CONTENTS

LIST OF FIGURES ... xi
LIST OF TABLES ... xxx
ACRONYMS ... xxxi
EXECUTIVE SUMMARY ... xxxiii

1. Introduction .. 1
 1.1 Scope and Intent of 82 Corals Status Review Report .. 2
 1.1.1 Background on the Endangered Species Act .. 2
 1.1.2 Candidate species/Species of Concern listing ... 3
 1.1.3 The “species” question .. 3
 1.2 The Petition ... 3
 1.3 The “species” question .. 3

2. General Background on Corals and Coral Reefs .. 5
 2.1 Taxonomy and Distribution ... 5
 2.1.1 Taxonomy and morphology of scleractinian corals .. 5
 2.1.2 Species delineation and uncertainty in corals .. 6
 2.1.3 Evolutionary history of corals and coral reefs ... 7
 2.2 Biology .. 8
 2.2.1 Reproduction and recruitment .. 8
 2.2.2 Nutrition .. 10
 2.2.3 Calcification and reef building ... 11
 2.2.4 Clonality and genetics ... 11
 2.3 Ecology of Coral Reef Ecosystems .. 12
 2.3.1 Ecosystem roles of coral reefs ... 12
 2.3.2 Habitat requirements of corals and reefs .. 13
 2.3.3 Global habitat condition .. 14
 2.3.4 Phase shifts ... 14
 2.3.5 Resilience of corals and coral reefs .. 15
 2.4 Status and Recent Ecological History of Caribbean Reefs .. 15
 2.5 Contrasts between Caribbean and Indo-Pacific Reefs .. 16
 2.6 Status and Ecological History of Eastern Pacific Reefs .. 17

3. Threats to Coral Species .. 19
 3.1 Human Population ... 19
 3.1.1 Human population status and trends .. 19
 3.1.2 Consumption status and trends .. 23
 3.2 Global Climate Change and Large-scale Threats .. 25
3.2.1 Atmospheric CO₂ and emissions trends.. 26
3.2.2 Ocean warming.. 28
3.2.3 Ocean acidification... 36
3.2.4 Sea-level rise (slow and/or rapid).. 46
3.2.5 Changing ocean circulation ... 48
3.2.6 Changing storm tracks and intensities .. 50
3.2.7 African and Asian dust ... 50
3.2.8 Changes in insolation... 51
3.2.9 Summary of global changes and their impacts .. 52
3.3 Local Threats to Coral Species .. 52
3.3.1 Land-based sources of pollution ... 52
3.3.2 Disease .. 64
3.3.3 Predation .. 66
3.3.4 Reef fishing—trophic cascades .. 70
3.3.5 Direct habitat impacts and destructive fishing practices .. 71
3.3.6 Ornamental trade ... 73
3.3.7 Natural physical damage .. 75
3.3.8 Human-induced physical damage .. 78
3.3.9 Aquatic invasive species .. 79
3.3.10 Summary of local changes and their impacts .. 82
3.4 Interactive and Unapparent Threats on Coral Populations .. 84
3.5 Summary of Threats... 85
4. Demographic and Spatial Factors in Evaluation of Risk .. 87
4.1 Overview .. 87
4.2 Abundance and Productivity of Corals .. 89
4.3 Spatial Structure of Corals .. 90
4.4 Diversity in Corals ... 91
4.5 Critical Risk Threshold .. 91
4.5.1 Critical Risk Threshold and depensatory processes ... 93
4.5.2 Critical Risk Threshold and sexual reproduction ... 98
5. Methods ... 99
5.1 Overview .. 99
5.2 The Species Question .. 99
5.3 Data Review ... 99
5.4 Defining Extinction Risk ... 100
5.5 Assessing the Critical Risk Threshold ... 100
5.6 BRT Voting ... 101
5.7 Strengths and Limitations of the Approach .. 102
6. Individual Species Accounts—Western Atlantic .. 104
 6.1 Genus *Agaricia* (Family Agariciidae) ... 104
 6.1.1 *Agaricia lamarcki* Milne Edwards and Haime, 1851 ... 104
 6.2 Genus *Mycetophyllia* (Family Mussidae) ... 109
 6.2.1 *Mycetophyllia ferox* Wells, 1973 .. 109
 6.3 Genus *Dendrogyra* (Family Meandrinidae) .. 113
 6.3.1 *Dendrogyra cylindrus* Ehrenberg, 1834 .. 113
 6.4 Genus *Dichocoenia* .. 118
 6.4.1 *Dichocoenia stokesi* Milne Edwards and Haime, 1848 .. 118
 6.5 Genus *Montastraea* (Family Faviidae) .. 123
 6.5.1 *Montastraea faveolata* Ellis and Solander, 1786 .. 129
 6.5.2 *Montastraea franksi* Gregory, 1895 ... 132
 6.5.3 *Montastraea annularis* Ellis and Solander, 1786 .. 135
7. Individual Species Accounts—Indo-Pacific Species .. 138
 7.1 Genus *Millepora* (Class Hydrozoa; Order Milleporina; Family Milleporidae) 138
 7.1.1 *Millepora foveolata* Crossland, 1952 .. 138
 7.1.2 *Millepora tuberosa* Boschma, 1966 ... 142
 7.2 Genus *Heliopora* (Class Anthozoa; Order Helioporacea; Family Helioporidae) 147
 7.2.1 *Heliopora coerulea* Pallas, 1766 .. 147
 7.3 Genus *Pocillopora* (Class Anthozoa; Order Scleractinia; Family Pocilloporidae) 153
 7.3.1 *Pocillopora danae* Verrill, 1864 ... 156
 7.3.2 *Pocillopora elegans* Dana, 1864 ... 161
 7.4 Genus *Seriatopora* .. 168
 7.4.1 *Seriatopora aculeata* Quelch, 1886 .. 168
 7.5 Genus *Acropora* (Family Acroporidae) .. 172
 7.5.1 *Acropora aculeus* Dana, 1846 ... 176
 7.5.2 *Acropora acuminata* Verrill, 1864 ... 180
 7.5.3 *Acropora aspera* Dana, 1846 ... 184
 7.5.4 *Acropora dendrum* Bassett-Smith, 1890 ... 189
 7.5.5 *Acropora donei* Veron and Wallace, 1984 193
 7.5.6 *Acropora globiceps* Dana, 1846 .. 197
| 7.5.7 | *Acropora horrida* Dana 1846 | 201 |
| 7.5.8 | *Acropora jacquelineae* Wallace, 1994 | 205 |
| 7.5.9 | *Acropora listeri* Brook, 1893 | 209 |
| 7.5.10 | *Acropora lokani* Wallace, 1994 | 213 |
| 7.5.11 | *Acropora microclados* Ehrenberg, 1834 | 217 |
| 7.5.12 | *Acropora palmerae* Wells, 1954 | 221 |
| 7.5.13 | *Acropora paniculata* Verrill, 1902 | 225 |
| 7.5.14 | *Acropora pharaonis* Milne Edwards and Haime, 1860 | 229 |
| 7.5.15 | *Acropora polystoma* Brook, 1891 | 233 |
| 7.5.16 | *Acropora rudis* Rehberg, 1892 | 241 |
| 7.5.17 | *Acropora speciosa* Quelch, 1886 | 245 |
| 7.5.18 | *Acropora striata* Verrill, 1866 | 249 |
| 7.5.19 | *Acropora tenella* Brook, 1892 | 253 |
| 7.5.20 | *Acropora vaughani* Wells, 1954 | 257 |
| 7.5.21 | *Acropora verweyi* Veron and Wallace, 1984 | 261 |
| 7.6 | **Genus Anacropora** | 266 |
| 7.6.1 | *Anacropora puertogalerae* Nemenzo, 1964 | 266 |
| 7.6.2 | *Anacropora spinosa* Rehberg, 1892 | 270 |
| 7.7 | **Genus Astreopora** | 274 |
| 7.7.1 | *Astreopora cucullata* Lamberts, 1980 | 274 |
| 7.8 | **Genus Isopora** | 278 |
| 7.8.1 | *Isopora crateriformis* Gardiner, 1898 | 278 |
| 7.9 | **Genus Montipora** | 288 |
| 7.9.1 | *Montipora angulata* Lamarck, 1816 | 290 |
| 7.9.2 | *Montipora australiensis* Bernard, 1897 | 294 |
| 7.9.3 | *Montipora calcarea* Bernard, 1897 | 298 |
| 7.9.4 | *Montipora caliculata* Dana, 1846 | 302 |
| 7.9.5 | *Montipora dilatata* Dana, 1846, *Montipora flabellata* Dana, 1846, and *Montipora turgescens* Bernard, 1897 | 306 |
| 7.9.6 | *Montipora lobulata* Bernard, 1897 | 311 |
| 7.9.7 | *Montipora patula* (verrili) Bernard, 1897 | 315 |
| 7.10 | **Genus Alveopora** (Family Poritidae) | 319 |
| 7.10.1 | *Alveopora allingi* Hoffmeister, 1925 | 319 |
| 7.10.2 | *Alveopora fenestra* Lamarck, 1816 | 323 |
| 7.10.3 | *Alveopora verrilliana* Dana, 1872 | 327 |
7.11 Genus *Porites* .. 331
 7.11.1 *Porites horizontalata* Hoffmeister, 1925 .. 331
 7.11.2 *Porites napopora* Veron, 2000 ... 335
 7.11.3 *Porites nigrescens* Dana, 1846 .. 339
 7.11.4 *Porites pukoensis* Vaughan, 1907 .. 343
7.12 Genus *Psammocora* (Family Siderastreidae) ... 349
 7.12.1 *Psammocora stellata* Verrill, 1866 ... 349
7.13 Genus *Leptoseris* (Family Agariciidae) .. 353
 7.13.1 *Leptoseris incrustans* Quelch, 1886 ... 353
 7.13.2 *Leptoseris yabei* Pillai and Scheer, 1976 ... 357
7.14 Genus *Pachyseris* .. 361
 7.14.1 *Pachyseris rugosa* Lamarck, 1801 .. 361
7.15 Genus *Pavona* .. 365
 7.15.1 *Pavona bipartita* Nemenzo, 1980 ... 365
 7.15.2 *Pavona cactus* Forskål, 1775 ... 369
 7.15.3 *Pavona decussata* Dana, 1846 .. 373
 7.15.4 *Pavona diffluens* Lamarck, 1816 .. 377
 7.15.5 *Pavona venosa* (Ehrenberg, 1834) ... 381
7.16 Genus *Galaxea* (Family Oculinidae) ... 385
 7.16.1 *Galaxea astreata* Lamarck, 1816 ... 385
7.17 Genus *Pectinia* (Family Pectiniidae) ... 389
 7.17.1 *Pectinia alcicornis* Saville-Kent, 1871 ... 389
7.18 Genus *Acanthastrea* (Family Mussidae) .. 393
 7.18.1 *Acanthastrea brevis* Milne Edwards and Haime, 1849 .. 393
 7.18.2 *Acanthastrea hemprichii* Ehrenberg, 1834 .. 397
 7.18.3 *Acanthastrea ishigakiensis* Veron, 1990 ... 401
 7.18.4 *Acanthastrea regularis* Veron, 2000 ... 405
7.19 Genus *Barabattoia* (Family Faviidae) ... 409
 7.19.1 *Barabattoia laddi* Wells, 1954 .. 409
7.20 Genus *Caulastrea* .. 413
 7.20.1 *Caulastrea echinulata* Milne Edwards and Haime, 1849 .. 413
7.21 Genus *Cyphastrea* .. 417
 7.21.1 *Cyphastrea agassizi* Vaughan, 1907 .. 417
 7.21.2 *Cyphastrea ocellina* Dana, 1864 ... 421
7.22 Genus *Euphyllia* (Family Caryophyllidae) ... 425
7.22.1 *Euphyllia cristata* Chevalier, 1971 ... 425
7.22.2 *Euphyllia paraancora* Veron, 1990 ... 429
7.22.3 *Euphyllia paradivisa* Veron, 1990 ... 433
7.23 Genus *Physogyra* ... 437
7.23.1 *Physogyra lichtensteini* Saville-Kent, 1871 .. 437
7.24 Genus *Turbinaria* (Family Dendrophylliidae) ... 441
7.24.1 *Turbinaria mesenterina* (Lamarck, 1816) ... 441
7.24.2 *Turbinaria peltata* (Esper, 1794) ... 445
7.24.3 *Turbinaria reniformis* Bernard, 1896 .. 449
7.24.4 *Turbinaria stellulata* Lamarck, 1816 ... 453

8. Synthesis of Risk Assessments: Taxonomic, Regional, and Threat-based Patterns ... 457
REFERENCES ... 462
Appendix: *Millepora boschmai* (de Weerdt and Glynn, 1991) A-1
LIST OF FIGURES

Figure ES-1. Example histogram showing the distribution of points to estimate the likelihood that the status of *Pavona diffluens* will fall below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. xxxiv

Figure ES-2. Summary of votes tallied across Critical Risk Threshold likelihood categories for all 82 candidate coral species ranked by mean likelihood. ... xxxv

Figure ES-3. Number of coral species mean with likelihood scores (total = 82 scores) in each risk likelihood category. .. xxxviii

Figure 2.1.1. Schematic view of the anatomy of a coral polyp (corallite) (Sumich, 1996). .. 6

Figure 2.2.1. Diversity of coral life cycle showing different life history stages for broadcast spawners versus brooders, as well as asexual fragmentation .. 9

Figure 3.1.1. World population from 1800 to 2100 based on UN 2004 projections (red, orange, green) and U.S. Census Bureau historical estimates (black) and assessments (blue) ... 21

Figure 3.1.2. Recent world and regional trends in (left) human population abundance and (right) human population density from 1960 through 2009 .. 22

Figure 3.1.3. Approximate number of people living within 10 km of the coast and 30 km of a coral reef per km² of reef. .. 23

Figure 3.1.4. Recent world and regional trends in (left) CO₂ emissions and (right) per capita CO₂ emissions from 1960 through 2009 .. 24

Figure 3.1.5. Recent world and regional trends in percent (left) land area in agriculture and (right) forest area over the 1960–2009 period .. 24

Figure 3.2.1. Time series of atmospheric CO₂, often referred to as the “Keeling Curve”, measured at Mauna Loa Observatory, Hawai’i over the 1958–2010 period (Tans and Keeling, 2010). 27

Figure 3.2.2. (Left panel) Global average atmospheric concentrations of carbon dioxide over a 250-year period from 1750 to 2000. The light blue line indicates actual direct atmospheric measurements. The colored dots indicate data gathered from ice cores; each color represents a different ice core sampling site. Data from Robert A. Rohde and the .. 27

Figure 3.2.3. Observed and projected CO₂ emission growth rates in percent per year (McMullen and Jabbour, 2009; Raupach et al., 2007). .. 28

Figure 3.2.4. Global analysis of reef area affected by thermal stress, by region and globally, during the years 1998–2007 .. 30

Figure 3.2.5. The impacts of ocean warming on various coral life history stages, including adult mortality, fecundity, and fragmentation, fertilization, pelagic planula, settlement, polyp development, and juvenile growth .. 30

Figure 3.2.6. Global map of reef areas affected by thermal stress during the years 1998–2007 .. 31

Figure 3.2.7. Global map of reef areas expected to suffer coral bleaching from thermal stress during the decades of the 2030s and 2050s. .. 33
Figure 6.5.3. Distribution of points to estimate the likelihood that the status of *Montastraea faveolata* falls below the Critical Risk Threshold (the species is of such low abundance or so spatially fragmented or at such reduced diversity that extinction is extremely likely) by 2100. 131

Figure 6.5.4. *Montastraea faveolata* photo (left) from Veron and Stafford-Smith (2002) and (right) from http://sanctuaries.noaa.gov/pgallery/pgflower/living/living_2.html. 132

Figure 6.5.5. *Montastraea faveolata* distribution from IUCN copied from http://www.iucnredlist.org. 133

Figure 6.5.6. Distribution of points to estimate the likelihood that the status of *Montastraea faveolata* falls below the Critical Risk Threshold (the species is of such low abundance or so spatially fragmented or at such reduced diversity that extinction is extremely likely) by 2100. 134

Figure 6.5.7. *Montastraea franksi* photo (left) from Veron and Stafford-Smith (2002) and (right) from http://sanctuaries.noaa.gov/pgallery/pgflower/living/living_2.html. 135

Figure 6.5.8. *Montastraea franksi* distribution from IUCN copied from http://www.iucnredlist.org. 135

Figure 6.5.9. *Montastraea franksi* distribution from Veron and Stafford-Smith (2002). 136

Figure 6.5.10. Distribution of points to estimate the likelihood that the status of *Montastraea franksi* falls below the Critical Risk Threshold (the species is of such low abundance or so spatially fragmented or at such reduced diversity that extinction is extremely likely) by 2100. 137

Figure 7.1.1. *Millepora foveolata* images from (top; type specimen) Crossland (1952) and (bottom) Randall and Cheng (1984). 138

Figure 7.1.2. *Millepora foveolata* distribution from IUCN copied from http://www.iucnredlist.org. 139

Figure 7.1.3. *Millepora foveolata* distribution from Veron (2000). 140

Figure 7.1.4. *Millepora foveolata* distribution from Veron and Stafford-Smith (2002). 141

Figure 7.1.5. *Millepora tuberosa* photos from David Burdick copied from GuamReefLife.com. 142

Figure 7.1.6. *Millepora tuberosa* distribution from IUCN copied from http://www.iucnredlist.org. 143

Figure 7.1.7. *Millepora tuberosa* distribution from Veron (2000). 144

Figure 7.1.8. Nearly complete bleaching of all coral species except *Heliopora coerulea* at Koh Racha Yai about 1-hour boat ride south of Phuket, Thailand. 145

Figure 7.2.1. *Heliopora coerulea* distribution from Veron (2000) and (one to the right) provided by the BRT. 147

Figure 7.2.2. *Heliopora coerulea* distribution from IUCN copied from http://www.iucnredlist.org. 148

Figure 7.2.3. *Heliopora coerulea* distribution from Veron (2000). 148

Figure 7.2.4. Nearly complete bleaching of all coral species except *Heliopora coerulea* at Koh Racha Yai about 1-hour boat ride south of Phuket, Thailand. 150

Figure 7.2.5. Distribution of points to estimate the likelihood that the status of *Heliopora coerulea* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. 152
Figure 7.3.1. *Pocillopora danae* photos and corallite plan from Veron (2000) ... 156

Figure 7.3.2. *Pocillopora danae* distribution from IUCN copied from http://www.iucnredlist.org ... 157

Figure 7.3.3. *Pocillopora danae* distribution from Veron (2000) ... 157

Figure 7.3.4. Distribution of points to estimate the likelihood that the status of *Pocillopora danae* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100 ... 160

Figure 7.3.5. *Pocillopora elegans* photos and corallite plan from Veron (2000) ... 161

Figure 7.3.6. *Pocillopora elegans* distribution from IUCN copied from http://www.iucnredlist.org .. 162

Figure 7.3.7. *Pocillopora elegans* distribution from Veron (2000) .. 162

Figure 7.3.8. Distribution of points to estimate the likelihood that the status of *Pocillopora elegans* from the eastern Pacific falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100 ... 165

Figure 7.3.9. Distribution of points to estimate the likelihood that the status of *Pocillopora elegans* from the central and Indo-Pacific falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100 ... 167

Figure 7.4.1. *Seriatopora aculeata* photos from Veron (2000) .. 168

Figure 7.4.2. *Seriatopora aculeata* distribution from IUCN copied from http://www.iucnredlist.org 168

Figure 7.4.3. *Seriatopora aculeata* distribution from Veron (2000) ... 169

Figure 7.4.4. Distribution of points to estimate the likelihood that the status of *Seriatopora aculeata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100 ... 171

Figure 7.5.1. *Acropora aculeus* photos from Veron (2000). ... 176

Figure 7.5.2. *Acropora aculeus* distribution from IUCN copied from http://www.iucnredlist.org ... 177

Figure 7.5.3. *Acropora aculeus* distribution from Wallace (1999). .. 177

Figure 7.5.4. *Acropora aculeus* distribution from Veron (2002). ... 177

Figure 7.5.5. Distribution of points to estimate the likelihood that the status of *Acropora aculeus* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100 ... 179

Figure 7.5.6. *Acropora acuminata* photo and coralite plan from Veron (2000) ... 180

Figure 7.5.7. *Acropora acuminata* distribution from IUCN copied from http://www.iucnredlist.org .. 180

Figure 7.5.8. *Acropora acuminata* distribution copied from Wallace (1999). .. 181

Figure 7.5.9. *Acropora acuminata* distribution from Veron (2000) ... 181
Figure 7.5.10. Distribution of points to estimate the likelihood that the status of *Acropora acuminata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100.......................... 183

Figure 7.5.11. *Acropora aspera* photos copied from (color) Veron (2000) and (black and white) corallite plan from Wallace (1999). ... 184

Figure 7.5.12. *Acropora aspera* distribution from IUCN copied from http://www.iucnredlist.org. 185

Figure 7.5.13. *Acropora aspera* distribution from Veron (2000). .. 185

Figure 7.5.14. Distribution of points to estimate the likelihood that the status of *Acropora aspera* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 188

Figure 7.5.15. *Acropora dendrum* photos and corallite plan from Veron (2000). ... 189

Figure 7.5.16. *Acropora dendrum* distribution from IUCN copied from http://www.iucnredlist.org. 190

Figure 7.5.17. *Acropora dendrum* distribution from Veron (2000). .. 190

Figure 7.5.18. Distribution of points to estimate the likelihood that the status of *Acropora dendrum* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 192

Figure 7.5.19. *Acropora donei* photos and corallite plan from Veron (2000). .. 193

Figure 7.5.20. *Acropora donei* distribution from IUCN copied from http://www.iucnredlist.org. 194

Figure 7.5.21. *Acropora donei* distribution from Veron (2000). .. 194

Figure 7.5.22. Distribution of points to estimate the likelihood that the status of *Acropora donei* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 196

Figure 7.5.23. *Acropora globiceps* photos and corallite plan from Veron (2000). .. 197

Figure 7.5.24. *Acropora globiceps* distribution from IUCN copied from http://www.iucnredlist.org. 198

Figure 7.5.25. *Acropora globiceps* distribution from Veron (2000). .. 198

Figure 7.5.26. Distribution of points to estimate the likelihood that the status of *Acropora globiceps* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 200

Figure 7.5.27. *Acropora horrida* photos and corallite plan from Veron (2000). .. 201

Figure 7.5.28. *Acropora horrida* distribution from IUCN copied from http://www.iucnredlist.org. 202

Figure 7.5.29. *Acropora horrida* distribution from Veron (2000). .. 202

Figure 7.5.30. Distribution of points to estimate the likelihood that the status of *Acropora horrida* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 204
Figure 7.5.31. *Acropora jacquelineae* photos and corallite plan from Veron (2000). ... 205

Figure 7.5.32. *Acropora jacquelineae* distribution from IUCN copied from http://www.iucnredlist.org ... 206

Figure 7.5.33. *Acropora jacquelineae* distribution from Veron (2000). .. 206

Figure 7.5.34. Distribution of points to estimate the likelihood that the status of *Acropora jacquelineae* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100 ... 208

Figure 7.5.35. *Acropora listeri* photos and corallite plan from Veron (2000). .. 209

Figure 7.5.36. *Acropora listeri* distribution from IUCN copied from http://www.iucnredlist.org ... 210

Figure 7.5.37. *Acropora listeri* distribution from Veron (2000). ... 210

Figure 7.5.38. Distribution of points to estimate the likelihood that the status of *Acropora listeri* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100 ... 212

Figure 7.5.39. *Acropora lokani* photos and corallite plan from Veron (2000). .. 213

Figure 7.5.40. *Acropora lokani* distribution from IUCN copied from http://www.iucnredlist.org ... 214

Figure 7.5.41. *Acropora lokani* distribution from Veron (2000). ... 214

Figure 7.5.42. Distribution of points to estimate the likelihood that the status of *Acropora lokani* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100 ... 216

Figure 7.5.43. *Acropora microclados* photos and corallite plan from Veron (2000). ... 217

Figure 7.5.44. *Acropora microclados* distribution from IUCN copied from http://www.iucnredlist.org ... 218

Figure 7.5.45. *Acropora microclados* distribution from Veron (2000). ... 218

Figure 7.5.46. Distribution of points to estimate the likelihood that the status of *Acropora microclados* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100 ... 220

Figure 7.5.47. *Acropora palmerae* photos and corallite plan from Veron (2000). ... 221

Figure 7.5.48. *Acropora palmerae* distribution from IUCN copied from http://www.iucnredlist.org ... 222

Figure 7.5.49. *Acropora palmerae* distribution from Veron (2000). ... 222

Figure 7.5.50. Distribution of points to estimate the likelihood that the status of *Acropora palmerae* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100 ... 224

Figure 7.5.51. *Acropora paniculata* photos and corallite plan from Veron (2000). ... 225

Figure 7.5.52. *Acropora paniculata* distribution from IUCN copied from http://www.iucnredlist.org ... 226

Figure 7.5.53. *Acropora paniculata* distribution from Veron (2000). ... 226
Figure 7.5.54. Distribution of points to estimate the likelihood that the status of Acropora paniculata falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 228

Figure 7.5.55. Acropora pharaonis photos and corallite plan from Veron (2000)... 229

Figure 7.5.56. Acropora pharaonis distribution from IUCN copied from http://www.iucnredlist.org... 230

Figure 7.5.57. Acropora pharaonis distribution from Veron (2000). .. 230

Figure 7.5.58. Distribution of points to estimate the likelihood that the status of Acropora pharaonis falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 232

Figure 7.5.59. Acropora polystoma photos and corallites from Veron (2000). ... 233

Figure 7.5.60. Acropora polystoma distribution from IUCN copied from http://www.iucnredlist.org... 234

Figure 7.5.61. Acropora polystoma distribution from Veron (2000). .. 234

Figure 7.5.62. Distribution of points to estimate the likelihood that the status of Acropora polystoma falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 236

Figure 7.5.63. Acropora retusa photos and corallites from Veron (2000). ... 237

Figure 7.5.64. Acropora retusa distribution from IUCN copied from http://www.iucnredlist.org. ... 238

Figure 7.5.65. Acropora retusa distribution from Veron (2000). .. 238

Figure 7.5.66. Distribution of points to estimate the likelihood that the status of Acropora retusa falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 240

Figure 7.5.67. Acropora rudis photos from Veron (2000). ... 241

Figure 7.5.68. Acropora rudis distribution from IUCN copied from http://www.iucnredlist.org... 241

Figure 7.5.69. Acropora rudis distribution from Veron (2000). .. 242

Figure 7.5.70. Distribution of points to estimate the likelihood that the status of Acropora rudis falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 244

Figure 7.5.71. Acropora speciosa photos from Veron (2000). ... 245

Figure 7.5.72. Acropora speciosa distribution from IUCN copied from http://www.iucnredlist.org. ... 245

Figure 7.5.73. Acropora speciosa distribution from Veron (2000). .. 246

Figure 7.5.74. Distribution of points to estimate the likelihood that the status of Acropora speciosa falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 248

Figure 7.5.75. Acropora striata photos from Veron (2000). ... 249
Figure 7.5.76. *Acropora striata* distribution from IUCN copied from http://www.iucnredlist.org... 249

Figure 7.5.77. *Acropora striata* distribution from Veron (2000)... 250

Figure 7.5.78. Distribution of points to estimate the likelihood that the status of *Acropora striata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100.. 252

Figure 7.5.79. *Acropora tenella* photos from Veron (2000). ... 253

Figure 7.5.80. *Acropora tenella* distribution from IUCN copied from http://www.iucnredlist.org ... 253

Figure 7.5.81. *Acropora tenella* distribution from Veron (2000)... 254

Figure 7.5.82. Distribution of points to estimate the likelihood that the status of *Acropora tenella* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100.. 256

Figure 7.5.83. *Acropora vaughani* photos and corallite plan from Veron (2000). .. 257

Figure 7.5.84. *Acropora vaughani* distribution from IUCN copied from http://www.iucnredlist.org ... 258

Figure 7.5.85. *Acropora vaughani* distribution from Veron (2000)... 258

Figure 7.5.86. Distribution of points to estimate the likelihood that the status of *Acropora vaughani* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100.. 260

Figure 7.5.87. *Acropora verweyi* photos from Veron (2000). ... 261

Figure 7.5.88. *Acropora verweyi* distribution from IUCN copied from http://www.iucnredlist.org ... 262

Figure 7.5.89. *Acropora verweyi* distribution from Wallace (1999)... 262

Figure 7.5.90. *Acropora verweyi* distribution from Veron (2000)... 262

Figure 7.5.91. Distribution of points to estimate the likelihood that the status of *Acropora verweyi* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100.. 264

Figure 7.6.1. *Anacropora puertogalerae* photos from Veron (2000). ... 266

Figure 7.6.2. *Anacropora puertogalerae* distribution from IUCN copied from http://www.iucnredlist.org 266

Figure 7.6.3. *Anacropora puertogalerae* distribution from Veron (2000)... 267

Figure 7.6.4. Distribution of points to estimate the likelihood that the status of *Anacropora puertogalerae* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100.. 269

Figure 7.6.5. *Anacropora spinosa* photos from Veron (2000). ... 270

Figure 7.6.6. *Anacropora spinosa* distribution from IUCN copied from http://www.iucnredlist.org ... 270

Figure 7.6.7. *Anacropora spinosa* distribution from Veron (2000). .. 271

xx
Figure 7.6.8. Distribution of points to estimate the likelihood that the status of *Anacropora spinosa* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 272

Figure 7.7.1. *Astreopora cucullata* photos from Veron (2000). ... 274

Figure 7.7.2. *Astreopora cucullata* distribution from IUCN copied from http://www.iucnredlist.org. 274

Figure 7.7.3. *Astreopora cucullata* distribution from Veron (2000). ... 275

Figure 7.7.4. Distribution of points to estimate the likelihood that the status of *Astreopora cucullata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100.. 277

Figure 7.8.1. *Isopora crateriformis* copied from (upper two photos) Veron (2000) and (lower two photos) Wallace (1999) ... 278

Figure 7.8.2. *Isopora crateriformis* distribution from IUCN copied from http://www.iucnredlist.org. .. 279

Figure 7.8.3. *Isopora crateriformis* distribution from Wallace (1999). ... 279

Figure 7.8.4. *Isopora crateriformis* distribution from Veron (2000). ... 279

Figure 7.8.5. Distribution of points to estimate the likelihood that the status of *Isopora crateriformis* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100.. 282

Figure 7.8.6. *Isopora cuneata* copied from (upper two photos) Veron (2000) and (lower two photos) Wallace (1999). 283

Figure 7.8.7. *Isopora cuneata* distribution from IUCN copied from http://www.iucnredlist.org. ... 284

Figure 7.8.8. *Isopora cuneata* distribution from Wallace (1999). ... 284

Figure 7.8.9. *Isopora cuneata* distribution from (Veron 2000) ... 284

Figure 7.8.10. Distribution of points to estimate the likelihood that the status of *Isopora cuneata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100.. 287

Figure 7.9.1. *Montipora angulata* photos and corallite plan from Veron (2000). ... 290

Figure 7.9.2. *Montipora angulata* distribution from IUCN copied from http://www.iucnredlist.org. .. 290

Figure 7.9.3. *Montipora angulata* distribution from Veron (2000). ... 291

Figure 7.9.4. Distribution of points to estimate the likelihood that the status of *Montipora angulata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100.. 293

Figure 7.9.5. *Montipora australiensis* photos and corallite plan from Veron (2000). ... 294

Figure 7.9.6. *Montipora australiensis* distribution from IUCN copied from http://www.iucnredlist.org. .. 294

Figure 7.9.7. *Montipora australiensis* distribution from Veron (2000). ... 295
Figure 7.9.8. Distribution of points to estimate the likelihood that the status of Montipora australiensis falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 296

Figure 7.9.9. Montipora calcarea photos and corallite plan from Veron (2000). ... 298

Figure 7.9.10. Montipora calcarea distribution from IUCN copied from http://www.iucnredlist.org. 299

Figure 7.9.11. Montipora calcarea distribution from Veron (2000). .. 299

Figure 7.9.12. Distribution of points to estimate the likelihood that the status of Montipora calcarea falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 301

Figure 7.9.13. Montipora caliculata photos and corallite plan from Veron (2000). .. 302

Figure 7.9.14. Montipora caliculata distribution from IUCN copied from http://www.iucnredlist.org. 302

Figure 7.9.15. Montipora caliculata distribution from Veron (2000). .. 303

Figure 7.9.16. Distribution of points to estimate the likelihood that the status of Montipora caliculata falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 305

Figure 7.9.17. Montipora dilatata photos and corallite plan from Veron (2000). .. 306

Figure 7.9.18. Montipora flabellata photos and corallite plan from Veron (2000). .. 306

Figure 7.9.19. Montipora dilatata/flabellata/turgescens distribution (subsumed as distribution of Montipora turgescens as Montipora dilatata and Montipora flabellata are described as Hawaiian endemics) from IUCN copied from http://www.iucnredlist.org. .. 307

Figure 7.9.20. Montipora dilatata/flabellata/turgescens distribution (subsumed as distribution of Montipora turgescens as Montipora dilatata and Montipora flabellata are described as Hawaiian endemics) from Veron (2000). 307

Figure 7.9.21. Distribution of points to estimate the likelihood that the status of Montipora dilatata/flabellata/turgescens falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 309

Figure 7.9.22. Montipora lobulata photos and corallite plan from Veron (2000). ... 311

Figure 7.9.23. Montipora lobulata distribution from IUCN copied from http://www.iucnredlist.org. 311

Figure 7.9.24. Montipora lobulata distribution from Veron (2000). .. 312

Figure 7.9.25. Distribution of points to estimate the likelihood that the status of Montipora lobulata falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 314

Figure 7.9.26. Montipora patula photos and corallite plan from Veron (2000). .. 315

Figure 7.9.27. Montipora patula distribution from (left) IUCN copied from http://www.iucnredlist.org and (right) Veron (2000). .. 315
Figure 7.9.28. *Montipora verrilli* distribution from (left) IUCN copied from http://www.iucnredlist.org and (right) Veron (2000). ... 316

Figure 7.9.29. Distribution of points to estimate the likelihood that the status of *Montipora patula/verrilli* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 318

Figure 7.10.1. *Alveopora allingi* photos and corallite plan from Veron (2000). ... 319

Figure 7.10.2. *Alveopora allingi* distribution from IUCN copied from http://www.iucnredlist.org. ... 320

Figure 7.10.3. *Alveopora allingi* distribution from Veron (2000). ... 320

Figure 7.10.4. Distribution of points to estimate the likelihood that the status of *Alveopora allingi* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 322

Figure 7.10.5. *Alveopora fenestrata* photos and corallite plan from Veron (2000). ... 323

Figure 7.10.6. *Alveopora fenestrata* distribution from IUCN copied from http://www.iucnredlist.org. ... 324

Figure 7.10.7. *Alveopora fenestrata* distribution from Veron (2000). ... 324

Figure 7.10.8. Distribution of points to estimate the likelihood that the status of *Alveopora fenestrata* falls below the Critical Risk Threshold (Critical Risk Threshold; the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 326

Figure 7.10.9. *Alveopora verrilliana* photos and corallite plan from Veron (2000). ... 327

Figure 7.10.10. *Alveopora verrilliana* distribution from IUCN copied from http://www.iucnredlist.org. ... 328

Figure 7.10.11. *Alveopora verrilliana* distribution from Veron (2000). ... 328

Figure 7.10.12. Distribution of points to estimate the likelihood that the status of *Alveopora verrilliana* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 330

Figure 7.11.1. *Porites horizontalata* photos and corallite plan (Veron, 2000) ... 331

Figure 7.11.2. *Porites horizontalata* distribution from IUCN copied from http://www.iucnredlist.org. ... 332

Figure 7.11.3. *Porites horizontalata* distribution from Veron (2000). ... 332

Figure 7.11.4. Distribution of points to estimate the likelihood that the status of *Porites horizontalata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 334

Figure 7.11.5. *Porites napopora* photos and corallite plan from Veron (2000). ... 335

Figure 7.11.6. *Porites napopora* distribution from IUCN copied from http://www.iucnredlist.org. ... 336

Figure 7.11.7. *Porites napopora* distribution from Veron (2000); however, see “Distribution” paragraphs. ... 336
Figure 7.11.8. Distribution of points to estimate the likelihood that the status of *Porites napopora* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 338

Figure 7.11.9. *Porites nigrescens* photos and corallite plan from Veron (2000). .. 339

Figure 7.11.10. *Porites nigrescens* distribution from IUCN copied from http://www.iucnredlist.org. ... 340

Figure 7.11.11. *Porites nigrescens* distribution from Veron (2000). .. 340

Figure 7.11.12. Distribution of points to estimate the likelihood that the status of *Porites nigrescens* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 342

Figure 7.11.13. *Porites pukoensis* photos and corallite plan from Veron (2000). .. 343

Figure 7.11.14. *Porites pukoensis* distribution from IUCN copied from http://www.iucnredlist.org. .. 344

Figure 7.11.15. *Porites pukoensis* distribution copied from Veron and Stafford-Smith (2002) and agrees with Veron (2000). .. 344

Figure 7.11.16. *Porites lobata* distribution from IUCN copied from http://www.iucnredlist.org. .. 346

Figure 7.11.17. Distribution of points to estimate the likelihood that the status of *Porites Clade 1 forma pukoensis* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. .. 347

Figure 7.11.18. Distribution of points to estimate the likelihood that the status of *Porites pukoensis* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. .. 348

Figure 7.12.1. *Psammocora stellata* photos and corallite plan from Veron (2000). .. 349

Figure 7.12.2. *Psammocora stellata* distribution from IUCN copied from http://www.iucnredlist.org. .. 350

Figure 7.12.3. *Psammocora stellata* distribution from Veron (2000). .. 350

Figure 7.12.4. Distribution of points to estimate the likelihood that the status of *Psammocora stellata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. .. 352

Figure 7.13.1. *Leptoseris incrustans* photos and corallite plan from Veron (2000). .. 353

Figure 7.13.2. *Leptoseris incrustans* distribution from IUCN copied from http://www.iucnredlist.org. .. 354

Figure 7.13.3. *Leptoseris incrustans* distribution from Veron (2000). .. 354

Figure 7.13.4. Distribution of points to estimate the likelihood that the status of *Leptoseris incrustans* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. .. 356

Figure 7.13.5. *Leptoseris yabei* photos and corallite plan from Veron (2000). .. 357

Figure 7.13.6. *Leptoseris yabei* distribution from IUCN copied from http://www.iucnredlist.org. .. 358
Figure 7.13.7. *Leptoseris yabei* distribution from Veron (2000) .. 358

Figure 7.13.8. Distribution of points to estimate the likelihood that the status of *Leptoseris yabei* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 360

Figure 7.14.1. *Pachyseris rugosa* photos from Veron (2000) ... 361

Figure 7.14.2. *Pachyseris rugosa* distribution from IUCN copied from http://www.iucnredlist.org....................... 361

Figure 7.14.3. *Pachyseris rugosa* distribution from Veron (2000) ... 362

Figure 7.14.4. Distribution of points to estimate the likelihood that the status of *Pachyseris ruogsa* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 364

Figure 7.15.1. *Pavona bipartita* photos and corallite plan from Veron (2000) ... 365

Figure 7.15.2. *Pavona bipartita* distribution from IUCN copied from http://www.iucnredlist.org.......................... 366

Figure 7.15.3. *Pavona bipartita* distribution from Veron (2000) ... 366

Figure 7.15.4. Distribution of points to estimate the likelihood that the status of *Pavona bipartita* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 368

Figure 7.15.5. *Pavona cactus* photos and corallite plan from Veron (2000) .. 369

Figure 7.15.6. *Pavona cactus* distribution from IUCN copied from http://www.iucnredlist.org............................ 370

Figure 7.15.7. *Pavona cactus* distribution from Veron (2000) ... 370

Figure 7.15.8. Distribution of points to estimate the likelihood that the status of *Pavona cactus* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 372

Figure 7.15.9. *Pavona decussata* photos and corallite plan from Veron (2000) .. 373

Figure 7.15.10. *Pavona decussata* distribution from IUCN copied from http://www.iucnredlist.org..................... 374

Figure 7.15.11. *Pavona decussata* distribution from Veron (2000) .. 374

Figure 7.15.12. Distribution of points to estimate the likelihood that the status of *Pavona decussata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 376

Figure 7.15.13. *Pavona diffluens* photos and corallite plan from Veron (2000) .. 377

Figure 7.15.14. *Pavona diffluens* distribution from IUCN copied from http://www.iucnredlist.org..................... 378

Figure 7.15.15. *Pavona diffluens* distribution from from Veron (2000) .. 378

Figure 7.15.16. Distribution of points to estimate the likelihood that the status of *Pavona diffluens* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 380
Figure 7.18.12. Distribution of points to estimate the likelihood that the status of *Acanthastrea ishigakiensis* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 404

Figure 7.18.13. *Acanthastrea regularis* photos and corallite plan copied from Veron and Stafford (2002) 405

Figure 7.18.14. *Acanthastrea regularis* distribution from IUCN copied from http://www.iucnredlist.org. 406

Figure 7.18.15. *Acanthastrea regularis* distribution from Veron (2000). ... 406

Figure 7.18.16. Distribution of points to estimate the likelihood that the status of *Acanthastrea regularis* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 408

Figure 7.19.1. *Barabattoia laddi* photos and corallite plan copied from Veron and Stafford-Smith (2002). 409

Figure 7.19.2. *Barabattoia laddi* distribution from IUCN copied from http://www.iucnredlist.org. 410

Figure 7.19.3. *Barabattoia laddi* distribution from Veron (2000). ... 410

Figure 7.19.4. Distribution of points to estimate the likelihood that the status of *Barabattoia laddi* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 412

Figure 7.20.1. *Caulastrea echinulata* photos from Veron and Stafford-Smith (2002). .. 413

Figure 7.20.2. *Caulastrea echinulata* distribution from IUCN copied from http://www.iucnredlist.org. 413

Figure 7.20.3. *Caulastrea echinulata* distribution from Veron (2000). ... 414

Figure 7.20.4. Distribution of points to estimate the likelihood that the status of *Caulastrea echinulata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 416

Figure 7.21.1. *Cyphastrea agassizi* photos from Veron (2000). ... 417

Figure 7.21.2. *Cyphastrea agassizi* distribution from IUCN copied from http://www.iucnredlist.org. 417

Figure 7.21.3. *Cyphastrea agassizi* distribution from Veron (2000). ... 418

Figure 7.21.4. Distribution of points to estimate the likelihood that the status of *Cyphastrea agassizi* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 420

Figure 7.21.5. *Cyphastrea ocellina* photos from Veron (2000). ... 421

Figure 7.21.6. *Cyphastrea ocellina* distribution from IUCN copied from http://www.iucnredlist.org. 421

Figure 7.21.7. *Cyphastrea ocellina* distribution from Veron (2000). ... 422

Figure 7.21.8. Distribution of points to estimate the likelihood that the status of *Cyphastrea ocellina* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100. ... 424

Figure 7.22.1. *Euphyllia cristata* photos and corallite plan from Veron (2000). ... 425
Figure 7.22.2. *Euphyllia cristata* distribution from IUCN copied from http://www.iucnredlist.org... 425

Figure 7.22.3. *Euphyllia cristata* distribution from Veron (2000). ... 426

Figure 7.22.4. Distribution of points to estimate the likelihood that the status of *Euphyllia cristata* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 427

Figure 7.22.5. *Euphyllia paraancora* photos and corallite plan from Veron (2000). ... 429

Figure 7.22.6. *Euphyllia paraancora* distribution from IUCN copied from http://www.iucnredlist.org 430

Figure 7.22.7. *Euphyllia paraancora* distribution from Veron (2000). ... 430

Figure 7.22.8. Distribution of points to estimate the likelihood that the status of *Euphyllia paraancora* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 432

Figure 7.22.9. *Euphyllia paradivisa* photos and corallite plan from Veron (Veron, 2000). ... 433

Figure 7.22.10. *Euphyllia paradivisa* distribution from IUCN copied from http://www.iucnredlist.org 433

Figure 7.22.11. *Euphyllia paradivisa* distribution from Veron (2000). ... 434

Figure 7.22.12. Distribution of points to estimate the likelihood that the status of *Euphyllia paradivisa* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 436

Figure 7.23.1. *Physogyra lichtensteini* photos from Veron (2000). .. 437

Figure 7.23.2. *Physogyra lichtensteini* distribution from IUCN copied from http://www.iucnredlist.org 437

Figure 7.23.3. *Physogyra lichtensteini* distribution from Veron (2000). ... 438

Figure 7.23.4. Distribution of points to estimate the likelihood that the status of *Physogyra lichtensteini* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 439

Figure 7.24.1. Colonies of *Turbinaria mesenterina* copied from Veron (2000). ... 441

Figure 7.24.2. *Turbinaria mesenterina* distribution from IUCN copied from http://www.iucnredlist.org 441

Figure 7.24.3. *Turbinaria mesenterina* distribution copied from Veron (2000). ... 442

Figure 7.24.4. Distribution of points to estimate the likelihood that the status of *Turbinaria mesenterina* falls below the Critical Risk Threshold (the species is of such low abundance, or so spatially fragmented, or at such reduced diversity that extinction is extremely likely) by 2100... 444

Figure 7.24.5. Colonies of *Turbinaria peltata* copied from Veron (2000). ... 445

Figure 7.24.6. *Turbinaria peltata* distribution from IUCN copied from http://www.iucnredlist.org 445

Figure 7.24.7. *Turbinaria peltata* distribution from Veron (2000). .. 446

xxviii
LIST OF TABLES

Table ES.1. Summary of votes tallied in each risk likelihood category (colored columns), mean (and standard error, SE) likelihood of falling below the Critical Risk Threshold by 2100, and mean likelihood range for each of the 82 candidate coral species ranked by mean likelihood as determined by the BRT..xxxvi

Table 2.5.1. Summary of regional coral diversity...17

Table 3.1.1. Years of occurrence and years elapsed for human population to reach each additional billion people.20

Table 3.1.2. Countries assigned to each of five regions (Indian Ocean, Caribbean, Southeast Asia, Pacific, and Middle East) for regional trend analyses...22

Table 3.2.1. Annual mean SST anomaly averaged across each ocean province (from Donner, 2009 Table 1).................29

Table 3.2.2. Summary studies exposing corals to manipulated seawater carbon chemistry (or related treatments)........42

Table 3.3.1. Comparative immunity ranks and life-history traits compiled for seven scleractinian coral families.........66

Table 3.3.2. Summary of local reef threats as described by Reefs at Risk Revisited (Burke et al., 2011).....................83

Table 3.5.1. Summary of proximate threats considered by the BRT in assessing extinction risks to the 82 candidate coral species...86

Table 7.5.1. Summary tables for quotas and exports of Acropora spp. as reported to CITES (CITES, 2010).................175

Table 8.1. Summary of votes tallied in each risk likelihood category (colored columns), mean (and standard error, SE) likelihood of falling below the Critical Risk Threshold by 2100, and mean likelihood range for each of the 82 candidate coral species ranked by mean likelihood as determined by the BRT...458
<table>
<thead>
<tr>
<th>ACRONYMS</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAS</td>
<td>American Association for the Advancement of Science</td>
</tr>
<tr>
<td>AGGRA</td>
<td>Atlantic and Gulf Rapid Reef Assessment</td>
</tr>
<tr>
<td>AIMS</td>
<td>Australian Institute of Marine Science</td>
</tr>
<tr>
<td>AR4</td>
<td>Fourth Assessment Report (Intergovernmental Panel on Climate Change)</td>
</tr>
<tr>
<td>BRT</td>
<td>Biological Review Team</td>
</tr>
<tr>
<td>CARICOMP</td>
<td>Caribbean Coastal Marine Productivity Program</td>
</tr>
<tr>
<td>CBD</td>
<td>Center for Biological Diversity</td>
</tr>
<tr>
<td>CCA</td>
<td>Crustose Coralline Algae</td>
</tr>
<tr>
<td>CCSM</td>
<td>Community Climate System Model</td>
</tr>
<tr>
<td>CDIAC</td>
<td>Carbon Dioxide Information Analysis Center</td>
</tr>
<tr>
<td>CITES</td>
<td>Convention on International Trade in Endangered Species</td>
</tr>
<tr>
<td>CNMI</td>
<td>Commonwealth of the Northern Marianas Islands</td>
</tr>
<tr>
<td>COMBO</td>
<td>Coral Mortality and Bleaching Output (model)</td>
</tr>
<tr>
<td>COTS</td>
<td>Crown-of-thorns Seastar</td>
</tr>
<tr>
<td>CRED</td>
<td>Coral Reef Ecosystem Division</td>
</tr>
<tr>
<td>CREMP</td>
<td>Coral Reef Evaluation and Monitoring Project</td>
</tr>
<tr>
<td>CRT</td>
<td>Critical Risk Threshold</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>DESA</td>
<td>Department of Economic and Social Affairs (United Nations)</td>
</tr>
<tr>
<td>DIC</td>
<td>Dissolved Organic Carbon</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño Southern Oscillation</td>
</tr>
<tr>
<td>ESD</td>
<td>Endangered Species Division</td>
</tr>
<tr>
<td>FKNMS</td>
<td>Florida Keys National Marine Sanctuary</td>
</tr>
<tr>
<td>FR</td>
<td>Federal Register</td>
</tr>
<tr>
<td>GBR</td>
<td>Great Barrier Reef</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GLODAP</td>
<td>Global Ocean Data Analysis Project</td>
</tr>
<tr>
<td>HI</td>
<td>Hawai`i</td>
</tr>
<tr>
<td>IPAT</td>
<td>Impact=Population+Affluence+Technology (model)</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>ISA</td>
<td>Individual Species Account</td>
</tr>
<tr>
<td>ITS</td>
<td>Internal Transcribed Spacer</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>JIMAR</td>
<td>Joint Institute for Marine and Atmospheric Research</td>
</tr>
<tr>
<td>LBSP</td>
<td>Land-Based Sources of Pollution</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NCCOS</td>
<td>National Centers for Coastal Ocean Science</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOS</td>
<td>National Ocean Service</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NTU</td>
<td>Nephelometric Turbidity Units</td>
</tr>
<tr>
<td>NWFSC</td>
<td>Northwest Fisheries Science Center</td>
</tr>
<tr>
<td>OA</td>
<td>Ocean Acidification</td>
</tr>
<tr>
<td>OGC</td>
<td>Office of General Counsel</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
</tr>
<tr>
<td>PIFSC</td>
<td>Pacific Islands Fisheries Science Center</td>
</tr>
<tr>
<td>PIRO</td>
<td>Pacific Islands Regional Office</td>
</tr>
<tr>
<td>RCUH</td>
<td>Research Corporation of the University of Hawai`i</td>
</tr>
<tr>
<td>RRR</td>
<td>Reefs at Risk Revisited</td>
</tr>
<tr>
<td>RSMAS</td>
<td>Rosenstiel School of Marine and Atmospheric Sciences</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
</tbody>
</table>

xxxi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>Standard Error</td>
</tr>
<tr>
<td>SEFSC</td>
<td>Southeast Fisheries Science Center</td>
</tr>
<tr>
<td>SERO</td>
<td>Southeast Regional Office</td>
</tr>
<tr>
<td>SRES</td>
<td>Special Report on Emissions Scenarios</td>
</tr>
<tr>
<td>SST</td>
<td>Sea Surface Temperature</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational Scientific and Cultural Organization</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USFWS</td>
<td>United States Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Service</td>
</tr>
<tr>
<td>USVI</td>
<td>United States Virgin Islands</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>WDCGG</td>
<td>World Data Centre for Greenhouse Gases</td>
</tr>
</tbody>
</table>