulations start between 50% and 100% of BMSY .

Type Code Name

POF B/BMSY Yield POF

M1 Median Catch - 3 Years 56 76 51 24 
M2 Median Catch - 10  Years 63 68 53 29 
M3 3rd High est Catch 76 51 40 49 
M4 DB-SRA  (De ple�on Fixed @ 40 %B0) - 69 .4% scalar 11 12 8 53 27 
M5 DB-SRA (Deple�on Fixed @ 40%B0) - 83.4% scalar 22 11 5 59 37 
M6 DB-SRA  (De ple�on Fixed @ 40 %B0) - 91 .3% scalar 29 107 61 42
M7 DCAC (De ple�on Fixed @ 40 %B0) - 69 .4% scalar 6 13 5 47 15 
M8 DCAC (De ple�on Fixed @ 40 %B0) - 83 .4% scalar 13 12 5 56 23 
M9 DCAC (Fixed Deple�on @ 40%B0) - 91.3% scalar 19 11 8 60 28 
A1 Deple�on A djusted Catch Scalar - 75 % scalar 35 92 55 25 
A2 Deple�on A djusted Catch Scalar - 100 % scalar 44 78 55 32 
A3 DB-SRA  (De ple�on A djusted) - 25 % P* 22 10 8 65 27 
A4 DB-SRA  (De ple�on A djusted) - 50 % P* 30 98 76 32 
A5 DCAC (De ple�on A djusted) - 25 % P* 21 11 0 68 33 
A6 DCAC (De ple�on A djusted) - 50 % P* 30 10 0 73 35 
A7 Life History A nalysis - 75 % scalar 47 80 63 11 
A8 Life History A nalysis - 100 % scalar 54 67 57 16 
A9 FMSY/M (Low) - 75 % scalar 17 12 8 59 17 
A10 FMSY/M (Low) - 100 % scalar 24 11 7 63 24 
A11 FMSY/M (Hi) - 75 % scalar 27 11 1 64 25 
A12 FMSY/M (Hi) - 100 % scalar 35 99 65 33 
R1 Delay-Difference - 75 % scalar 33 10 4 46 36 
R2 Delay-Difference - 100 % scalar 43 91 39 38 
R3 Curr ent Catch 56 76 51 31 
R4 Curr ent Effort 67 70 76 42 

Stock 
Asses sment 
Status Quo 
(Sta�c)

Deple�on-
Based 
(Dynamic)

Abund ance-
Based 
(Dynamic)

Deple�on-
Based (Sta�c)

Catch-Based 
(Dynamic)

Catch-Based 
(Sta�c)

Mackerel
 99 44 81 29 18 74 39 23 80 31 17 90 14 9
 54 61 95 19 36 93 23 38 95 17 25 95 14 25

Performance of DB-SRA is improved for stocks starting below
50% BMSY when stock depletion is updated dynamically (methods
A3 and A4), leading to less than 20% probability of overfishing on
average. Methods A3 and A4 lead to increasing biomass from low
levels in over 70% of simulations regardless of life-history type
(Table App.C.2). Rebuilding performance was  considerably worse
for the mackerel, and while these methods managed better per-

formance than any other method, between 36% and 42% of stocks
did not rebuild above 50% BMSY. The performance of methods A3
and A4 became much worse at higher stock levels in comparison
to the other data-limited methods largely due to the high level

 

B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield

126 59 62 72 47 53 84 49 60 76 47 74 54 37
119 67 72 60 46 61 75 50 68 67 51 83 43 32
97 70 83 43 30 76 54 36 85 45 29 90 31 19
122 62 1 17 4 27 16 13 2 55 6 15 2 46 1 15 0 23
111 65 3 16 7 32 30 11 5 59 14 13 7 53 3 14 5 28
105 66 5 162 35 37 105 58 21 128 56 4 143 31
135 60 0 17 7 25 9 14 3 50 2 16 1 39 0 15 2 22
124 68 2 17 0 30 19 12 8 58 6 14 9 49 1 14 8 27
118 71 3 16 6 34 26 11 9 61 10 14 2 53 2 14 5 29
125 69 31 10 6 61 32 10 6 59 36 10 2 55 35 82 53
115 73 41 89 59 42 91 56 46 84 50 45 68 49
124 56 10 15 5 80 21 12 2 73 29 11 7 56 8 13 4 56
117 60 18 13 8 10 4 29 11 1 76 37 10 5 61 14 11 4 74
113 75 6 14 6 57 25 11 7 68 20 11 8 72 12 11 7 61
111 75 11 13 3 64 35 10 4 69 30 10 7 75 21 10 5 69
143 55 46 84 76 32 11 1 75 27 12 1 68 47 73 66
135 62 54 70 69 41 97 73 36 10 6 67 55 61 59
134 61 6 16 5 57 16 14 1 65 11 15 6 54 11 13 1 56
125 66 10 15 5 66 22 12 9 69 16 14 4 59 16 12 1 63
123 68 13 14 9 69 26 12 3 71 19 13 7 62 20 11 6 66
114 71 19 13 6 75 34 10 9 72 27 12 3 64 27 10 5 69
115 40 9 16 6 33 26 12 7 49 44 98 65 11 13 1 45
111 39 14 15 8 36 34 11 4 43 61 77 47 19 12 1 46
118 65 62 72 47 53 84 48 60 76 47 74 54 37
101 80 74 68 81 70 72 79 78 69 81 78 61 74

Snapp er Porgy Sole RockfishBu�erfish
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Table 6
As for Table 4, except the simulations start between 100% and 150% of BMSY .

Type Code Name

POF B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield POF B/BMSY Yield

M1 Median Catch - 3 Years 26 13 0 65 26 12 9 61 34 12 2 77 29 13 0 63 26 13 0 70 43 10 9 67
M2 Median Catch - 10  Years 25 12 8 76 27 12 7 69 34 11 6 86 29 12 7 73 22 12 8 85 47 10 3 76
M3 3rd High est Catch 41 10 9 72 46 10 4 72 52 96 77 45 10 4 66 44 10 4 78 62 85 63
M4 DB-SRA (Deple�on Fixed @ 40%B0) - 69.4% scalar 1 176 43 22 135 64 0 209 24 2 178 54 0 190 41 0 193 17
M5 DB-SRA (Deple�on Fixed @ 40%B0) - 83.4% scalar 2 168 53 31 124 67 0 204 29 5 166 65 0 180 51 0 190 21
M6 DB-SRA (Deple�on Fixed @ 40%B0) - 91.3% scalar 4 163 58 36 118 68 0 201 32 9 159 70 1 174 57 0 188 23
M7 DCAC (Deple�on Fixed @ 40%B0) - 69.4% scalar 0 18 1 37 12 14 6 61 0 21 1 22 0 18 6 46 0 19 6 35 0 19 5 16
M8 DCAC (Deple�on Fixed @ 40%B0) - 83.4% scalar 1 174 46 19 137 69 0 206 27 2 176 57 0 187 44 0 192 20
M9 DCAC (Fixed De ple�on @ 40 %B0) - 91 .3% scalar 1 170 51 23 131 73 0 204 30 3 169 63 0 182 49 0 190 22
A1 Deple�on Adjusted Catch Scalar - 75% scalar 28 128 61 21 134 68 24 139 71 26 136 64 28 135 64 27 116 63
A2 Deple�on Adjusted Catch Scalar - 100% scalar 36 11 0 60 30 12 3 74 30 12 3 73 34 11 9 62 35 11 6 62 38 99 59
A3 DB-SRA (Deple�on Adjusted) - 25% P* 26 120 54 25 132 56 11 174 66 22 133 63 33 126 53 9 159 55
A4 DB-SRA  (De ple�on A djusted) - 50 % P* 35 10 7 58 29 12 5 62 18 15 2 89 30 12 1 61 40 11 5 59 14 13 2 73
A5 DCAC (Deple�on Adjusted) - 25% P* 3 158 65 27 126 77 1 182 57 5 163 70 1 162 69 3 162 55
A6 DCAC (De ple�on A djusted) - 50 % P* 4 15 2 71 28 12 4 77 1 17 4 65 7 15 5 76 2 15 6 74 4 15 4 64
A7 Life History A nalysis - 75 % scalar 46 97 59 9 15 1 52 48 97 81 30 13 1 72 28 13 4 64 47 91 69
A8 Life History Analysis - 100% scalar 53 83 53 15 14 3 59 55 83 76 38 11 5 71 36 11 7 62 55 76 61
A9 FMSY/M (Low) - 75 % scalar 15 15 5 57 17 14 1 59 8 18 5 65 15 16 3 62 11 17 2 53 11 16 0 56
A10 FMSY/M (Low) - 100 % scalar 22 142 61 23 132 65 12 174 73 21 150 66 17 159 57 16 149 63
A11 FMSY/M (Hi) - 75% scalar 25 136 62 25 130 66 15 167 76 24 143 67 20 152 59 19 142 67
A12 FMSY/M (Hi) - 100% scalar 33 12 2 63 32 12 1 71 20 15 4 82 31 12 8 68 28 13 6 60 26 12 9 71
R1 Delay-Difference - 75 % scalar 32 12 1 39 37 11 8 44 13 16 9 36 24 14 0 42 38 11 0 50 19 14 5 37
R2 Delay-Difference - 100% scalar 40 10 7 38 41 11 4 41 15 15 8 36 30 12 8 43 49 91 47 27 12 9 39
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f uncertainty regarding depletion. This led to many occasions of
nflated OFL recommendations and therefore stock declines when
epletion was assumed to be too high.

MacCall (2009) notes that DCAC is “not directly suitable for spec-
fying catches in a stock-rebuilding program.” This is because it
eturns an estimate of an MSY  proxy (“sustainable catch” which
s particular to a productive stock size) and not an estimate of the
FL (which changes with depletion level). It is not surprising, there-

ore, that DCAC performs relatively poorly at low starting levels
below 50% BMSY, Tables 4 and App.C.2) regardless of whether or not
epletion is dynamically updated. The static DCAC provides yields
nd probabilities of overfishing comparable to the best perform-
ng methods at intermediate levels of depletion when the stock is
loser to MSY  levels (Tables 5 and App.C.3). As is the case with the
ynamic update in DB-SRA, the high level of uncertainty in current
epletion that was simulated led to relatively poor performance at
oderate depletion levels (50–150% depletion).

.1.3. Abundance-based methods
The method of Beddington and Kirkwood (2005; A7 and A8)

hat estimates FMSY based on size at first recapture and age at
0% maturity appears to offer intermediate performance overall.
ften providing relatively high yields, the method tended to over-
sh more than the best performing approaches (see trade-off plots,
igs. 4 and 5). The propensity to overfish was not reduced sub-
tantially for simulations at intermediate depletion levels (between
0% and 150% BMSY, Table 5) unlike other methods that make use
f current information regarding stock level. Methods A7 and A8
ppeared to perform particularly poorly for mackerel, snapper and
ockfish in terms of the probability of ending below the 50% BMSY
hreshold, even when biomass is initially above this threshold
Table App.C.3).

In general, FMSY/M methods A9–A12 were among the best per-
ormers regardless of life-history and initial depletion level. Along
ith methods A3 and A4, methods A9 and A10 were unique in their

bility to rebuild stocks in a substantial number of simulations

hile achieving relatively high yields. Overall, FMSY/M method
9 performed somewhat worse than DB-SRA method A3 at low
tock sizes, with the exception of higher yields for rockfish and a
ower probability of overfishing for porgy. At intermediate stock
11 8 69 34 12 2 78 29 13 0 63 26 13 0 70 43 10 9 67
117 75 27 122 96 27 127 86 21 128 89 34 118 85

depletion levels, method A9 compared favorably with method A3
and led to similar yields with lower probabilities of overfishing for
all stocks, with the exception of rockfish (Tables 5 and 6).

3.1.4. Reference case methods
The delay-difference assessment had mixed performance

despite having unbiased information regarding vulnerability at age,
median age at maturity, growth rate and natural mortality rate. The
probability of overfishing was  generally low, but yields were unre-
markable compared with the other methods, particularly when
starting from moderate stock sizes (i.e., between 50% and 150%
BMSY). Projected biomass increased from low stock sizes in most
cases, but the probability of remaining below the overfished thresh-
old was  still high for mackerel. As expected, the current catch and
effort methods performed poorly due to their lack of feedback
between the OFL and stock depletion. It follows that simulations
that did not lead to stock collapses coincided with those for which
the final historical fishing mortality rate happened to be sustain-
able.

3.1.5. Trade-offs among ABC control rules
ABC control rules, incorporating varying downward adjust-

ments, were considered for each OFL-setting method. As expected,
the reduction in the ABC led to a reduced probability of over-
fishing and increases in expected population size (e.g., B/BMSY,
Figs. 6, 7 and App.C.4). The pattern in long-term yield was  less clear,
with the largest downward adjustments leading to relatively small
reductions in yield. For example: a 75% scalar applied to method
A9 led to a 27% probability of overfishing and 64% yield for mack-
erel starting below 50% BMSY compared with the unmodified rule
(method A10) that achieved a 34% probability of overfishing and
65% yield. In methods where the probability of overfishing is gener-
ally higher, greater downward adjustment increases the long term
expectation of yield. For example, a 75% scalar for methods A7
and A8 leads a lower probability of overfishing, higher expected
biomass and higher long-term yield for the snapper stock.
3.1.6. Inter-method performance trade-offs
There is a relatively well-defined inverse relationship between

the expected probability of overfishing and expected stock status
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Fig. 6. The trade-off between average stock depletion (projected biomass divided by BMSY ) and the probability of overfishing (fraction of projected years for which fishing
mortality rate exceeded FMSY ) for projections starting below 50% BMSY .
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Fig. 7. The trade-off between average stock depletion (projected biomass divided by BMSY ) and the probability of overfishing (fraction of projected years for which fishing
mortality rate exceeded FMSY ) for projections starting between 50% and 100% BMSY .
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B/BMSY) across all methods (Figs. 6 and 7). The ranking of meth-
ds in terms of these criteria is relatively clear. It is not surprising
hat a method that provides the lowest propensity to overfish
eads to the highest abundance levels. The relationship between
he probability of overfishing and long-term yield is less clear
Figs. 4, 5 and App.C.6). When simulations start from low stock sizes,
he methods are either scattered in this trade-off space (snapper,
utterfish and rockfish stocks) or show a weak negative relation-
hip, where higher yields are achieved at lower probabilities of
verfishing (mackerel, porgy and sole stocks). This is intuitive since
tock recovery to productive biomass levels increases longer term
ields. This pattern in this trade-off becomes weakly positive from
ntermediate starting depletion (50–150% BMSY). The scatter in the
rade-off plots indicates opportunities to select methods that can
chieve both lower probabilities of overfishing and higher yields
han other methods. As identified from Tables 4–6, methods A3, A4,
9 and A10 lead to high yields and low probabilities of overfishing
cross several starting depletions.

.2. Performance for butterfish

Butterfish proved to be the most challenging test of the data-
imited methods. We  include the results of DCAC and DB-SRA even
hough these methods are not appropriate for stocks such as but-
erfish that have natural mortality rates higher than the guideline
f 0.2 yr−1 (MacCall, 2009; Dick and MacCall, 2011). The relative
erformance of the methods for butterfish was unique among
he species considered. In general, all methods led to moderate
robabilities of overfishing without commensurate stock depletion
Table 4). Similarly, expected yield for butterfish was relatively high
ompared with other stocks even when applying the worst per-
orming methods. Methods that led to the likely collapse of other
tocks (e.g., average catch methods M1–M3) achieved a relatively
igh rate of rebuilding for butterfish when projections were started

rom below 50% BMSY (Table App.C.2). This result emphasizes the
arger role of temporal changes in stock productivity in determin-
ng abundance for species such as butterfish, which are short-lived
nd exhibit highly variable recruitment.

.3. Value of different sources of information for each
ata-limited method

Current abundance, historical fishing effort, and stock depletion
ave the highest information content; only those methods that

ncorporated these sources of data had good performance across
ll depletion levels (e.g., could recover stocks from low stock sizes
nd did not lead to declines below 50% BMSY in a high fraction
f simulations). This additional value can be expressed in either
he difference in the expected long-term yield or the probability
f overfishing. Butterfish aside, benefits in yield and the probabil-
ty of overfishing were very large at very low stock sizes (<50%
MSY), but negligible or non-existent at more intermediate stock
izes (50–150% BMSY). For example, methods A3, A4, A9–A12 lead to
xpected probabilities of overfishing that are between 70% and 35%
ower than the other methods when biomass is initially below 50%
MSY, while offering expected yields that are between 2 and 6 times
igher. Overfishing may  occur with higher frequency than other
ethods at moderate stock sizes, but yields generally remained

etween 10% and 30% higher for these dynamic approaches.
The yield and probability of overfishing varied more strongly

ith consistent bias in depletion and current biomass, indicating
hat accuracy in these inputs is a critical determinant of the per-

ormance of the associated methods (Tables 7 and App.C.6). This
s particularly important as the methods that make use of these
nputs are those that appear to perform best (e.g., methods A3 and
9). This sensitivity is to be expected since these inputs provide the
esearch 153 (2014) 48–68 63

dynamic link to changes in stock size, which is the central reason
these methods perform well. Since M is a factor in the calculation of
the OFL, it follows that the FMSY/M methods are sensitive to uncer-
tainty in this input. It may not be immediately clear why yields
should vary to a larger extent across the bias in current biomass in
comparison to M.  The simple explanation is that twice the level of
potential bias was  prescribed for current biomass (a CV of 1 com-
pared with 0.5 for M).  While bias in depletion and current biomass
led to large changes in yield for some methods, the precision of
these inputs was  much less important.

There is evidence that methods offering intermediate perfor-
mance may  be somewhat less sensitive to inputs. For example, the
DACS methods (A1 and A2) appeared relatively robust to bias in
depletion although they did not perform well at low stock levels.
This result points to a possible problem in the interpretation of
the performance metrics which aggregate across factors, that they
do not convey the extent to which the performance of the meth-
ods degrades under misspecification of inputs. On average, bias in
inputs was  sampled with a mean of 1 (unbiased on average). It
follows that it may  be possible for a method to lead to a mean
probability of overfishing of 20% but this performance is only rep-
resentative of a small set of unbiased simulations. Examining the
sensitivity of the methods A3, A4, and A9–A12 reveals this problem.
This phenomenon is illustrated in Figs. App.D1–D4 where the slope
in expected probability of overfishing is very steep at zero bias (a
value of 1) in depletion and current biomass, respectively. Methods
A3 and A4 that allow for dynamic update of depletion also exhibit
considerably more sensitivity to M for snapper and rockfish.

3.4. Sensitivity of performance to population and fishing
dynamics

Mackerel and porgy were the most difficult to rebuild. Snapper
has the highest probability of increasing stock trends (Pinc) and of
ending above the rebuilding threshold for all methods, with the
notable exception of the average catch methods (Table 4).

There were relatively few interactions between the perfor-
mance of methods and life-history type; while the absolute
performance of most methods changed markedly among stocks,
within each stock the ranking of methods was consistent. There are
a few notable exceptions. For example, the average catch methods
(M1–M3) have similarly poor absolute performance across the life
history types, with the exception of butterfish. Methods M4–M9
also led to relatively low yields for the more long-lived stocks,
such as snapper and rockfish when projections started at interme-
diate biomass levels (Tables 5 and 6). Mackerel and sole showed
unexpectedly a high likelihood of dropping below 50% BMSY for
intermediate initial depletion levels for methods A3 and A4. Meth-
ods A7 and A8 also led to markedly better performance for the
butterfish.

The most important characteristics determining the probabil-
ity of overfishing for those methods that do not include dynamic
updates in depletion or current biomass are the steepness of the
Beverton–Holt stock recruitment curve and the annual increase
in fishing efficiency (Table App.C.7). The success of these meth-
ods coincides with productive stocks (high steepness) subject to
low historical fishing mortality rates due to their lack of feedback
between the ABC and stock status. This difference is demonstrated
by dynamic abundance-based methods A9–A10, for which prob-
ability of overfishing is much less affected by variability in the
simulated population and fishery parameters.

Overall, the performance of methods was unaffected by different

input values for inter-annual recruitment variability (“Proc. Err”),
inter-annual variability in fishing effort (“Eff. CV”), spatial target-
ing (“Targeting”), the von Bertalanffy growth coefficient (“Von B
K”), stock viscosity and the degree of overlap among vulnerability
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Table 7
The sensitivity in the yield metric to imperfect knowledge. The variables are CV in observation error (Obs err), bias in depletion (Dep bias), CV in depletion error (Dep
CV),  bias in the ratio of FMSY/M (FMSY/M), bias in the ratio of BMSY relative to unfished (BMSY/B0), bias in natural mortality rate (M), bias in the age at 50% maturity (50%
Mat),  bias in the current biomass (B bias), CV of error in current biomass (B CV), bias in the von Bertalanffy growth coefficient K (Von B K) and bias in the length at first
recapture (L 1st Cap). All numbers are the standard deviation in probability of overfishing across ten divisions of each variable (10 percentile ranges). Sensitivity scores
over  10 are shaded light gray, scores over 20 are shaded dark gray.
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nd maturity curves (“50%V–50%M”) (Table App.C.7). The lack of
ensitivity to different spatial parameterizations is supported fur-
her by a set of simulations that was conducted without any spatial
tructure (Appendix E). Spatial phenomenon such as refugia and
tock viscosity lead to small reductions in the probability of over-
shing (typically between 1 and 3%). In general the results of the
patially aggregated simulations were within 2% of those of the
patially disaggregated simulations, and did not provide any mean-
ngful differences in the ranking of the methods. Only snapper were
imulated with refuges, and these averaged only 5% of the popu-
ation. Much larger differences in the performance results arising
rom spatially explicit and spatially aggregated operating models

ay  be expected where refugia are larger.

. Discussion

.1. Performance of data-limited methods

Setting an ABC at average historical catch levels (methods
1–M3) is likely to lead to poor performance in cases where stocks

re below their most productive levels. Generally, the performance
f such methods was comparable to the status quo reference meth-
ds that simulated current catch or current fishing effort. Method
3,  third-highest catch, generally performed worse than maintain-

ng current fishing levels. The main reason for the poor performance
f methods M1–M3  is the lack of feedback between stock depletion
nd the ABC. Recent historical catches rates were often higher than
hose associated with FMSY, ensuring that using their average as an
BC perpetuated overfishing. These methods lead to positive feed-
ack between past and future ABC recommendations; future ABCs
re based on previous ABCs and therefore tend toward a stable value
ver time. If the initial ABC is too high, exploitation rates become
xponentially larger over time. In contrast, if this value is too low
he stock tends toward some biomass above BMSY. Consequently,
hese methods are often divergent and move the stock away from
MSY.

Other static management methods that do not include feedback
etween the ABC recommendation and stock status can provide

ood performance, but only when stocks are at intermediate levels
f depletion (e.g., the PFMC DB-SRA and DCAC methods M4–M9).
hile the performance of the static methods was generally poor

t low stock levels, the static DB-SRA method still led to lower
probabilities of overfishing and higher yields than the average
catch methods (M1–M3). Unsurprisingly, methods that dynami-
cally account for population changes achieved better performance
when the stock is not near BMSY. This was not the case for DCAC,
which is designed to return a proxy for MSY, which is not an
appropriate basis for OFLs for stocks at low population levels (as
acknowledged MacCall (2009)). The dynamic DB-SRA and FMSY/M
ratio methods (A3 and A9) generally led to the best performance
by some margin. While the aggregate performance of these meth-
ods may  appear satisfactory, it is strongly affected by bias in two
key inputs: depletion (DB-SRA) and current stock biomass (FMSY/M
methods). Methods which involve estimates of biomass or current
depletion (rather than assumptions about them) would, however,
generally not be considered to be data-poor, but rather data-
moderate (PFMC, 2010; NPFMC, 2012).

The simulation testing of ABC control rules (e.g., 75% and 100%
scalar multipliers) revealed that the largest downward adjustments
in the OFL often led to higher expected long-term yields and lower
probabilities of overfishing (e.g., FMSY/M ratio methods A9 and
A10). This was  particularly the case for simulations starting below
50% BMSY where lower exploitation rates could allow rebuilding
to more productive stock sizes. However, the range of downward
adjustments was not sufficient in some instances to achieve high
probabilities of rebuilding. For example, the three ABC control rules
based on methods M4–M9  ranged from a 9% to a 30% reduction in
the OFL. The results of all three multipliers were similar, and did
not span a sufficiently wide range of adjustment to allow stocks to
recover from low levels, when depletion is assumed a priori to 40%
(e.g., methods M4–M9).

4.2. Sensitivity of performance to inputs and value of information

In general, the performance differences were much greater
across methods than across life-history types. The exception to
this was butterfish. All methods led to relatively high rates of over-
fishing for butterfish without necessarily leading to stock declines
or reductions in long-term expected yield because of the short life
span and high recruitment variability of this stock. The biomass

of butterfish can easily depart from the mean by a factor of 2 in
the absence of fishing, making natural variability in productivity a
much stronger determinate of stock status than exploitation rate.
The results for butterfish demonstrate the challenge of developing
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anagement systems for short-lived species. MSE  for prawn
pecies that examine both input (effort) and output (catch quota)
ontrols (Dichmont et al., 2006, 2012) conclude that the effective
se of quotas in such cases is dependent on the ability to predict and
onitor recruitment. It may  be beneficial to track current abun-

ance and maintain close control of exploitation levels to prevent
orgone yields and/or problematic stock declines for short-lived
pecies. It follows that methods that rely on current information
nd aim for fixed exploitation rates such as the FMSY/M ratio meth-
ds may  be particularly suitable for species of short life history.

Previous simulation evaluations of DB-SRA and DCAC found sen-
itivity to misspecification in natural mortality rate for long-lived
tocks (Wetzel and Punt, 2011), a result which is corroborated here
or snapper and rockfish. This is due to propagating this error over

 larger number of age classes and hence a larger fraction of the
opulation.

The simulation of spatial population and fishing dynamics had
ery little impact on performance. All methods showed relatively
eak sensitivity to variability in simulated spatial targeting, stock

iscosity or spatial heterogeneity; a MSE  with no spatial dynam-
cs led to very similar results. Spatial phenomena such as refugia
rom fishing and stock viscosity led to very small reductions in the
robability of overfishing relative to the differences among meth-
ds and simulated life-histories. This suggests that the subtleties
f spatial stock dynamics are comprehensively overwhelmed by
eneral problems associated with the inaccuracy and imprecision
f the principal inputs such as natural mortality rate and stock
ize for the stocks simulated in this research. It is conceivable that
patial effects may  be more critical for other stocks, for exam-
le sessile species or those that experience greater refuge from
shing.

All of the methods were most sensitive to imperfect information
egarding either current stock depletion or current biomass. Consis-
ent bias in these inputs strongly affected the expected probability
f overfishing and long-term yield. On the other hand, relatively
igh imprecision in these estimates had little effect on perfor-
ance: year on year, the estimates could vary strongly from the

true” underlying value of depletion or biomass. The dynamic DB-
RA method could lead to high probabilities of declining below 50%
MSY when starting above BMSY. This was due to the specification of
FLs much higher than MSY  due to a positively biased input for
epletion. An alternative ABC control rule which applies a down-
ard adjustment to the smaller of the OFL or MSY  may  help to

ombat this problem and substantially improve the performance
f the dynamic DB-SRA method in such instances.

.3. Quantifying inputs

The inputs to these data-limited methods focus on those that
an be developed quickly from existing sources, as opposed to those
hat require future data collection efforts. Given that the intent of
he data-poor assessment is to provide information for immediate
se, the latter category of inputs is less relevant to this discus-
ion. However, additional or improved inputs may be needed if
n attempt at assessment falls short due to lack of information,
r if the results engender an urgent desire for a “more complete”
ssessment. A wide range of alternatives exist for supplementary
ata collection, depending on available labor and funding, and the
ime horizon for data delivery, but the result is to move toward a

ore data-rich approach that falls outside the scope of this study.

.3.1. Depletion

The assessment methods that perform best included estimates

f current depletion or abundance so it is instructive to discuss
ow these inputs may  be obtained. Of these, depletion is perhaps
he most difficult to obtain for data-poor stocks. Depletion is a
esearch 153 (2014) 48–68 65

data-rich quantity in many respects; it requires broad knowledge
of stock trend, which in turn defines a data-rich stock in this paper
and elsewhere (e.g., Punt et al., 2011). However, a case may  be
made that expert knowledge about depletion could be derived
from anecdotal information such as changes in the spatial range
of fishing. Expert judgment is especially useful when assessments
have been carried out for other local stocks, and the similarity
of fishing operations for the data-poor stock is suspected or
known. For example, based on a calibration to 30 data-rich stock
assessments, Productivity Susceptibility Analysis (Patrick et al.,
2009) has been used by the PFMC to determine the mean of the
prior for depletion when applying DB-SRA.

In some cases, a time series of fishery-independent surveys
exists for other species, and the data-poor species may be caught
occasionally. Although the data may  contain an excessive num-
ber of “zeroes” it is often possible to derive an abundance index
or estimate of depletion from a remarkably small number of posi-
tive samples, even if the time series has to be collapsed into a few
multi-year time blocks. Examples of fishery-independent surveys
include the Triennial trawl survey and slope surveys of the US West
Coast (NMFS, 2013) and the MARMAP (2013) survey of the South
Atlantic.

Trends in abundance inferred from catch and effort data can be
included in methods such DB-SRA to update the depletion prior
(Cope et al., 2013). Although historical effort is usually not known,
it may  be possible to “borrow” a time series of fishing rate estimates
from assessments of other species in the region. Punt et al. (2011)
have explored simultaneous assessments of multiple species using
this “Robin Hood” approach. Other ways to construct estimates of
depletion include recreational fishing databases (e.g. RecFIN, 2013)
or the use of scientific observer data (NMFS (2013) includes a dis-
cussion of these sources of depletion information).

Our analysis of the value of information indicates that consid-
erable imprecision in depletion estimates does not lead to dramatic
loss of yield or increase in the probability of overfishing. Bias in
depletion, on the other hand, strongly determines performance.
This is potentially problematic because of difficulties in acquiring
new information about past abundance trends.

4.3.2. Natural mortality rate
The DB-SRA, DCAC and FMSY/M ratio methods all rely on an

estimate of M,  a common input in most stock assessments (the
main exception being surplus production models). Although M
is an uncertain parameter, stock assessments require only an
approximate value. If tentative ages can be determined, covariates
such as maximum age and von Bertalanffy growth parameters are
estimable from quite small samples; tropical fishes lacking clear age
indicators are more difficult. Useful meta-analyses have been pub-
lished by Pauly (1980), Hoenig (1983), Hewitt and Hoenig (2005),
and Gislason et al. (2010), among many others. If uncertainty in the
value of M remains problematic, it may  suffice to choose a most
likely value of M from a simple list of candidate values (e.g., 0.2,
0.1, 0.05, 0.025 yr−1). Note that many of these data-poor methods
fail if M > 0.2yr−1, and values below 0.025 yr−1 for M are rare in fish.

While DB-SRA and DCAC have low fishery data require-
ments (historical catches), the remaining inputs are parameters
and variables that strongly determine the methods’ outcomes.
Although direct estimation of these quantities requires conven-
tional approaches used in data-rich assessments or meta-analyses
(e.g., Punt et al., 2011; Zhou et al., 2012; Thorson et al., 2012b),
data-poor assessments often require us to postulate values of key

parameters by analogy to data-rich cases. Development of appro-
priate meta-analyses is an active area of fishery research that has
gained impetus from the requirements of data-poor assessment
methodologies.
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.3.3. Current abundance
In instances where it is not possible to estimate current deple-

ion, future data-gathering efforts may  focus on the estimation of
urrent abundance which is an input to the FMSY/M and life-history
ethods.
There are several possible ways to estimate current biomass

hat differ by cost and the assumptions on which they rely. The
ost conventional is a “fishery independent” research survey that

ses a variety of fishing gears to sample the population from which
otal biomass may  be extrapolated (Doubleday and Rivard, 1981;
underson, 1993). In the Gulf of Alaska and the Bering Sea, esti-
ates of abundance from fishery-independent surveys are used in

he FMSY/M method to set ACLs for several stock complexes such
s skates, sculpins, crab, and rockfishes (NPFMC, 2012). The princi-
al limitation of surveys is their considerable cost which may  not
e justified in many data-limited situations, for example where
he primary source of exploitation is bycatch. In addition, many
pecies are unlikely to be fully selected by the survey gear or
stimates from density in areas which can be surveyed may  be
xtrapolated incorrectly to areas that cannot be surveyed leading
o persistent bias in estimates of abundance. Such bias may  dra-

atically affect the reliability of data-limited methods using these
ata.

An alternative approach to current abundance is to divide
urrent catch by an estimate of current exploitation rate. If assess-
ents have been carried out for other species, it may  be possible to

borrow” their estimated fishing mortality rates. Punt et al. (2011)
se this “Robin Hood approach” in simultaneous assessments of
ultiple species. Two possible direct means of estimating current

xploitation rate are a tagging experiment or a catch curve anal-
sis. The concept of mark-recapture analysis has a long history
n fisheries science and was discussed at length by Beverton and
olt (1957). Tagging may  be expensive, but can provide a relatively
recise estimate of current fishing mortality rate and abundance.
here are often challenges to the ready interpretation of these
ata, including tag mortality, shedding, reporting and detection
ates, and a program may  take many years especially if exploitation
ate is low. To obtain exploitation estimates that can be general-
zed to the population requires knowledge of spatial distribution
hat may  not be available in many data-limited situations. Perhaps
he most important limitations of mark recapture analysis is that

any species of fish are difficult to tag in sufficient numbers or
ot suitable candidates due to high post-release mortality rate or
ag-induced mortality rate.

Catch-curve analysis can also provide estimates of current mor-
ality rates, and is likely to be most successful in cases where fishing

ortality rate, recruitment strength and age-vulnerability to fish-
ng can be assumed to be relatively constant over recent years.
atch curve analysis (Ricker, 1975) assumes that after a certain
ge, individuals experience the same fishing mortality rate, allow-
ng the descending proportion of catch-at-age (or catch-at-length)
o be interpreted in terms of total mortality. An estimate of natural

ortality rate is needed to separate fishing mortality from the total
ortality rate estimated by catch-curve analysis. In a data-limited

etting the primary advantage of catch-curve analysis is that it does
ot require historical data and relies only on catch composition data
hat can be collected today. Catch curves can be based on age- or
ength-composition data and can be used to form the basis for con-
rol rules for data-limited species (e.g., Klaer et al., 2012). There are

 number of methods to account for temporal variability in recruit-
ent and selectivity if multiple years of age-composition data are

vailable (e.g., Schnute and Haigh, 2007). Despite the limitations of

atch-curve analysis, it might produce estimates of current biomass
hat are no more biased or uncertain than the imperfect knowledge
f biomass simulated in this analysis. This should be the focus of
uture simulation evaluation.
esearch 153 (2014) 48–68

4.4. Methods that could not be simulation tested

There are data-limited assessment methods for setting catch
limits that could not be simulation tested. These methods either
did not provide estimates for OFLs (the methods of Patrick et al.,
2009; Martell and Froese, 2012; Thorson et al., 2012a; Costello et al.,
2012; Cope and Punt, 2009) or involved expert judgment that could
not be simulated (the methods of Berkson et al., 2011; Punt et al.,
2011).

The method of Martell and Froese (2012) aims to estimate MSY
by reconstructing a stock history according to catches and dis-
carding those simulations that cross certain thresholds (e.g., that
fall out of a range of current stock depletion such as 5–95% of
unfished biomass). This “MSY depletion method” is theoretically
similar to DCAC. A central finding of Martell and Froese (2012) is
that MSY  may  be well defined despite only weak prior information
about maximum stock size, stock productivity and current deple-
tion. However, this finding also explains our inability to include
this approach in our analysis. While MSY  is a theoretical quantity
relating to the most productive level of depletion, the OFL is deter-
mined by current stock depletion (e.g., it tends to zero as the stock
declines). It follows that MSY  does not provide a means of setting
the OFL without a control rule. Since the OFL can range from much
higher than MSY  to zero, the success of the method would rely on
the control rule. It could be argued that a control rule should also
be applied to DCAC since it is also an approximation of MSY. How-
ever in line with the recommendations of the PFMC (PFMC, 2010)
we tested DCAC as a method of determining the OFL without such
a control rule.

Thorson et al. (2012a) and Costello et al. (2012) use covari-
ate information, such as life history characteristics and landings
data to inform a predictive model of current stock depletion. These
approaches use correlations between assessed stock status and
other covariates to extrapolate the stock status of fisheries that are
not assessed. It is possible that these methods could be adapted to
provide OFL recommendations. However, doing so would require
assumptions about the productivity of the stock with declining
biomass (i.e., the shape of the productivity curve). It may  be pos-
sible to combine these methods or DCAC or the method of Martell
and Froese (2012).

Punt et al. (2011) propose a “Robin Hood” method in which data-
rich assessments are used to inform the spawning stock biomass
and exploitation history of data-limited stocks that are subject to
fishing by the same fleets. A central assumption of this method is
that the different stocks have comparable trends in exploitation
rate. As such, the method relies on the existence of a contingent
data-rich stock and a process to assess whether exploitation rates
are similar. The choice of which fleets have the same trends in
exploitation rate is based on expert judgment, which prevented
a full evaluation of the method.

Cope and Punt (2009) outline a length-based approach that
relates the observed fractions of fish of different classes (e.g., frac-
tion mature) to stock status. While length-based reference points
could provide a basis for designing control rules that provide OFL
recommendations, these rules have yet to be established (Cope and
Punt, 2009).

4.5. Limitations

Assumptions about how accurately and precisely the inputs to
the data-limited methods may  be quantified determines perfor-
mance. It should be emphasized that the results are a product of

the specific conditions of the simulation. For example, we may
have found that methods which rely on M performed substantially
better had the extent of error associated with M been assumed
to be unrealistically low. This points to a fundamental circularity
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n this analysis, one of simulating knowledge in inputs to meth-
ds that are to be applied in instances where these inputs are not
nown. All of the methods evaluated performed poorly when their
undamental assumptions were invalid or inputs were strongly

is-specified. We  recommend that when reviewing the perfor-
ance of the data-limited methods, the reader should take care

o consider the sensitivity of the performance to misspecification
n inputs (as presented in Table 7 for example).

The objective of this research was to evaluate the impact of the
ata-limited methods regardless of the rate of compliance. In all of
he simulations we assumed that the ABC recommendations were
aken as catch and no implementation error was simulated. In prac-
ice, there are often overages or shortfalls that affect the level of
uture catch limits. It is possible that implementation error may
nteract with some data-limited methods and alter their relative
erformance. However, since all methods provide the same type of
dvice (i.e., catch limits) it is probable that this additional source
f error would have had a comparable impact across methods and
ould limit the generality of the results while reducing the clarity

f the inter-method comparisons.

.6. Conclusions and recommendations

In circumstances where only fishery catch data are available, this
simulation evaluation indicates average catch methods such as
median catch over the most recent 10 years or third highest catch
cannot be expected to provide a better basis for management
than maintaining current catch or effort levels. These methods
often perform even worse than the status quo methods of current
catch or current effort when biomass starts below BMSY. However,
the catch-based methods appear to provide performance more
comparable to that of the other methods if it can be established
that a stock is above BMSY.
Additional information regarding depletion, historical effort, or
current abundance can be very valuable. Our analysis points to
large expected gains in yield for all stock types (except high-M
stocks such as butterfish) when stocks are heavily depleted given
information about depletion or trend in relative abundance, with
more modest gains for less depleted stocks. When considering
how to obtain data in addition to historical catch, perhaps the
most cost-effective avenue for investigation is the availability of
unprocessed data. For example, fishing effort data that may  be
used to calculate an index of historical abundance or for estimat-
ing current depletion. Multispecies surveys may  also be available
from which a time-series of abundance could be constructed
(e.g., MARMAP, 2013; West Coast trawl surveys NMFS, 2013). A
research priority is summarizing these data sources and charac-
terizing stocks according to uncertainty regarding stock status
and the potential benefits of obtaining additional data. Where
historical abundance trends or effort data are not available there
is an onus on the collection of current abundance information, for
example using fishery independent surveys, catch curve analysis
or tagging studies. Simulation evaluation may  offer a basis for
determining the cost-benefit of new data-collection programs by
quantifying the potential for additional long-term yields.
The mixed performance of the delay-difference methods pro-
vides food for thought for those analysts seeking to evaluate
data-limited methods by comparison with stock assessments.
The delay-difference models applied in this analysis assumed
perfect knowledge of historical effort, growth, natural mortality
rate, and the age that individuals are vulnerable to fishing. Never-
theless, these assessments assume stationary stock dynamics and

a linear relationship between historical fishing effort and fishing
mortality rate, assumptions that are commonly violated in these
simulations. That performance for this method was “mixed” runs
contrary to the view of data-rich stock assessments as a “gold
esearch 153 (2014) 48–68 67

standard” against which other approaches may be compared.
Our simulation evaluation also confirms that classifying stocks
solely according to the amount and types of data available may
not be appropriate. A large quantity of data is no guarantee of
reliable information on which to base decision making (data-rich
stocks are often information poor). The way in which data inform
management recommendations relies to a large extent on the
validity of the assumptions of the assessment tool. For example,
detailed historical data for a short-lived species such as butter-
fish should not necessarily motivate the use of a conventional
data-rich assessment approach that may  offer less reliable man-
agement advice than a simpler approach using a smaller amount
of data that instead, provide information about current stock
characteristics.

• Some of the terminology surrounding data-limited methods has
the potential to be strongly misleading. One example is the term
P* (probability of overfishing). This simulation study and Punt
et al. (2012) found that P*s of 25% and 50% rarely corresponded to
these probabilities of overfishing. Nor did a 25% P* rule lead to half
the probability of overfishing exhibited by a 50% P* rule. Based
on this terminology, decision makers may  be led to believe they
are choosing a specific outcome and this simulation evaluation
reveals that this may  not be the case.

• We have evaluated a broad suite of data-limited methods. Certain
data-limited methods (e.g., the ‘Robin Hood’ method, the ORCS
approach, PSA analysis) have been proposed, but could not be
simulation-tested. We  recommend that editors of journals who
consider publishing new data-poor methods request authors to
minimally outline how their method can be tested. Ideally, a ref-
erence set of simulation data sets should be made available to
allow the results of this paper to be supplemented with those for
new data-limited methods.

• Finally, the focus of this paper is on methods that have been iden-
tified for use in the management of fish stocks in U.S. waters.
However, establishing data-limited methods is particularly rele-
vant to developing countries where there is often less complete
reporting of fishery data and fewer resources dedicated to anal-
ysis. Moreover, a broader suite of types of assessment methods
could be examined for countries which mandate use of control
rules, but are less prescriptive regarding the structure of control
rules than the U.S. (see, for example, Smith et al., 2009).
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